Section 1.5. Taylor Series Expansions

In the previous section, we learned that any power series represents a
function and that it is very easy to differentiate or integrate a power series
function. In this section, we are going to use power series to represent and
then to approximate general functions. Let us start with the formula

1 [e.e]
.= ;x”, for |z| < 1. (1)

We call the power series the power series representation (or expansion) for
the function

1
f(x)= 7 about = = 0.

1—z)!

It is very important to recognize that though the function f (z) = (
< 1. In general,

is defined for all = # 1, the representation holds only for |x|
if a function f (x) can be represented by a power series as

f@) =3 el —a)

then we call this power series
power series representation (or expansion) of f (z) about z = a.
We often refer to the power series as
Taylor series expansion of f () about x = a.

Note that for the same function f(z), its Taylor series expansion about
x =0b,

fl)=> dy(x—b)"

if a # b, is completely different from the Taylor series expansion about x = a.
Generally speaking, the interval of convergence for the representing Taylor
series may be different from the domain of the function.

Example 5.1. Find Taylor series expansion at given point x = a :

(@) F (@) = g0 0= 0



b = =0
®)0(0) = g 1 =0
h(z) = =1.
(© h(e) = 5 0
Solution: (a) We shall use (1) by first rewriting the function as follows:
1 1 ye—a? 1 >
1+22 1—(—2?) 1—y nzzoy’ or -yl
Formula (1) leads to
1 > n > n > n n
N 5 = y" = Z (—1‘2) = Z(—l) z* for |y| < 1.
+x
Note that, since y = —22,and

y <1 = |-2°| <1 <= Jz| <1,
we know conclude

1 o0
— _1 n _2n .
T2 n:0( Yzt for |x| <1
(b) Write
T 1 1
_= = == - 2
90 =75 x(2+:ﬁ) x(2(1—|—:v/2)) 2)
T 1 T 1

T2 1422 21— (—x/2)
We now use (1) to derive

1 y::m/Q 1 _OO n
1—(—z/2) 1_y_zy

n=0
= nZ:O (—5) = ; TR for |y| < 1.




Now since -
|y|:)§)<1 = |z| <2

we conclude

oo _1)"
° :Z( ):U”H, for |z| < 2.

(c) For

we need to rewrite the denominator in terms of (x — 1)as follows:

1 1 1
20 +3  2[(z—-1)+1]+3 2(x-1)+5
B 1 1 1
5(1+2(x—1)/5 51+2(x—1)/5
y=2z-1)/5 1 1 1 —
= o= = n f < 1).
51—y 5;:031 (for [y[ < 1)
2(z—1)

We then substitute y = — back to obtain

:%g(_ (Z«;l))” or |y|:'2(x5 1)'<1)
- i 1 (2) @y
=i(_5ln#(x_1)n, for |r— 1] <.

Example 5.2. Find Taylor series about a = 0 for
a) f(x) = ;
@ 1) = =

(b) g (2) =In (1 —x);
(c) h(x) = arctanz.




Solution: (a) Differentiate

1 o0
T2 :;x”, for |z| < 1,

we obtain

= (1_133)2 - (1;) -3y = gn:ﬂ”_l.

n=0

(b) Take anti-derivative on both sides of

1 o0
= g ", for |xz| <1,
1—-2z -

we obtain

/1_5505:6:”2:0(/:6 dl‘) :;n+1+0.

So

1 o In+1
ln(l_x):_/l—:ndx:_zn—l—l_a

n=0

To determine the constant, we insert x = 0 into both sides:

ey In+1
0=In(1-0)=— —C=-C
n(1-0) >
n=0 =0
We have to choose C' = 0 and
S In+1 0 "
In(l—2)=-— = — —. M ize it
n(l—ux) nzzon‘l‘l ;n (Memorize it)
(c) Note
1
h = %arctanx =i
So )
h(x)zarctanxz/l_l_IQd:U.



From Example 5.1 (a), we know

1 - n _2n
T e

n=0

Thus

1 - n 2n - (_1)” 2n+1
arctanxz/l_l_Ide:Z(—l) /x dx:nzzo%_‘_lx +C.

n=0

By setting x = 0 above, we find C' = 0. So

o0 _1 n
arctan r = Z 2( _l_)le”H.
n

n=0

Taylor Series for General Functions.
Consider power series expansion

(o0}

f(x):ch(x—a)":co+cl(x—a)+02(x—a)2+03(x—a)3+... (3)

n=0
for general function f (x) about = = a. Setting = = a, we obtain
f(a) = c.

Next, we take derivative on (3) so that

f'(z) = Z con (z—a)" " = 142 (r — a)4es-3 (¢ — a)’+ead (2 — a)’+...
n=1
(4)
Setting x = a, we have
f(a) =c.

We repeat the same process again and again: take derivative again on (4)

" (z) = Z cpn(n—1)(z—a)"? = ¢y-214¢5-32 (x — a)+cg-4-3 (z — a)*+...
n=2

(5)



and set x = a to obtain

f"(a):C2'2-1:>02:%(ﬁ);

take derivative again on (5)
3 (2) = Z can(n—1)(n—2)(z —a)"® = ¢33-2:14¢44-32 (x — a)+¢554-3 (x — a)*+...
n=3

and insert x = a to obtain

(3)
@) =e3-2-1=c3= / 3'(‘0.
In general, we have
(n)
A () R
n!

here we adopt the convention that 0! = 1. All above process can be carried
on as long as any number of order of derivative at z = a exists, i.e., f(x)
must be a smooth function near a. Then, we have Taylor series expansion
formula

X f(n)
f(x)= nZ:O fT!(a) (x —a)". (Taylor Series)
When a = 0, it becomes
X fn)
f(z)= nZ:O / n!(o)x”, (Maclaurin Series)

we call it Maclaurin Series of f ().
Example 5.3. Find Maclaurin series for
(a) f(z) = e
(b) g (x) =0" (b>0)

Solution: (a) For f = e”, we know

fr=e® f"=¢" .., fM=¢"
Thus
SO 1
C?’L = = —’
n! n!
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() (Q < q
& — ZO f n!( ) " = ZO i 2", (Maclaurin Series For e*)

This is one of the most useful Taylor series, and must be memorized.
(b) We offer two methods to solve this problem. First is the direct method
by using formula for Maclaurin Series. To this end, we compute derivatives

g =0b"Inb
¢ = (t*Y Inb= (b*Inb)Inb = b (Inb)?,

g™ =b* (Inb)".

So

n

" 9" 0) ., (Ind)"
b" = Zo o T Z ol

n=0

Another method is to use Taylor series for e* above. Write

o)

z _ In(b*) _ _(zlnbd) y=znb . S am - i n __
b* =e =e = ¢ —Z 1Y —Zn!(xlnb) =

1
n=0 n n=0

Example 5.4. Find Maclaurin series for

(a) f(2) = sin;
(b) g (z) = cosz.
Solution: (a) We observe that

f=sinzx = f(0)=0,

f'=cosx = f'(0)=1,
f?=—sinzx = f7(0) =0,
f®=—cosz = fO(0)=-1
fW =sine = fW(0)=0,

 (Ind)"
>

n=0

and that this cyclic pattern repeats every 4 times differentiations. In partic-
ular, we see that when n is even, i.e., n = 2m, f (0) = 0. When n is odd,



i.e., n=2m+1, f™(0) equals 1 and —1 alternating. Thus,

smx_zf

-y
n odd
_ i S (0) L2ml
(2m + 1)!
o0 _1 m
— Gt B (Maclaurin Series for cos )
= (2m +1)!
x3 PRI

(b) Maclaurin series for cos x may be derived analogously. Another simple
way to find Maclaurin series for cos x is to use the above Maclaurin series for
sinz. We know that cosz = (sinz)’ . So

IS Y
COSJI—(mZ:OmI‘ )

oo )™ )
— 27(2(”%31)! 2m+1)z

m=0
= Z x (Maclaruin Series for cos z)
= (2m)!
2 +ﬂf_4 2,
2! 4! 6!

Example 5.5. Some applications.
(a) Find Maclaurin series for z sin (2z) ;
(b) Find Maclaurin series for [ e~ du;
—1—z—2%/2
(

x3 '

c¢) Find the limit lir% €



Solution: (a) Set y = 2z, and use Maclaurin Series for sin z to get

sin (2z) = siny

- (_1)m 2m+1

(2m + 1)!
(="

(2m + 1)!

(22)°  (22)°
3! 5!

(]

0

3
]

(21') 2m+1

NE

3
Il
o

= (2z) —
So

. = —1 " 2m+1
xsin (2z) = x Z_O % (22)

0 (_1)m 22m+1

(2m + 1)!

2m—+2

m=0

(b) Letting y = —z? and using Maclaurin Series for e, we find

znzzoa(—aﬂ) :nzzo n! 2",
—z2 — (_1)” n
/e dx = nZ:O/ . x?

- — (_1)” 2n+1
- gn!(2n+1)x o

Therefore,

(c) Again, we use Maclaurin Series for e”

0 1 2 3

GI:Zal‘n:1—I—ZL‘—I—%—I—%—I—O(I4)

n=0



to get

2 28
em—l—x——za—l—()(x‘l)
and consequently
e —1—-—z—— 4
o 1 0@ 1
a3 _5_‘_ a3 _E_I—O(x)
So )
e —1—g— = 1
lim 2 _~
r—0 1‘3

Taylor Polynomials.
Consider Taylor series expansion

o ) (g
f@) =3y

n!

n=0

for a function f (x). The partial sum of order n,

") (g )
1) =3 D ),

is called Taylor Polynomial of order n. This is often used for approximation.
When n =1,

1

*) (g .
@)=Y e af = p @) P @ - a)

k
k=0

is exactly the linear approximation of f (z) about x = a, as we learned in
Calculus I. When n = 2,

/" (a)
2!

(¢ —a)’

240 (g .
1) =3 T 0 = @)+ 7 @) (o) +

is called Quadratic approximation. In general, T), (x) is considered as the
approximation to f (z) of order n, and this approximation is valid only when
x is very close to a.
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Example 5.6. Find 75 (z) about x = 0 for

(a) e”sin;

(b) tanz.

Solution. (a) Using Maclaurin expansions, we have

b () (e )
¢ SR (ZE> (nzzo (2n + 1) )

n=0

2 23 x3
:(1+SL‘+?+§—|—.”> (l‘—g—l—)

2

_ (x_§> +x(x)+%(x)+0($4)

where

O (x4) indicates the sum of all terms being equal or higher order than z*.

So
3

ngx—l—xQ—l—%.
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(b) Solution 1.

tanz = 22T _ Z”ZO%
T T (_(12)71)3!32”
(egrow)
! (1_2—T+O(x4))
R

So
3

Now
tan0 = 0,
(tanz) =sec’w, (tanz) |,—0 =1
(tanx)” = 2tanzsec’ v, (tanz)”|,—o =0
(tanz)” = 2 (tanz) sec® x + 2tanz (sec? ZL‘),

(tan 2)" |, = 2 (tan ) |,—o = 2.
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So

Homework (problems marked with * are optional):

1. Find Taylor series and determine the interval of convergence.

(@) f (1) = ——., a=0

(b) f (@)= g a=0

(c) f(x)=In(x+1), a=0

(d) *f(x) =Inz, a=2 (hint : write lnz =In(1 — (2 —2)) )
* _ 1 _ T 1

(e) *f(x) =2, a=1 (hint: write = _1—(1—x))

2. Using a Maclaurin series derived in this section to obtain the Maclaurin
series for the given function.

(a) f(z)=e"/?
(b) f(x) = zcos(2z)
(c) f(x) =sin(z?)

3. Find the Taylor polynomial of degree 3 about the given point a.

(a) f(z) =cos(2z)e 2, a=0.
21’

4. *Evaluate the indefinite integral as a power series, and determine the
radius of convergence.

(a) *[ : _3x4dx

In(1—1)
t

(b) * [ ———di

13



5. *Use the first 3 terms of a power series to approximate the definite
integral:

0.4
/ In (1 + x2) dx.
0
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