
LINEAR-PHASE FIR FILTER DESIGN BY LEAST SQUARES

This section describes how to design linear-phase FIR filters based

on the square error criterion. Recall that the interpolation approach

to filter design allows one to specify the frequency response only at

a finite number of points. However, the square error criterion can

include the entire frequency band.

We will see that FIR filters that minimize the square error can

be found by solving a linear system of equations. This technique

is straight-forward and is applicable to arbitrary desired frequency

responses. In addition, linear constraints on the coefficients are

easily included.

1. Derivation

(a) Structure of the matrix Q.

(b) Relation to the DTFT.

(c) Special case: W (ω) = 1

(d) Low-pass: Weighted square error

2. Square Error with Constraints

(a) Low-pass with specified null

(b) Notch Filter

3. Discrete Square Error

4. Pros and Cons
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DERIVATION

The weighted integral square error (or “L2 error”) is defined by

E2 =

∫ π

0

W (ω) (A(ω)−D(ω))2 dω (1)

where

A(ω) : the actual amplitude response

D(ω) : the ideal amplitude response

W (ω) : nonnegative weighting function

The weighting function can be used to assign more importance to

specific parts of the frequency response. For example, it is common

to weight the stop-band more heavily than the pass-band.

Once the length N and the Type of the filter (I, II, III, or IV) is

chosen, the goal is to find the filter coefficients h(n) that minimizes

E2. To develop this approach, we will consider the design of Type

I FIR filters. The design of the other 3 FIR filter types can be

developed similarly.

Recall that for a Type I FIR filter,

A(ω) =
M∑
n=0

a(n) cos (nω)

where

a(0) = h(M), a(n) = 2h(M − n), 1 ≤ n ≤M.
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DERIVATION

To obtain the coefficients a(n) to minimize E2, we can set the

derivatives equal to zero,

dE2

da(k)
= 0, 0 ≤ k ≤M.

The derivative of E2 with respect to a(k) can be found as:

dE2

da(k)
=

∫ π

0

d

da(k)

[
W (ω) (A(ω)−D(ω))2

]
dω (2)

= 2

∫ π

0

W (ω) (A(ω)−D(ω))
dA(ω)

da(k)
dω (3)

= 2

∫ π

0

W (ω) (A(ω)−D(ω)) cos(kω) dω. (4)

Therefore, dE2
da(k) = 0 becomes∫ π

0

W (ω)A(ω) cos(kω) dω =

∫ π

0

W (ω)D(ω) cos(kω) dω,

or ∫ π

0

W (ω)

(
M∑
n=0

a(n) cos (nω)

)
cos(kω) dω =∫ π

0

W (ω)D(ω) cos(kω) dω

or

M∑
n=0

a(n)

∫ π

0

W (ω) cos (nω) cos(kω) dω =∫ π

0

W (ω)D(ω) cos(kω) dω

I. Selesnick EL 713 Lecture Notes 3



DERIVATION

If we define

Q(k, n) =
1

π

∫ π

0

W (ω) cos (nω) cos(kω) dω (5)

and

b(k) =
1

π

∫ π

0

W (ω)D(ω) cos(kω) dω (6)

then the derivative conditions can be written as

M∑
n=0

Q(k, n) a(n) = b(k), 0 ≤ k ≤M. (7)

This is a linear system of equations, and can be written in matrix

form as
Q(0, 0) Q(0, 1) · · · Q(0,M)

Q(1, 0) Q(1, 1) · · · Q(1,M)
...

...

Q(M, 0) Q(M, 1) · · · Q(M,M)

·


a(0)

a(1)
...

a(M)

 =


b(0)

b(1)
...

b(M)


or

Q · a = b.

Therefore, the Type I FIR filter that minimizes the square error can

be obtained by solving this linear system of equations.

a = Q−1 b.
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STRUCTURE OF THE MATRIX Q.

It turns out that the matrix Q has a special structure. Note that

cos(nω) cos(kω) =
1

2
cos((k− n)ω) +

1

2
cos((k + n)ω), (8)

so that

Q(k, n) =
1

π

∫ π

0

W (ω) cos (nω) cos(kω) dω (9)

=
1

2π

∫ π

0

W (ω) cos ((k − n)ω) dω+ (10)

1

2π

∫ π

0

W (ω) cos ((k + n)ω) dω

or

Q(k, n) =
1

2
Q1(k, n) +

1

2
Q2(k, n) (11)

where Q1 and Q2 are defined as

Q1(k, n) =
1

π

∫ π

0

W (ω) cos ((k − n)ω) dω (12)

and

Q2(k, n) =
1

π

∫ π

0

W (ω) cos ((k + n)ω) dω. (13)

Accordingly, we can write

Q1(k, n) = q(k − n), Q2(k, n) = q(k + n) (14)

where

q(n) =
1

π

∫ π

0

W (ω) cos (nω) dω. (15)
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STRUCTURE OF THE MATRIX Q.

With this notation, the matrices Q1 and Q2 are written as

Q1 =


q(0) q(1) · · · q(M)

q(1) q(0) · · · q(M − 1)
...

...

q(M) q(M − 1) · · · q(0)

 (16)

and

Q2 =


q(0) q(1) · · · q(M)

q(1) q(2) · · · q(M + 1)
...

...

q(M) q(M + 1) · · · q(2M)

 . (17)

Note that we have used q(−n) = q(n) here. The matrix Q1 is

a symmetric Toeplitz matrix (constant along its diagonals), the

matrix Q2 is a Hankel matrix (constant along its anti-diagonals).

Consequently,

1. the matrices can be stored with less memory than arbitrary

matrices (2M + 1 numbers instead of (M + 1)2 numbers),

2. there are fast algorithms to compute the solution to ‘Toeplitz

plus Hankel’ systems with computational complexity O(M 2)

instead of O(M 3). (In fact, the complexity can be reduced

further, but with higher overhead.)
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RELATION TO THE DTFT

To express q(k) and b(k) using the inverse Fourier transform, ex-

tend D(ω) and W (ω) symmetrically, so that D(−ω) = D(ω) and

W (−ω) = W (ω). Then we can write

q(n) =
1

2π

∫ π

−π
W (ω) cos(nω) dω. (18)

As sin is an anti-symmetric function∫ π

−π
W (ω) sin(nω) dω = 0, (19)

so we can write

q(n) =
1

2π

∫ π

−π
W (ω) (cos(nω) + j sin(nω)) dω (20)

or

q(n) =
1

2π

∫ π

−π
W (ω) ejnω dω (21)

which we recognize as the inverse discrete-time Fourier transform

q(n) = DTFT−1{W (ω)}. (22)

Similarly,

b(n) = DTFT−1{W (ω)D(ω)}. (23)
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SPECIAL CASE: W (ω) = 1

When the error function is equally weighted at all frequencies,

meaning W (ω) = 1, the square error is said to be unweighted.

In this case the system of equations above becomes very simple.

With W (ω) = 1, the matrix Q becomes

Q(k, n) =
1

π

∫ π

0

cos (nω) cos(kω) dω (24)

=


1 k = n = 0
1
2 k = n 6= 0

0 k 6= n.

(25)

The inverse of Q is therefore simple,

Q =


1

1
2

. . .

1
2

 , Q−1 =


1

2
. . .

2

 .
As

a = Q−1 b,

we have

a(0) =
1

π

∫ π

0

D(ω) dω,

and

a(n) =
2

π

∫ π

0

D(ω) cos(nω) dω, 1 ≤ n ≤M.
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SPECIAL CASE: W (ω) = 1

which in turn gives

h(n) =
1

π

∫ π

0

D(ω) cos((n−M)ω) dω, 0 ≤ n ≤ N.

To relate this to the inverse Fourier transform of D(ω), we can

write

h(n+M) =
1

π

∫ π

0

D(ω) cos(nω) dω. (26)

As above, we recognize the inverse discrete-time Fourier transform,

h(n) = d(n−M), 0 ≤ n ≤ N (27)

where

d(n) = DTFT−1{D(ω)}. (28)

The impulse response h(n) is the truncated and shifted inverse

DTFT of D(ω). Therefore, the filter h(n) obtained by truncating

the inverse discrete-time Fourier transform of the desired amplitude

response is optimal according the the unweighted square error cri-

terion. This method, sometimes called ‘impulse response trunca-

tion’ (IRT), simply consists of taking the inverse Fourier transform

of the desired amplitude response, shifting it, and truncating it so

that it is causal and of finite length.
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IDEAL LOW-PASS

When D(ω) is the ideal low-pass filter with band-edge ωo,

D(ω) =

{
1 0 ≤ ω ≤ ωo

0 ωo ≤ ω ≤ π
(29)

then the formula above for h(n) gives

h(n) =
1

π

∫ π

0

D(ω) cos((n−M)ω) dω (30)

=
1

π

∫ ωo

0

cos((n−M)ω) dω (31)

=
sin ((n−M)ωo)

(n−M) π
(32)

or

h(n) =
ωo
π

sinc
(ωo
π

(n−M)
)

(33)

where

sinc(θ) =
sin(πθ)

πθ
. (34)

A length N = 31 Type I IRT low-pass:
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IDEAL LOW-PASS

We illustrate the amplitude response A(ω) for Type I IRT low-pass

filters with lengths 31, 61, 121, 241, and with ωo = 0.3π.
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The second figure shows in detail the behavior at the pass-band

edge. It is clear from this figure, that while the square error de-

creases for longer filters, the peak error does not diminish. This

effect, known as Gibbs phenomenon, is a main weakness of the IRT

method. There are several approaches to reduce the size of the

peak error:

1. Multiply the impulse response h(n) by a window that is tapered

at its ends (windowing).

2. Modify D(ω) so that is has a smooth transition function.

3. Delete a neighborhood around the band edge from the square

error criterion. This can be done with a weighting function

W (ω) that is equal to zero in the chosen neighborhood. This

is developed below.
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LOW-PASS WITH TRANSITION FUNCTION

Sec 7.6.6

in Mitra One way to reduce the peak error at the band edge is to introduce a

transition band between the pass-band and stop-band. For example,

the desired frequency response of the ideal low-pass filter can be

modified so that it does not contain a discontinuity.

ω

D(ω)

0 ωp ωs π

1

L
L
L
L
L

The pass-band is defined as 0 ≤ ω ≤ ωp, the transition region as

ωp ≤ ω ≤ ωs, and the stop-band as ωs ≤ ω ≤ π. When the desired

amplitude response D(ω) is modified in this way, then the FIR filter

obtained by taking the inverse Fourier transform of D(ω) will have

a smaller peak error. The transition function shown in the figure

is a straight line (a first order spline), but it could be any smooth

function.

To find the unweighted square error solution we need to take inverse

discrete-time Fourier transform of D(ω). An easy way to find the

inverse DTFT of the function shown in the figure, is to note that

it can be written as the convolution of two rectangular functions

with appropriate widths.

I. Selesnick EL 713 Lecture Notes 12



LOW-PASS WITH TRANSITION FUNCTION

Namely,

D(ω) = D1(ω) ∗�D2(ω) (35)

where D(ω), D1(ω), D2(ω) as shown:

0 ωp ωs π−π

1
D(ω) L

L
LL

�
�
��

0 ωo−ωo π−π

ωo =
ωs+ωp

2
D1(ω)

1

∆ π−π

∆ =
ωs−ωp

2
D2(ω)

1
2∆

We can then use the convolution theorem to write the inverse DTFT

as the product of d1(n) and d2(n). As both are sinc functions, we

obtain the expression

d(n) = 2π d1(n) · d2(n) (36)

= 2π
ωo
π

sinc
(ωo
π
n
)
· 1

2∆

∆

π
sinc

(
∆

π
n

)
(37)

=
ωo
π

sinc
(ωo
π
n
)

sinc

(
∆

π
n

)
. (38)
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TRANSITION FUNCTION EXAMPLE

The following figure shows the amplitude response of a length 31

Type I FIR filter designed using this method. The band edges used

are ωp = 0.26π and ωs = 0.34π. It is clear from the figure, that

the peak error is significantly reduced.
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Compare to the IRT filter on page 10.

The filter was designed using the following Matlab code.

% filter length

N = 31;

M = (N-1)/2;

% set parameters

wp = 0.26*pi;

ws = 0.34*pi;

wo = (ws+wp)/2;

Del = (ws-wp)/2;

fo = wo/pi;

Df = Del/pi;

% form impulse response h(n)

n = 0:N-1;

h = fo * sinc(fo*(M-n)) .* sinc(Df*(M-n));
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LOW-PASS WITH TRANSITION FUNCTION

Instead of a straight line, a smoother transition function can be

obtained by using, for example, a pth order spline (a family of

functions that are piece-wise polynomial). The inverse DTFT can

then be obtained by writing D(ω) as a convolution of p rectangular

functions, and d(n) will therefore be of the form

d(n) =
ωo
π

sinc
(ωo
π
n
)[

sinc

(
∆

π
n

)]p
(39)

where

∆ =
ωs − ωp

p
. (40)

It is interesting to note that this works even when p is not an integer.
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LOW-PASS: WEIGHTED SQUARE ERROR

The weighting function W (ω) can be used to improve the FIR low-

pass filter because

1. it allows you to eliminate Gibbs phenomenon by deleting a

neighborhood around the band edge, and

2. it allows you to assign different weights to the pass-band and

stop-band.

For example, if the ideal low-pass amplitude response is as shown

ω
D(ω)

0 ωo π

1

and if the weighting function is as shown

ω

W (ω)

0 ωp ωs π

1

K

where ωp < ωo < ωs, then the square error criterion becomes

E2 =

∫ ωp

0

(A(ω)− 1)2 dω +K

∫ π

ωs

A2(ω) dω. (41)
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LOW-PASS: WEIGHTED SQUARE ERROR

To find the matrix Q and vector b corresponding to this weighting

function it is useful to recall

1

π

∫ ω2

ω1

cos(nω) dω =
ω2

π
sinc

(ω2

π
n
)
− ω1

π
sinc

(ω1

π
n
)
. (42)

Then

q(k) =
1

π

∫ π

0

W (ω) cos (k ω) dω (43)

=
1

π

∫ ωp

0

cos (k ω) dω +
K

π

∫ π

ωs

cos (k ω) dω (44)

=


ωp
π

+K
(

1− ωs
π

)
k = 0

ωp
π

sinc
(ωp
π
k
)
−K · ωs

π
sinc

(ωs
π
k
)

k 6= 0.

(45)

Similarly,

b(k) =
1

π

∫ π

0

W (ω)D(ω) cos(kω) dω (46)

=
1

π

∫ ωp

0

cos (k ω) dω (47)

=
ωp
π

sinc
(ωp
π
k
)
. (48)
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WEIGHTED LOW-PASS EXAMPLE

In the following example, we design a Type I FIR low-pass filter

of length 31, with band-edges ωp = 0.26π, ωs = 0.34π and a

stop-band weight of K = 10.
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The second figure shows the pass-band edge detail.

Comparing to the figure on page 10 (IRT method), we see that the

peak error is reduced.

Comparing to the figure on page 14 (transition function method),

we see that the stopband error is smaller than the passband error.

I. Selesnick EL 713 Lecture Notes 18



WEIGHTED LOW-PASS EXAMPLE

The filter was designed using the following Matlab code.

% WEIGHTED LEAST SQUARE LOWPASS FILTER

% filter length

N = 31;

M = (N-1)/2;

% set band-edges and stop-band weighting

wp = 0.26*pi;

ws = 0.34*pi;

K = 10;

% normalize band-edges for convenience

fp = wp/pi;

fs = ws/pi;

% construct q(k)

q = [fp+K*(1-fs), fp*sinc(fp*[1:2*M])-K*fs*sinc(fs*[1:2*M])];

% construct Q1, Q2, Q

Q1 = toeplitz(q([0:M]+1));

Q2 = hankel(q([0:M]+1),q([M:2*M]+1));

Q = (Q1 + Q2)/2;

% construct b

b = fp*sinc(fp*[0:M]’);

% solve linear system to get a(n)

a = Q\b;

% form impulse response h(n)

h = [a(M+1:-1:2); 2*a(1); a(2:M+1)]/2;
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SQUARE ERROR WITH SIDE CONSTRAINTS

Sec 7.9 in

Mitra In many circumstances, it is desired that the filter satisfy some

specific constraints. For example, it might be required that the

amplitude response have a null at a specified frequency ω1,

A(ω1) = 0. (49)

This can be written as a single linear equation

Ga = d (50)

where G is a row vector

G = [1 cos(ω1) cos(2ω1) · · · cos(Mω1)] , (51)

a is a column vector containing the filter coefficients

a = [a(0) a(1) a(2) · · · a(M)]t , (52)

and

d = 0. (53)

In general, one can have more than one constraint, in which case G

is a matrix rather than a row vector, and d is a column vector rather

than a scalar. Such a filter can be obtained by using a constrained

square error approach. This method minimizes the square error E2

subject to the side constraints Ga = d.
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SQUARE ERROR WITH SIDE CONSTRAINTS

To minimize E2 subject to the side constraints, we can use the

method of Lagrange multipliers. When a single constraint is im-

posed we form the Lagrangian as

L = E2 + (Ga− d) · µ. (54)

When K constraints are imposed the Lagrangian becomes

L = E2 +
K∑
k=1

(Ga− d)k · µ(k) (55)

which can be written in matrix form as

L = E2 + (Ga− d)t · µ (56)

where µ is a column vector containing the K Lagrange multipliers,

µ = [µ(1) µ(2) · · · µ(K)]t . (57)

The necessary conditions for the minimization of E2 subject to the

constraint Ga = d is obtained by setting the derivatives of the

Lagrangian L with respect to a(n) and µ(k) equal to zero.

dL
da(n)

= 0, 0 ≤ n ≤M,
dL
dµ(k)

= 0, 1 ≤ k ≤ K. (58)

When there is a single constraint, we find that

dL
da(n)

=
dE2

da(n)
+Gn µ. (59)
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SQUARE ERROR WITH SIDE CONSTRAINTS

When there are K constraints,

dL
da(n)

=
dE2

da(n)
+

K∑
k=1

Gk,n µk. (60)

We also have

dL
dµ(k)

= (Ga− d)k. (61)

The derivative condition dL
da(n) = 0 for 0 ≤ n ≤ M can be written

in matrix form as

[
Q Gt

]
·

[
a

µ

]
= b (62)

where Q and b are the same matrix and vector as those arising in

the unconstrained square error problem treated above. Combining

this with the condition dL
dµ = 0 into a single matrix equation gives[

Q Gt

G 0

]
·

[
a

µ

]
=

[
b

d

]
. (63)

Therefore, the filter than minimizes E2 subject to the side constraint

Ga = d can be obtained by solving again a linear system of equa-

tions. In this case, we need to solve the equations for both the

Lagrange multiplier µ and the filter coefficients a.
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SQUARE ERROR WITH SIDE CONSTRAINTS

It can be shown that the solution to this system of equations can

be written as

µ =
(
GQ−1Gt

)−1 (
GQ−1 b− d

)
(64)

and

a = Q−1
(
b−Gt µ

)
. (65)

Notice that the expression for a depends of µ. Hence, we can find

µ first, and then find a; in each case by solving a linear system of

equations. Also note that the expressions can be written as

µ =
(
GQ−1Gt

)−1
(Gau − d) (66)

and

a = au −Q−1Gt µ (67)

where

au = Q−1 b (68)

is the solution that minimizes the unconstrained square error. The

term Q−1Gt µ can be viewed as the additive correction term that

makes the constraints satisfied and maintains optimality.
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LOW-PASS WITH SPECIFIED NULL

The constrained square error criterion can be used to design a filter

with a null (zero) at a specified frequency. For example, the follow-

ing figure shows a length 31 Type I FIR low-pass filter designed to

minimize the weighted square error subject to the constraint that

the amplitude response A(ω) has a null at ω1 = 0.5π. The pass-

band and stop-band edges used in this example are ωp = 0.28π and

ωs = 0.32π. The error in the stop-band is weighted by a factor of

K = 4.
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It can be seen in the figure that the amplitude response has a

null at the specified frequency. The filter was designed using the

following Matlab code. In the Matlab code, some expressions of

the form R−1 b are written as R\b instead of inv(R)*b because

the first form is more efficient. The form R\b solves the linear

system Rx = b without computing the inverse of R explicitly.
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LOW-PASS WITH SPECIFIED NULL

% LEAST SQUARE LOWPASS FILTER with SPECIFIED NULL

% filter length

N = 31;

M = (N-1)/2;

% set band-edges and stop-band weighting

wp = 0.28*pi;

ws = 0.32*pi;

K = 4;

% set null

w1 = 0.5*pi;

% normalize band-edges for convenience

fp = wp/pi;

fs = ws/pi;

% construct q(k)

q = [fp+K*(1-fs), fp*sinc(fp*[1:2*M])-K*fs*sinc(fs*[1:2*M])];

% construct Q1, Q2, Q

Q1 = toeplitz(q([0:M]+1));

Q2 = hankel(q([0:M]+1),q([M:2*M]+1));

Q = (Q1 + Q2)/2;

% construct b

b = fp*sinc(fp*[0:M]’);

% construct G and d

G = cos([0:M]*w1);

d = [0];

% solve linear system for Lagrange multipliers

c = Q\b;

mu = (G*inv(Q)*G’)\(G*c-d);

% solve linear system for filter coeffs

a = c-Q\(G’*mu);

% form impulse response h(n)

h = [a(M+1:-1:2); 2*a(1); a(2:M+1)]/2;
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NOTCH FILTER

As an example of a filter design problem based on constrained square

error minimization, consider the design of a notch filter. A notch

filter is used when one wishes to remove interference at a specific

frequency and not affect the signal at other frequencies. That is,

one would ideally like A(ω) to equal 1 for all frequencies ω except

for a specific notch frequency ωn at which A(ωn) = 0.

One way to pose the design problem is to let the desired amplitude

response be a constant, but to delete an interval around the notch

frequency ωn from the square error by setting the weighting function

W (ω) to 0 there. In this case, the desired amplitude D(ω) and

weight function W (ω) will be as shown.

ω
D(ω)

0 π

1

ω
W (ω)

0 ω0 ω1 π

1 1

The notch of the filter can then be imposed as a side constraint,

A(ωn) = 0. (69)
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NOTCH FILTER

The side constraint A(ωn) = 0 will result in a filter that has a zero

at z = ejωn and z = e−jωn. (Because the zeros must occur in

complex conjugate pairs when the impulse response is real, which

we assume here.)

We can ask in addition that

dA(ωn)

dω
= 0, (70)

which will result in a filter that has a double zero at z = ejωn and

z = e−jωn. In this case, we have two constraints, so the constraint

vector G becomes a matrix with 2 rows and M + 1 columns. Note

that

dA(ωn)

dω
= −a(1) sin(ωn)−a(2) 2 sin(2ωn)−· · ·−a(M)M sin(Mωn)

(71)

so that

G =

[
1 cos(ωn) cos(2ωn) · · · cos(Mωn)

0 − sin(ωn) −2 sin(2ωn) · · · −M sin(Mωn)

]
(72)

and

d =

[
0

0

]
. (73)
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NOTCH FILTER

To compute Q and b for this problem, notice that

q(k) =
1

π

∫ π

0

W (ω) cos (k ω) dω (74)

=
1

π

∫ ω0

0

cos (k ω) dω +
1

π

∫ π

ω1

cos (k ω) dω (75)

=


ω0

π
+ 1− ω1

π
k = 0

ω0

π
sinc

(ω0

π
k
)
− ω1

π
sinc

(ω1

π
k
)

k 6= 0.

(76)

Similarly,

b(k) =
1

π

∫ π

0

W (ω)D(ω) cos(kω) dω (77)

=
1

π

∫ ω0

0

cos (k ω) dω +
1

π

∫ π

ω1

cos (k ω) dω (78)

= q(k). (79)
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NOTCH FILTER EXAMPLE

For example, a length 31 Type I FIR notch filter designed according

to this criterion with notch frequency ωn = 0.6π, and ω0 = 0.55π,

ω1 = 0.65π, is shown in the following figure.
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NOTCH FILTER EXAMPLE

% LEAST SQUARE NOTCH FILTER

% filter length

N = 31;

M = (N-1)/2;

% set band-edges and stop-band weighting

w0 = 0.55*pi;

w1 = 0.65*pi;

% set null

wn = 0.6*pi;

% normalize band-edges for convenience

f0 = w0/pi;

f1 = w1/pi;

% construct q(k)

q = [f0+(1-f1), f0*sinc(f0*[1:2*M])-f1*sinc(f1*[1:2*M])];

% construct Q1, Q2, Q

Q1 = toeplitz(q([0:M]+1));

Q2 = hankel(q([0:M]+1),q([M:2*M]+1));

Q = (Q1 + Q2)/2;

% construct b

b = q([0:M]+1)’;

% construct G and d

G = [cos([0:M]*wn); -[0:M].*sin([0:M]*wn)];

d = [0; 0];

% solve linear system for Lagrange multipliers

c = Q\b;

mu = (G*inv(Q)*G’)\(G*c-d);

% solve linear system for filter coeffs

a = c-Q\(G’*mu);

% form impulse response h(n)

h = [a(M+1:-1:2); 2*a(1); a(2:M+1)]/2;
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DISCRETE SQUARE ERROR

Sec 7.8 in

Mitra When the desired amplitude response D(ω) and the weighting func-

tion W (ω) are simple, then q(n) and b(n) can be found analytically.

However, the square error approach can be used even for more gen-

eral functions as well when the integral square error is replaced by

the discrete square error.

A discretized version of the square error criterion is useful in several

cases.

1. If D(ω) and W (ω) are not simple enough to permit the inte-

grals arising in q(n) and b(n) to be found analytically.

2. Closed form formulas for D(ω) and W (ω) are not always

known. For example, if they are obtained through the result

of measurements, they may be known only on a finite set of

frequencies.

We will assume that D(ω) and W (ω) are known on a uniform grid

of L frequencies from 0 to 2π:

ωk =
2π

L
k, 0 ≤ k ≤ L− 1, (80)

and we’ll define

Wk = W

(
2π

L
k

)
, Dk = D

(
2π

L
k

)
, 0 ≤ k ≤ L− 1.

(81)
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DISCRETE SQUARE ERROR

Then q(n) can be approximated as

q(n) =
1

2π

∫ π

−π
W (ω) ejnω dω (82)

≈ 1

L

L−1∑
k=0

W (ωk) e
jnωk (83)

≈ 1

L

L−1∑
k=0

Wk e
jn 2π

L k. (84)

Recognizing the inverse DFT, we have

q(n) ≈ DFT−1
L {Wk} (85)

and similarly

b(n) ≈ DFT−1
L {WkDk} . (86)

For the discretization to be accurate (for the integral to be well

approximated by the sum) L should be significantly larger than the

length of the filter N , say L > 5N .

Note that although the DFT gives q(n) for 0 ≤ n ≤ L−1, only the

first 2M + 1 values will be used — the other values do not appear

in the matrix Q.
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DISCRETE SQUARE ERROR: EXAMPLE

To illustrate this procedure, suppose the desired amplitude has the

form

D(ω) =


1

sinc(ω/3)
|ω| ≤ 0.45π

0 0.45π < |ω| ≤ π
(87)

and the weighting function is

W (ω) =


10 |ω| ≤ 0.4π

0 0.4π < |ω| ≤ 0.52π

1 0.52π < |ω| ≤ π.

(88)

The amplitude response A(ω) for length-31 Type I filter designed to

minimize the discrete weighted square error is shown in the following

figures. The grid size L = 29 was used.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

ω/π

D
(ω

)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

ω/π

W
(ω

)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

ω/π

A
(ω

)

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

ω/π

A
(ω

),
 i
n
 D

b

I. Selesnick EL 713 Lecture Notes 33



DISCRETE SQUARE ERROR: EXAMPLE

The filter was designed using the following Matlab code. The com-

mands to build the vectors Dk and Wk require some comment —

The DFT requires samples of the functions over the interval from 0

to 2π. Therefore, it is necessary to extend the vectors appropriately.

Here this is done with the command D = [DA, DA(L/2:-1:2)].

% DISCRETE SQUARE ERROR

% filter length

N = 31;

M = (N-1)/2;

L = 2^8;

w = [0:L]*pi/L; % 0 <= omega <= pi

DA = (1./sinc(w/3)).*(w<=0.45*pi);

D = [DA, DA(L:-1:2)]; % periodize

w0 = 0.4*pi;

w1 = 0.5*pi;

WA = 10*(w<=w0)+(w>=w1);

W = [WA, WA(L:-1:2)]; % periodize

% construct q(k)

q = ifft(W);

% construct Q1, Q2, Q

Q1 = toeplitz(q([0:M]+1));

Q2 = hankel(q([0:M]+1),q([M:2*M]+1));

Q = (Q1 + Q2)/2;

% construct b

b = ifft(W.*D);

b = b([0:M]+1)’; % just need n=0:M coeffs

% solve linear system to get a(n)

a = Q\b;

% form impulse response h(n)

h = [a(M+1:-1:2); 2*a(1); a(2:M+1)]/2;
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GENERAL DISCRETE SQUARE ERROR

When no analytic expressions are available for the inverse DTFT of

D(ω) and W (ω), then one may consider the discrete square error

measure, written as

ε2 =
L∑
k=1

W (ωk) (A(ωk)−D(ωk))
2 (89)

where ωk are a set of frequency points which are not necessar-

ily uniformly spaced. To develop the second discrete square error

approach, define

Ak = A(ωk), Dk = D(ωk), Wk = W (ωk), 1 ≤ k ≤ L. (90)

Then the error function,

ek = Ak −Dk (91)

or

ek =
M∑
n=0

a(n) cos(nωk)−Dk, (92)

can be written in matrix form as
e1

e2

...

eL

 =


1 cos (w1) · · · cos (Mw1)

1 cos (w2) · · · cos (Mw2)
...

...

1 cos (wL) · · · cos (MwL)

·


a(0)

a(1)
...

a(M)

−

D0

D1

...

DL


(93)
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GENERAL DISCRETE SQUARE ERROR

or more briefly as

e = C · a−D. (94)

The matrix C has more rows than columns and we can see that

C a = D is an over-determined system of equations. The ‘least

square solution’ to an over-determined system minimizes the (un-

weighted) sum of squares of the error vector, which can be com-

pactly written as

ε2 = et e. (95)

The least square solution is obtained by first multiplying both sides

of

C a ≈ D (96)

on the left by Ct to obtain the normal equations

CtC a = CtD. (97)

The least square solution (unweighted) is then given by

a =
(
CtC

)−1
CtD. (98)

The weighted square error solution is obtain by first multiplying on

the left by W = diag(
√
Wk)

W C a ≈ WD (99)
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GENERAL DISCRETE SQUARE ERROR

and then by Ct

CtW C a = CtWD. (100)

Solving gives

a =
(
CtWC

)−1
CtWD. (101)

In practice, the inverse of CtWC need not be computed explicitly.

Instead, there are readily available efficient algorithms for solving

over-determined linear equations in the least square sense. In Mat-

lab, when used for an over-determined system, the backslash \ gives

the least square solution automatically.

This matrix approach to least square error FIR filter design is straight-

forward and simple to use.
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GENERAL DISCRETE SQUARE ERROR

To illustrate the design of a low-pass filter by solving an over-

determined system of equations in the least square sense, we con-

sider the design of a low-pass filter with exactly the same param-

eters as the design example on page 18. Namely, ωp = 0.26π,

ωs = 0.34π, and a stop-band weight of K = 10. The filter is ob-

tained with the following Matlab code. The figures are not given,

as they are the same as the figures on page 18.

% DISCRETE SQUARE ERROR - MATRIX METHOD

% filter length

N = 31;

M = (N-1)/2;

% parameters

wo = 0.30*pi; % cut-off freq

wp = 0.26*pi; % pass-band edge

ws = 0.34*pi; % stop-band edge

K = 10; % stop-band weight

L = 2^9; % grid size

w = [0:L]’*pi/L; % frequency grid

D = w < wo; % desired response

W = diag(sqrt((w <= wp)+K*(w >= ws)));

% weight function

C = cos(w*[0:M]); % rectangular C matrix

% solve linear system to get a(n)

a = (W*C)\(W*D);

% form impulse response h(n)

h = [a(M+1:-1:2); 2*a(1); a(2:M+1)]/2;
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LEAST SQUARE FIR FILTER DESIGN: PROS AND CONS

1. Optimal with respect to square error criterion.

2. Simple, non-iterative method.

3. Analytic solutions sometimes possible, otherwise solution is

obtained via solution to linear system of equations.

4. Allows the use of a frequency dependent weighting function.

5. Suitable for arbitrary D(ω) and W (ω).

6. Easy to include arbitrary linear constraints.

7. Does not allow direct control of maximum ripple size.
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