
Investigating Reverse Engineering Technologies:

The CAS Program Understanding Project

E. Buss R. De Mori M. Gentleman J. Henshaw H. Johnson K. Kontogiannis

E. Merlo H. M�uller J. Mylopoulos S. Paul A. Prakash M. Stanley

S. Tilley J. Troster K. Wong

Abstract

Corporations face mounting maintenance and re-engineering costs for large legacy systems. Evolving over

several years, these systems embody substantial corporate knowledge, including requirements, design de-

cisions, and business rules. Such knowledge is di�cult to recover after many years of operation, evolution,

and personnel change. To address this problem, software engineers are spending an ever-growing amount

of e�ort on program understanding and reverse engineering technologies. This article describes the scope

and results of an on-going research project on program understanding undertaken by the IBM Software

Solutions Toronto Laboratory Centre for Advanced Studies (CAS). The project involves, in addition to

a team from CAS, �ve research groups working cooperatively on complementary reverse engineering ap-

proaches. All groups are using the source code of SQL/DS (a multi-million line relational database system)

as the reference legacy system. The article also discusses the approach adopted to integrate the various

toolsets under a single reverse engineering environment.

Keywords: Legacy software systems, program understanding, software reuse, reverse engineering, software

metrics, software quality.

Copyright c
 1994 IBM Corporation. To appear in IBM Systems Journal, 33(3), 1994.

1 Introduction

Software maintenance is not an option. Developers today inherit a huge legacy of existing software. These

systems are inherently di�cult to understand and maintain because of their size and complexity as well

as their evolution history. The average Fortune 100 company maintains 35 million lines of code and adds

an additional ten percent each year just in enhancements, updates, and other maintenance. As a result of

maintenance alone, software inventories will double in size every seven years. Since these systems cannot

easily be replaced without reliving their entire history, managing long-term software evolution is critical.

It has been estimated that �fty to ninety percent of evolution work is devoted to program understanding

[1]. Hence, easing the understanding process can have signi�cant economic savings.

One of the most promising approaches to the problem of program understanding for software evolution is

reverse engineering. Using reverse engineering technologies has been proposed to help refurbish and main-

tain software systems. To facilitate the understanding process, the subject software system is represented

in a form where many of its structural and functional characteristics can be analyzed. As maintenance and

re-engineering costs for large legacy software systems increase, the importance of reverse engineering will

grow accordingly.

This paper describes the use of several complementary reverse engineering technologies applied to a real-

world software system: SQL/DS. The goal was to aid the maintainers of SQL/DS in improving product

quality by enhancing their understanding of the three-million lines of source code. Section 2 provides

background on the genesis of the program understanding project and its focus on the SQL/DS product.

Subsequent sections detail the individual research programs. Section 3 describes defect �ltering as a way of

improving quality by minimizing design errors. The abundance of defect �ltering information needs to be

summarized by e�ective visualization and documentation tools. Section 4 discusses a system to reconstruct

and present high-level structural documentation for software understanding. A comprehensive approach

to reverse engineering requires many di�erent techniques. Section 5 outlines three techniques that analyze

source code at textual, syntactic, and semantic levels. The convergence of the separate research prototypes

into an integrated reverse engineering environment is reported in Section 6. Finally, Section 7 summarizes

the important lessons learned in this endeavor.

2 Background

Faced with demanding and ambitious quality-related objectives, the SQL/DS product group o�ered the

opportunity to use their product as a candidate system for analysis. Faced with this challenge, the program

understanding project was established in 1990 with goals to investigate the use of reverse engineering tech-

nologies on real-world (SQL/DS) problems, and to utilize program understanding technologies to improve

the quality of the SQL/DS product and the productivity of the SQL/DS software organization.

2

The CAS philosophy encourages complementary research teams to work on the same problem, using a

common base product for analysis. There is little work in program understanding that involves large,

real-world systems with multiple teams of researchers experimenting on a common target [2]. Networking

opportunities ease the exchange of research ideas. Moreover, colleagues can explore related solutions in

di�erent disciplines. This strategy introduces new techniques to help tackle the problems in industry and,

as well, strengthens academic systems to deal with complex, industrial software systems. In addition,

universities can move their research from academia into industry at an accelerated rate.

Six di�erent research groups participated in and contributed to the CAS program understanding project:

the IBM Software Solutions Toronto Laboratory Centre for Advanced Studies, the National Research

Council of Canada (NRC), McGill University, the University of Michigan, the University of Toronto, and

the University of Victoria. All groups focused on the source code of SQL/DS as the reference legacy

software system.

2.1 The reference system: SQL/DS

SQL/DS (Structured Query Language/Data System) is a large relational database management system that

has evolved since 1976. It was based on a research prototype and has undergone numerous revisions since its

�rst release in 1982. Originally written in PL/I to run on VM, SQL/DS is now over 3,000,000 lines of PL/AS

code and runs on VM and VSE. PL/AS is a proprietary IBM systems programming language that is PL/I-

like and allows embedded System/370 assembler. Because PL/AS is a proprietary language, commercial o�-

the-shelf analysis tools are unsuitable. Simultaneous support of SQL/DS for multiple releases on multiple

operating systems requires multi-path code maintenance, increasing the di�culty for its maintainers.

SQL/DS consists of about 1,300 compilation units, roughly split into three large systems (and several

smaller ones). Because of its complex evolution and large size, no individual alone can comprehend the

entire program. Developers are forced to specialize in a particular component, even though the various

components interact. Existing program documentation is also a problem: there is too much to maintain

and to keep current with the source code, too much to read and digest, and not enough one can trust.

SQL/DS is a typical legacy software system: successful, mature, and supporting a large customer base

while adapting to new environments and growing in functionality.

The top-level goals of the program understanding project were guided by the maintenance concerns of

the SQL/DS developers. Two of the most important were code correctness and performance enhance-

ment. Speci�c concerns included: detecting uninitialized data, pointer errors, and memory leaks; detecting

data type mismatches; �nding incomplete uses of record �elds; �nding similar code fragments; localizing

algorithmic plans; recognizing ine�cient or high-complexity code; and predicting the impact of change.

3

2.2 Program understanding through reverse engineering

Programmers use programming knowledge, domain knowledge, and comprehension strategies when trying

to understand a program. For example, one might extract syntactic knowledge from the source code and

rely on programming knowledge to form semantic abstractions. Brooks's work on the theory of domain

bridging [3] describes the programming process as one of constructing mappings from a problem domain

to an implementation domain, possibly through multiple levels. Program understanding then involves

reconstructing part or all of these mappings. Moreover, the programming process is a cognitive one

involving the assembly of programming plans|implementation techniques that realize goals in another

domain. Thus, program understanding also tries to pattern match between a set of known plans (or

mental models) and the source code of the subject software.

For large legacy systems, the manual matching of such plans is laborious and di�cult. One way of aug-

menting the program understanding process is through computer-aided reverse engineering. Although

there are many forms of reverse engineering, the common goal is to extract information from existing

software systems. This knowledge can then be used to improve subsequent development, ease maintenance

and re-engineering, and aid project management [4].

The reverse engineering process identi�es the system's current components, discovers their dependencies,

and generates abstractions to manage complexity [5]. It involves two distinct phases [6]: (1) the iden-

ti�cation of the system's current components and their dependencies; and (2) the discovery of system

abstractions and design information. During this process, the source code is not altered, although ad-

ditional information about the system is generated. In contrast, the process of re-engineering typically

consists of a reverse engineering phase, followed by a forward engineering or re-implementation phase that

alters the subject system's source code. De�nitions of related concepts may be found in [7].

The discovery phase is a highly interactive and cognitive activity. The analyst may build up hierarchical

subsystem components that embody software engineering principles such as low coupling and high cohesion

[8]. Discovery may also include the reconstruction of design and requirements speci�cations (often referred

to as the \domain model") and the correlation of this model to the code.

2.3 Program understanding research

Many research groups have focused their e�orts on the development of tools and techniques for program

understanding. The major research issues involve the need for formalisms to represent program behav-

ior and visualize program execution, and focus on features such as control
ows, global variables, data

structures, and resource exchanges. At a higher semantic level, it may focus on behavioral features such

as memory usage, uninitialized variables, value ranges, and algorithmic plans. Each of these points of

investigation must be addressed di�erently.

4

There are many commercial reverse engineering and re-engineering tools available; catalogs such as [9, 10]

describe several hundred such packages. Most commercial systems focus on source-code analysis and simple

code restructuring, and use the most common form of reverse engineering: information abstraction via

program analysis. Research in reverse engineering consists of many diverse approaches, including: formal

transformations [11], meaning-preserving restructuring [12], plan recognition [13], function abstraction [14],

information abstraction [15], maverick identi�cation [16], graph queries [17], and reuse-oriented methods

[18].

The CAS program understanding project is guided, in part, by the need to produce results directly appli-

cable to the SQL/DS product team. Hence, the work of most research groups is oriented towards analysis.

However, no single analysis approach is su�cient by itself. Speci�cally, the IBM group is concerned

with defect �ltering: improving the quality of the SQL/DS base code and maintenance process through

application-speci�c analysis. The University of Victoria is focused on structural redocumentation: the

production of \in-the-large" documents describing high-level subsystem architecture. Three other groups

(NRC, the University of Michigan, and McGill University) are working on pattern-matching approaches

at various levels: textual, syntactic, and semantic.

One goal of this project is to integrate the results of the complementary (but sometimes overlapping)

research e�orts to produce a more comprehensive reverse engineering toolset; this integration process is

described more fully in Section 6. The following sections describe the program understanding project's

main research results on defect �ltering, structural redocumentation, and pattern matching.

3 Defect �ltering

The IBM team, led by Buss and Henshaw, perform defect �ltering [19] using the commercial Software

Re�nery product (REFINE) [20] to parse the source code of SQL/DS into a form suitable for analysis. This

work applies the experience of domain experts to create REFINE \rules" to �nd certain families of defects

in the subject software. These defects include programming language violations (overloaded keywords,

poor data typing), implementation domain errors (data coupling, addressability), and application domain

errors (coding standards, business rules).

Their initial work resulted in several prototype toolkits, each of which focuses on detecting speci�c errors

in the reference system. Troster performed a design-quality metrics analysis (D-QMA) study of SQL/DS

[21]. These measurements guided the creation of a more
exible defect �ltering approach, in which the

reverse engineering toolkit automatically applies defect �lters against the SQL/DS source code. Filtering

for quality (FQ) proved be to a fruitful approach to improving the quality of the reference system [22]. This

section describes the evolution of the defect �ltering process: from the investigation and construction of

a reverse engineering toolkit for PL/AS, the construction of prototype analysis systems, the measurement

of speci�c design-quality metrics of SQL/DS, and, �nally, to �ltering for quality.

5

3.1 Building a reverse engineering toolkit

Most application problem domains have unique and specialized characteristics; therefore, their expecta-

tions and requirements for a reverse engineering tool vary. Thus, reverse engineering toolkits must be

extensible and versatile. It is unlikely that a turn-key reverse engineering package will su�ce for most

users. This is especially true for analyzing systems of a proprietary nature such as SQL/DS. Unless one

knows exactly what one wants to accomplish, one should place a premium on toolkit
exibility. Because of

these considerations, the Software Re�nery was chosen as the basis upon which to build a PL/AS reverse

engineering toolkit for the defect �ltering process.

) Insert sidebar \The Software Re�nery" here. (

The PL/AS reverse engineering toolkit was used to aid qualitative and quantitative improvement of the

SQL/DS base code and maintenance process. The key to this improvement is analysis. The Software

Re�nery was used to convert the SQL/DS source code into a more tractable form. Considerable time

was spent creating a parser and a domain model for PL/AS. This was a di�cult process: there was no

formal grammar available, the context-sensitive nature of the language made parsing a challenge, and the

embedded System/370 assembler code further complicated matters. A lexical analyzer was �rst built to

recognize multiple symbols for the same keyword, to skip the embedded assembler and PL/AS listing

format directives, and to produce input acceptable to the parsing engine.

Initial experiments produced numerous parsing errors, due to incorrect (or inappropriate) use of some of

PL/AS's \features." Although it is never easy to change legacy source code, it was sometimes easier to

repair the source code than to augment the parser to handle the o�ending syntax. This process uncovered

several errors in the reference system's source code. Such errors were usually incorrect uses of language

constructs not identi�ed by the PL/AS compiler.

This early experience with the PL/AS reverse engineering toolkit con�rmed that large scale legacy software

systems written in a proprietary context-sensitive language can be put into a form suitable for sophisticated

analysis and transformation. The toolkit can be (and has been) adapted by other IBM developers to similar

programming languages and evolves as their implementation rules change.

Once SQL/DS's source code was put in this tractable form, it was time to revisit the \customer" (the

SQL/DS maintainers) to determine how best to utilize this technology for them. The answer came back

crystal clear: \Help us remove defects from our code." The challenge was how to do it e�ectively. The

solution was to apply the power of the prototype environment to analyzing the reference system. Since

rules can be written to identify places in the software where violations of coding standards, performance

guidelines, and implementation or product requirements exist, the environment can be used to detect

defects semi-automatically.

6

3.2 Experiences with the PL/AS reverse engineering toolkit prototypes

The construction of the prototype reverse engineering toolkit, and the transformation of the base code into

a more tractable form, made analysis of the reference system possible. The analysis was strongly biased

towards defect detection, due in part to the SQL/DS product group's quality-related objectives. The

analysis focused on implementation language irregularities and weaknesses, functional defects, software

metrics, and unused code. A speci�c instance of the prototype toolkit was constructed for each analysis

realm.

The areas of interest can be classi�ed into two orthogonal pairs of analysis domains: analysis-in-the-small

versus analysis-in-the-large, and implementation domain versus problem domain. The analysis-in-the-small

is concerned with analysis of code fragments (usually procedures) as a closed domain, while analysis-in-

the-large is concerned with system-wide impact. Analysis-in-the-large tends to be more di�cult to perform

with manual methods, and therefore more bene�ts may be realized through selective automation.

Implementation domain analysis is concerned with environmental issues such as language, compiler, oper-

ating system and hardware. This analysis can usually be readily shared with others who have a similiar

environment. Conversely, the problem domain analysis is concerned with artifacts of the problem such as

business rules, algorithms, or coding standards. They cannot be easily shared.

The prototypes for SQL/DS where speci�cally built to demonstrate the capability for analysis in all of

these domains. Some of the prototypes are documented in [23]. The results from these prototype toolkits

were encouraging. The experiments demonstrated the feasibility of defect detection in legacy software

systems. The next step in the use of such reverse engineering technologies was formalizing and generalizing

the process of using defect �lters on the reference system.

3.3 Design-quality metrics analyses

While maintenance goals continue to focus on generally improved performance and functionality objectives,

an emerging emphasis has been placed on IBM's product quality. With developers mounting quality

improvement goals, a paradigm shift beyond simply \being more careful" is needed. Judicious use of

software quality metrics is one way of obtaining insight into the development process to improve it. To

con�rm the applicability of such metrics to IBM products, Troster initiated the design-quality metrics

analysis (D-QMA) project.

The purpose of assessing design-quality metrics [24] is to examine the design process by examining the

end product (source code), to predict a product's quality, and to improve the design process by either

continuous increments or quantum leaps. To justify the use of D-QMA for IBM products, the experiment

had to:

7

� relate software defects to design metrics;

� identify error-prone and high-risk modules;

� predict the defect density of a product at various stages;

� improve the cost estimation of changes to existing products; and

� provide guidelines and insights for software designers.

The experiment assessed the high-level and module-level metrics of SQL/DS and related them to the

product's defect history.

Inter-module metrics for module-level design measure inter-module coupling and cohesion, data
ow be-

tween modules, and so on. These \black-box" measures require no knowledge of the inner workings of

the module. Intra-module design metrics include measures of control
ow, data
ow, and logic within a

module. These \clear-box" measures require knowledge of the inner working of the module. Both the

inter-module and intra-module versions of structural complexity, data complexity, and system complexity

[25] were measured. Other module-level measurements are shown in Figure 1.

) Insert sidebar \The Conformance Hierarchy" here. (

The experiment applied the reverse engineering toolkit developed by Buss and Henshaw (described in

Section 3.1) to extract the metrics from the reference system. Defect data was gathered from the defect

database running on VM/CMS; the data was then correlated using the SAS statistical package running

on OS/2. For SQL/DS V3R3, about nine hours of machine time (on a RISC System/6000 M550) were

required to analyze all 1,303 PL/AS modules. This time does not include a previous 40{50 person-hours

required to prepare a persistent database for the SQL/DS source code.

The unique characteristics of the SQL/DS reference system lead to several problems in assessing the metrics.

One of the most important is the nonhomogeneity of the product. SQL/DS consists of functional com-

ponents that are quite di�erent. There are preprocessors, communications software, a relational database

engine, utilities, and so on. Each component displays di�erent metric characteristics.

Upon analyzing the results, it was found that defects caused by design errors accounted for 43 percent of

the total product defects. The next largest class of defects was coding errors. The probability of injecting

a defect when maintaining a module increased as the percentage of changes to the module decreased. The

greatest probability of introducing a defect occured when the smallest change was made. This counter-

intuitive result makes more sense when it is realized that when small changes are made, maintainers

typically do not take the time to fully understand the entire module.

Another result is that maintainers have an increased probability of injecting a defect as the complexity

of the module increases|up to a threshold. As the module complexity increases beyond this threshold,

the probability of injecting an error dramatically decreases. This suggests that the maintainer recognizes

8

the module is complex and \tries harder," or that as modules become more complex, maintainers avoid

changing them altogether.

The past three releases of SQL/DS have shown new modules to have low complexity, with older ones

growing in complexity. As this complexity increases, merely \working harder" to ensure code quality will

not be enough. It is becoming increasingly di�cult to make small changes to the more mature modules:

a classic example of the \brittleness" su�ered by aging software systems. The D-QMA work is continuing

with analyzing other IBM products written in PL/AS, PL/MI, C, and C++.

3.4 Applying defect �lters to improve quality

An increased focus on quality has forced many organizations to re-evaluate their software development

processes. Software process improvement concerns improved methods for managing risk, increasing pro-

ductivity, and lowering cost: all key factors in increased software quality. The meaning of the term

\quality," however, is often subject to debate and may depend on one's perspective. The de�nition of

quality we use is quality is the absence of defects. This somewhat traditional de�nition relates quality

to \�tness for use" and ties software's quality to conformance with respect to function, implementation

environment, and so on. The traditional quality measurement, measuring defects, is one that measures the

artifacts created by the software development process.

By extending the meaning of what constitutes a defect, one can expand the de�nition of quality. For

example, the recognition of defects caused by coding standard violations means that quality is no longer

bound to purely functional characteristics; quality attributes can be extended to include indirect features

of the software development process.

Further extension to the quality framework may include assertions that must be adhered to; assertion

non-conformance can be treated as a defect. Like functional defects, these assertions can address issues at

a variety of levels of abstraction. Our de�nition of software quality is then extended to include robustness,

portability, improved maintenance, hidden defect removal, design objectives, and so on; \�tness for use"

is superseded by \�tness for use and maintenance." Figure 2 illustrates a conformance hierarchy. This

hierarchy begins at the base with immediate implementation considerations and climbs upward to deal

with broader conceptual characteristics. Beginning with \what is wrong" (defects), it moves up to \what

is right" (assertions). By tightening the de�nition of \correctness," one can build higher quality software.

In order to ensure that a software product is �t for use, developers carefully review the software, checking for

possible defects and verifying that all known product-related assertions are met. This is commonly known

as the \software inspection process." An approach to automating the inspection process incorporates the

reverse engineering technologies discussed in Section 3.1. This �ltering process, termed �ltering for quality,

involves the formalization of corrective actions using a language model and database of rules to inspect

9

source code for defects. The rules codify defects in previous releases of the product. This is a context-driven

approach that extends the more traditional language-syntax-driven methods used in tools such as lint.

There are many bene�ts of automation to the �ltering for quality (FQ) process. A greater number of

defects can be searched simultaneously. Moreover, the codi�ed rules can be generalized and restated to

eliminate entire classes of errors. Actions are expressed in a canonical rule-based form; therefore, they are

more precise, less subject to misinterpretations, and more amenable to automation. Because the knowledge

required to prevent defects is maintained as a rule-base, the knowledge instilled in each action remains

even after original development team members have left. This recording of informal \corporate knowledge"

is very important to long-term success. Finally, actions can be more easily exchanged with other groups

using the same or similar action rule-bases. This sharing of such defect �lters means that development

groups can directly pro�t from each other's experience.

Application domain knowledge can be very bene�cial in the development of defect �lters, largely because

the capability to enforce application domain-speci�c rules has been unavailable to date. Whether one

wants to enforce design assertions about a software product or to identify exceptions to the generally held

principles around which a software product has evolved, one should pay attention to the �lter's domain. The

problem domain consists of business rules and other aspects of the problem or application|independent of

the way they are implemented. The implementation domain consists of the implementation programming

language and support environment.

3.5 Summary

Meeting ambitious quality improvement goals such as \100 times quality improvement" requires an im-

proved de�nition of defects and an improved software development process. Defect �ltering by automating

portions of the inspection process can reap great rewards. A tractable software representation is key to

this analysis.

It is easier to use defect �ltering than it is to build the tool that implements it. Nevertheless, it is

critical that the analysis results be accessible to developers in a timely fashion to make an identi�able

impact on their work. The success of moving new technology into the workplace depends crucially on the

acceptance of the system by its users. Its introduction must have minimal negative impact on existing

software processes if it is to be accepted by developers. Issues such as platform con
ict should not be

underestimated. The prototype tools discussed in Sections 3.1 and 3.2 have been partially integrated into

the mainstream SQL/DS maintenance process.

Measurable results come from measurable problems. Defect �ltering produces directly quanti�able bene�ts

in software quality and can be used as a stepping stone to other program understanding technology. For

example, presentation and documentation tools are needed to make sense of the monumental amount of

10

information generated by defect �ltering. This critical need is one focus of the environment described in

the following section.

4 Structural redocumentation

Reconstructing the design of existing software is especially important for legacy systems such as SQL/DS.

Program documentation has always played an important role in program understanding. There are, how-

ever, great di�erences in documentation needs for software systems of 1,000 lines versus those of 1,000,000

lines. Typical software documentation is in-the-small, describing the program in terms of isolated algo-

rithms and data structures. Moreover, the documentation is often scattered and on di�erent media. The

maintainers have to resort to browsing the source code and piecing disparate information together to form

higher-level structural models. This process is always arduous; creating the necessary documents from

multiple perspectives is often impossible. Yet it is exactly this sort of in-the-large documentation that is

needed to expose the overall architecture of large software systems.

Software structure is the collection of artifacts used by software engineers when forming mental models of

software systems. These artifacts include software components such as procedures, modules, and interfaces;

dependencies among components such as client-supplier, inheritance, and control-
ow; and attributes such

as component type, interface size, and interconnection strength. The structure of a system is the organi-

zation and interaction of these artifacts [26]. One class of techniques of reconstructing structural models

is reverse engineering.

Using reverse engineering approaches to reconstruct the architecture aspects of software can be termed

structural redocumentation. The University of Victoria's work is centered around Rigi [27]: an environment

for understanding evolving software systems. Output from this environment can also serve as input to

conceptual modelling, design recovery, and project management processes. Rigi consists of three major

components: a tailorable parsing system that supports procedural programming languages such as C,

COBOL, and PL/AS; a distributed, multi-user repository to store the extracted information; and an

interactive, window-oriented graph editor to manipulate structural representations.

4.1 Scalability

E�ective approaches to program understanding must be applicable to huge, multi-million line software sys-

tems. Such scale and complexity necessitates fundamentally di�erent approaches to repository technology

than is used in other domains. For example, not all software artifacts need to be stored in the repository;

it may be perfectly acceptable to ignore certain details for program understanding tasks. Coarser-grained

artifacts can be extracted, partial systems can be incrementally investigated, and irrelevant parts can be ig-

11

nored to obtain manageable repositories. Program representation, search strategies, and human-computer

interfaces that work on systems \in-the-small" often do not scale up. For very large systems, the in-

formation accumulated during program understanding is staggering. To gain useful knowledge, one must

e�ectively summarize and abstract the information. In a sense, a key to program understanding is deciding

what information is material and what is immaterial: knowing what to look for|and what to ignore [28].

4.2 Redocumentation strategy

There are tradeo�s in program understanding environments between what can be automated and what

should (or must) be left to humans. Structural redocumentation in Rigi is initially automatic and involves

parsing the source code of the subject system and storing the extracted artifacts in the repository. This

produces a
at resource-
ow graph of the software. This phase is followed by a semi-automatic one

that exploits human pattern recognition skills and features language-independent subsystem composition

techniques to manage the complexity. This approach relies very much on the experience of the software

engineer using the system. This partnership is synergistic as the analyst also learns and discovers interesting

relationships by interactively exploring software systems using Rigi.

Subsystem composition is a recursive process whereby building blocks such as data types, procedures,

and subsystems are grouped into composite subsystems. This builds multiple, layered hierarchies for

higher-level abstractions [29]. The criteria for composition depend on the purpose, audience, and do-

main. For program understanding purposes, the process is guided by dividing the resource-
ow graph

using established modularity principles such as low coupling and strong cohesion. Exact interfaces and

modularity/encapsulation quality measures can be used to evaluate the generated software hierarchies.

Subsystem composition is supported by a program representation known as the (k; 2)-partite graph [29].

These graphs are layered or strati�ed into strict levels so that arcs do not skip levels. The levels represent

the composition of subsystems. This structuring mechanism was originally devised for managing the

complexity of hypertext webs and multiple hierarchies.

4.3 Multiple dynamic views

Visual representations enhance the human ability to recognize patterns. Using the graph editor, diagrams

of software structures such as call graphs, module interconnection graphs, and inclusion dependencies can

be automatically produced. The e�ective capability to analyze these structures is necessary for program

understanding. Responsiveness is very important. For presenting the large graphs that arise from a

complex system like SQL/DS, the response time may degrade even on powerful workstations. The Rigi

user interface is designed to allow users, if necessary, to batch sequences of operations and to specify when

windows are updated. Thus, for small graphs, updates are immediate for visually pleasing feedback; for

12

large graphs, the user has full control of the redrawing.

Rigi presents structural documentation using a collection of views. A view is a group of visual and

textual frames that contain, for example, resource
ow graphs, overviews, projections, exact interfaces,

and annotations. Because views are dynamic and ultimately based on the underlying source code, they

remain up-to-date. Collected views can be used to retrieve previous reverse engineering states.

Dramatic improvements in program understanding are possible using semi-automatic techniques that ex-

ploit application-speci�c domain knowledge. Since the user is in control, the subsystem composition process

can depend on diverse criteria, such as tax laws, business policies, personnel assignments, requirements,

or other semantic information. These alternate and orthogonal decompositions may co-exist under the

structural representation supported by Rigi. These decompositions provide many possible perspectives

for later review. In e�ect, multiple, logical representations of the software's architecture can be created,

manipulated, and saved.

4.4 Domain-retargetability

Because program understanding involves many diverse aspects, applications, and domains, it is necessary

that the approach be very
exible. Many reverse engineering tools provide only a �xed palette of extrac-

tion, selection, �ltering, arrangement, and documentation techniques. The Rigi approach uses a scripting

language that allows analysts to customize, combine, and automate these activities in unforeseen ways.

E�orts are proceeding to also make the user interface fully user-customizable. This approach permits ana-

lysts to tailor the environment to better suit their needs, providing a smooth transition between automatic

and semi-automatic reverse engineering. The goal of domain-retargetability, having a single environment

su�ciently
exible so as to be applicable and equally e�ective in multiple domains, is achieved through

this customization.

To make the Rigi system programmable and extensible, the user interface and editor engine were decoupled

to make room for an intermediate scripting layer based on the embeddable Tcl and Tk libraries [30]. This

layer allows each event of importance to the user (for example, key stroke, mouse motion, button click, menu

selection) to be tied to a scripted, user-de�ned command. Many previously tedious and repetitive activities

can now be automated. Moreover, this layer allows an analyst to complement the built-in operations with

external, possibly application-speci�c, algorithms for graph layout, complexity measures, pattern matching,

slicing, and clustering. For example, the Rigi system has been applied to various selected domains: project

management [31], personalized hypertext [32], and redocumenting legacy software systems.

13

4.5 Redocumenting SQL/DS

The analysis of SQL/DS using Rigi has shown that the subsystem composition method and graph visualiz-

ing editor scale up to the multi-million lines of code range. The results of the analysis were prepared as a set

of structural views and presented to the development teams. Informal information and knowledge provided

by existing documentation and expert developers are rich sources of data that should be leveraged when-

ever possible. By considering SQL/DS-speci�c knowledge such as naming conventions and existing physical

modularizations, team members easily recognized the constructed views. Domain-dependent scripts were

devised to help automate the decomposition of SQL/DS into its constituent components.

For example, the relation data subsystem of SQL/DS was analyzed in some depth. The developer in charge

of the path-selection optimizer had her own mental model of its structure, based on development logbooks

and experience. This model was recreated using Rigi's structural redocumentation facilities. An alternate

view was also created, based on the actual structure as re
ected by the source code. This second view

constitutes another reverse-engineering perspective and was a valuable reference against which the �rst

view was compared.

4.6 Summary

The Rigi environment focuses on the architectural aspects of the subject system under analysis. The

environment supports a method for identifying, building, and documenting layered subsystem hierarchies.

Critical to its usability is the ability to store and retrieve views|snapshots of reverse engineering states.

The views are used to transfer pertinent information about the abstractions to the software engineers.

Rigi supports human- and script-guided structural pattern recognition, but does not provide built-in op-

erations to perform analysis such as textual, syntactic, and semantic pattern matching. Such operations

are necessary for complete program understanding. However, the scripting layer does support access to

external tools that cover these areas of analysis, allowing Rigi to function as the cornerstone of a compre-

hensive reverse engineering environment. These required areas are addressed by the prototypes described

in the following section.

5 Pattern matching

One of the most important reverse engineering processes is the analysis of a subject system to identify

components and relations. Recognizing such relations is a complex problem solving activity that begins

with the detection of cues in the source and continues by building hypotheses from these cues. One

approach to detecting these cues is to start by looking at program segments which are similar to each

14

other.

Program understanding techniques may consider source code in increasingly abstract forms, including:

raw text, preprocessed text, lexical tokens, syntax trees, annotated abstract syntax trees with symbol

tables, and control/data
ow graphs. The more abstract forms entail additional syntactic and semantic

analysis that corresponds more to the meaning and behavior of the code and less to its form and structure.

Di�erent levels of analysis are necessary for di�erent users and di�erent program understanding purposes.

For example, preprocessed text loses a considerable amount of information about manifest constants, in-

line functions, and �le inclusions. Three research groups a�liated with the program understanding project

focus on textual, syntactic, and semantic pattern-matching approaches.

5.1 Textual analysis

Anything that is big and worth understanding has some internal structure; �nding and understanding that

internal structure is the key to understanding the whole. In particular, large source codes have lots of

internal structure as a result of their evolution. The NRC research focuses on techniques that consider

the source code in raw or preprocessed textual forms, dealing with more of the incidental implementation

artifacts than other methods. The work by Johnson [33] at NRC concerns the identi�cation of exact

repetitions of text in huge source codes. One goal is to relax the constraint of exact matches to approximate

matches, while preserving the ability to handle huge source texts. The general approach is to automatically

analyze the code and produce information that can be queried and reported.

For some understanding purposes, less analysis is better; syntactic and semantic analysis can actually

destroy information content in the code, such as formatting, identi�er choices, whitespace, and commentary.

Evidence to identify instances of textual cut-and-paste is lost as a result of syntactic analysis. Tools for

syntactic and semantic analysis are often more language and environmentally dependent; slight changes

in these aspects can make the tools inapplicable. For example, C versions of such tools may be useless on

PL/AS code.

More speci�cally, these techniques discover the location and structure of long matching substrings in the

source text. Such redundancies arise out of typical editing operations during maintenance. Measures

of repetition are a useful basis for building practical program understanding tools. There are several

possibilities for redundancy-based analysis, including: determining the e�ects of cut-and-paste, discovering

the e�ects of preprocessing, measuring changes between versions, and understanding where factoring and

abstraction mechanisms might be lacking.

The NRC approach works by �ngerprinting an appropriate subset of substrings in the source text. A

�ngerprint is a shorter form of the original substring and leads to more e�cient comparisons and faster

redundancy searches. Identical substrings will have identical �ngerprints. However, the converse is not

15

necessarily true. Di�ering substrings may also have the same �ngerprint, but the chance of this occurring

can be made extremely unlikely. A �le of substring �ngerprints and locations provides the information

needed to extract source-code redundancies.

There are several issues to be addressed: discovering e�cient algorithms for computing �ngerprints, de-

termining the appropriate set of substrings, and devising postprocessing techniques to make the generated

�ngerprint �le more useful. Karp and Rabin [34] have proposed an algorithm based on the properties of

residue arithmetic by which �ngerprints can be incrementally computed during a single scan. A modi�ed

version of this algorithm is used. Appropriate substrings, called snips, are selected to exploit line boundary

information; the selection parameters are generally based on the desired number of lines and maximum

and minimum numbers of characters. Even then, an adjustable culling strategy is used to reduce the

sheer number of snips that would still be �ngerprinted. Since snips can overlap and contain the same sub-

string many times, this culling strategy represents substrings by only certain snips. Particularly important

postprocessing includes merging consecutive snips that match in all occurrences, thus producing longest

matching substrings. Extensions of this can identify long substrings that match except for short insertions

or deletions.

An experimental prototype has been built and applied to the source code of the SQL/DS reference legacy

system. This led to a number of observations. The expansion of inclusions via preprocessing introduces

textual redundancy. These redundancies were easily detected by the prototype. When the prototype was

applied to a small part of the source code (60 �les, 51,655 lines, 2,983,573 characters), considering matches

of at least 20 lines, there appeared to be numerous cut-and-paste occurrences|about 727 copied lines in

13 �les. Processing of the entire 300 megabyte source text ran successfully in under two hours on an IBM

RISC System/6000 M550. To perform a more complete and useful analysis of SQL/DS, research is now

focused on approximate matching techniques and better postprocessing and presentation tools. Textual

analysis complements other analysis tools by providing information that these tools miss.

5.2 Syntactic analysis

The e�ort by Paul and Prakash at the University of Michigan focuses on the design and development

of powerful source code search systems that software engineers (or tools designed by them) can use to

specify and detect \interesting" code fragments. Searching for code is an extremely common activity

in reverse engineering, because maintainers must �rst �nd the relevant code before they can correct,

enhance, or re-engineer it. Software engineers usually look for code that �ts certain patterns. Those

patterns that are somehow common and stereotypical are known as clich�es. Patterns can be structural

or behavioral, depending on whether one is searching for code that has a speci�ed syntactic structure, or

looking for code components that share speci�c data-
ow, control-
ow, or dynamic (program execution-

related) relationships.

16

5.2.1 De�ciencies with current approaches

Despite the critical nature of the task, good source code search systems do not exist. General string-

searching tools such as grep, sed, and awk can handle only trivial queries in the context of source code.

Based on regular expressions, these tools do not exploit the rich syntactic structure of the programming

language. Source code contains numerous syntactic, structural, and spatial relationships that are not fully

captured by the entity-relation-attribute model of a relational database either.

For example, systems such as CIA [35] and PUNS [36] only handle simple statistical and cross-reference

queries. Graph-based models represent source code in a graph where nodes are software components (such

as procedures, data types, and modules), and arcs capture dependencies (such as resource
ows). The

SCAN system [37] uses a graph-based model that is an attributed abstract syntax representation. This

model does capture the structural information necessary; however, it does not capture the strong typing

associated with programming-language objects. Moreover, it fails to support type lattices, an essential

requirement to ensure substitutability between constructs that share a supertype-subtype relationship.

Object-based models, such as the one used by REFINE, adequately capture the structural and relational

information in source code. However, the focus in REFINE has not been on the design of e�cient source

code search primitives.

5.2.2 SCRUPLE

The University of Michigan group has developed the SCRUPLE source code search system (Source Code

Retrieval Using Pattern LanguagEs) [38]. SCRUPLE is based on a pattern-based query language that

can be used to specify complex structural patterns of code not expressible using other existing systems.

The pattern language allows users
exibility regarding the degree of precision to which a code structure

is speci�ed. For example, maintainers trying to locate a matrix multiplication routine may specify only

a control structure containing three nested loops, omitting details of contents of the loops, whereas those

trying to locate all the exact copies of a certain piece of code may use the code piece itself as their

speci�cation.

The SCRUPLE pattern language is an extension of the source code programming language. The extensions

include a set of symbols that can be used as substitutes for syntactic entities in the programming language,

such as statements, declarations, expressions, functions, loops, and variables. When a pattern is written

using one or more of these symbols, it plays the role of an abstract template which can potentially match

di�erent code fragments.

The SCRUPLE pattern matching engine searches the source code for code fragments that match the

speci�ed patterns. It proceeds by converting the program source code into an abstract syntax tree (AST),

converting the pattern into a special �nite state machine called the code pattern automaton (CPA), and

17

then simulating the behavior of the CPA on the AST using a CPA interpreter. A matching code fragment

is detected when the CPA enters a �nal state. Experience with the SCRUPLE system shows that a code

pattern automaton is an e�cient mechanism for structural pattern matching on source code.

5.2.3 Source code algebra

SCRUPLE is an e�ective pattern-based query system. However, current source code query systems, in-

cluding SCRUPLE, succeed in handling only subsets of the wide range of queries possible on source code,

trading generality and expressive power for ease of implementation and practicality. To address the prob-

lem, Paul and Prakash have designed a source code algebra (SCA) [39] as the formal framework on top of

which a variety of high-level query languages can be implemented. In principle, these query languages can

be graphical, pattern-based, relational, or
ow-oriented.

The modeling of program source code as an algebra has four important consequences for reverse engineer-

ing. First, the algebraic data model provides a uni�ed framework for modeling structural as well as
ow

information. Second, query languages built using the algebra will have formal semantics. Third, the alge-

bra itself serves as low-level applicative query language. Finally, source code queries expressed as algebra

expressions can be optimized using algebraic transformation rules and heuristics.

Source code is modeled as a generalized order-sorted algebra [40], where the sorts are the program objects

with operators de�ned on them. The choice of sorts and operators directly a�ects the modeling and

querying power of the SCA. Essentially, SCA is an algebra of objects, sets, and sequences. It can be

thought of as an analogue of relational algebra, which serves as an elegant and useful theoretical basis for

relational query languages. A prototype implementation of the SCA query processor is underway. The

next step is to test it using suites of representative queries that arise in reverse engineering. The �nal goal

is to automatically generate source code query systems for speci�c programming languages from high-level

speci�cations of the languages (that is, their syntax and data model). The core of the query system will

be language independent. This tool generation technique is similar to yacc, a parser generator.

5.3 Semantic analysis

The McGill research [41] involves four subgoals. First, program representations are needed to capture

both the structural and semantic aspects of software. Second, comparison algorithms are needed to �nd

similar code fragments. Third, pattern matching algorithms are needed to �nd instances of programming

plans (or intents) in the source code. Fourth, a software process de�nition is needed to direct program

understanding and design recovery analyses.

18

5.3.1 Program representation

A suitable program representation is critical for plan recognition because the representation must encapsu-

late relevant program features that identify plan instances, while simultaneously discarding implementation

variations. There are several representation methods discussed in the literature, including data and control

ow graphs, Prolog rules, and �-calculus. McGill's representation scheme is an object-oriented annotated

AST.

A grammar and a domain model for the language of the subject system is constructed using the Software

Re�nery. The domain model de�nes an object hierarchy for the AST nodes and the grammar is used to

construct a parser that builds the AST. Some tree annotations are produced by the parser; others are

produced by running analysis routines on the tree. Annotations produced by the parser include source

code line numbers, include �le names, and links between identi�er references and corresponding variable

and datatype de�nitions. Annotations produced by analysis routines include variables used and updated,

functions called, variable scope information, I/O operations, and complexity/quality metrics. Annotations

stored in the AST may be used by other analysis routines.

5.3.2 Programming plans

More generally, comparison methods are needed to help recognize instances of programming plans (ab-

stracted code fragments). There are several other pattern matching techniques besides similarity measures.

GRASP [42] compares the attributed data
ow subgraphs of code fragments and algorithmic plans and uses

control dependencies as additional constraints. PROUST [43, 44] compares the syntax tree of a program

with suites of tree templates representing the plans. A plan-instance match is recognized if a code fragment

conforms to a template, and certain constraints and subgoals are satis�ed. In CPU [45], comparisons are

performed by applying a uni�cation algorithm on code fragments and programming plans represented by

lambda calculus expressions.

Textual- and lexical-matching techniques encounter problems when code fragments contain irrelevant state-

ments or when plans are delocalized. Moreover, program behavior is not considered. Graph-based for-

malisms capture data and control
ow, but transformations on these graphs are often expensive and pattern

matching algorithms can have high time complexity. This poses a major problem when analyzing huge

source codes.

In addition, plan instance recognition must contend with problems such as syntactic variations, interleaved

plans, and implementation di�erences. One major problem is the failure of certain methods to produce any

results if precise recognition is not achieved. The McGill group is focusing on plan localization algorithms

that can handle partial plans. Human assistance is favored over a completely automatic approach based

on a �xed plan library.

19

Plans should stand for application-level concepts and not simply be abstracted code fragments. Concepts

might be high-level descriptions of occurrences or based on more familiar properties such as assertions,

data dependencies, or control dependencies. Within McGill's approach, plans are user-de�ned portions

of the annotated AST. A pattern-matching and localization algorithm is used to �nd all code fragments

that are similar to the plan. The plan, together with the similar fragments, forms a \similarity" class.

The object-oriented environment gives
exibility in the matching process because some implementation

variations are encoded in the class hierarchy. For example, while, for, and repeat-until statements are

subclasses of the loop-statement class. The object hierarchy that classi�es program structure and data

types is de�ned within a language-speci�c domain model.

5.3.3 Similarity analysis

One focus in pattern matching is on identifying similar code fragments. Existing source code is often reused

within a system via \cut-and-paste" text operations (cf. Section 5.1). This practice saves development time,

but leads to problems during maintenance because of the increased code size and the need to propagate

changes to every modi�ed copy. Detection of cloned code fragments must be done using heuristics since the

decision whether two arbitrary programs perform the same function is undecidable. These heuristics are

based on the observation that the clones are not arbitrary and will often carry identi�able characteristics

(features) of the original fragment.

The McGill approach to identifying clones uses various complexity metrics. Each code fragment is tagged

by a signature tuple of its complexity values. This transformational technique simpli�es software structures

by converting them to simpler canonical forms. In this framework, the basic assumption is that, if code

fragments c1 and c2 are similar under a set of features measured by metric M, then their metric values

M(c1) and M(c2) for these features will also be close. Five metrics have been chosen that exhibit a

relatively low correlation coe�cient, and are sensitive to a number of di�erent program features that may

characterize a code fragment. They are:

1. the number of functions called from a software component (i.e., fan-out);

2. the ratio of I/O variables to the fan-out;

3. McCabe's cyclomatic complexity [46];

4. Albrecht's Function Point quality metric [47]; and

5. Henry-Kafura's information
ow quality metric [48].

Similarity is gauged by a distance measure on the tuples. The distances currently used are based on two

measures: (1) the Euclidean distance de�ned in the 5-dimensional space of the above measures; and (2)

20

on clustering thresholds de�ned on each individual measure axis (and on intersections between clusters in

di�erent measure axes).

Another analysis is to determine closely related software components, according to criteria such as shared

references to data, data bindings, and complexity metrics. Grouping software components by such varied

criteria provides the analyst with di�erent views of the program. The data binding criteria tracks uses of

variables in one component that are de�ned within another (a kind of interprocedural resource
ow). The

implementation of these analyses uses the REFINE product.

5.3.4 Goal-driven program understanding

Another design recovery strategy that has been explored by the McGill group is a variation of the GQM

[49] model: the goal, question, analysis, action model [50]. A number of available options are compared,

and the one that best matches a given objective is selected. The choice is based on experience and formal

knowledge.

This process can be used to �nd instances of programming plans. The comparison process is iterative,

goal-driven, and a�ected by the purpose of the analysis and the results of previous work. A moving frontier

[51] divides recognized plans and original program material. Subgoals are set around fragments that have

been recognized with high con�dence. The analysis continues outward seeking the existence of other parts

of the plan in the code. Interleaved plans can be handled by allowing gaps and partial plan recognition.

5.4 Summary

Research prototypes have been built for performing textual, syntactic, and semantic analysis of the SQL/DS

system. Both the McGill and Michigan tools can process PL/AS code, but have also been applied to C code.

The NRC tool found numerous cut-and-paste redundancies in the SQL/DS code. Research is continuing

on improving these tools. The NRC group is focusing on better visualization techniques. Michigan is

investigating better program representations and pattern matching engines. McGill is exploring techniques

for plan recognition and similarity distances between source code features.

A number of common themes have arisen from this research. Domain-speci�c knowledge is critical in eas-

ing the interpretation of large software systems. Program representations for e�cient queries are essential.

Many kinds of analyses are needed in a comprehensive reverse engineering approach. An extensible envi-

ronment is needed to consolidate these diverse approaches into a uni�ed framework. An architecture for

a multi-faceted reverse engineering environment to addresses these requirements is presented in the next

section.

21

6 Steps toward integration

The �rst phase of the program understanding project produced practical results and usable prototypes

for program understanding. In particular, the defect �ltering system developed by Buss, Henshaw, and

Troster is used daily by several development groups, including SQL/DS and DB2. The second phase

of the program understanding project is focusing on the integration of selected prototype tools into a

comprehensive environment for program understanding.

The prototype tools individually developed by each research group o�er complementary functionalities

and di�er in the methods they use to represent software descriptions, to implement such descriptions in

terms of physical data structures, and in the mechanisms they deploy to interact with other tools. Ideally,

the output of one prototype tool should be usable as input by another. For example, some of the many

dependencies generated by the defect �ltering system might be explored and summarized using the Rigi

graph editor. However, the defect detection system uses the REFINE object-oriented repository, and the

Rigi system uses the GRAS graph-based repository [52]. Integrating the representations employed by

REFINE and Rigi is a non-trivial problem.

With such integration in mind, a new phase of the project was launched early in 1993. Some of the key

requirements for the integration were:

� smooth data, control, and presentation integration among components of the environment;

� extensible data model and interfaces to support new tools and user-de�ned objects, dependencies,

and functions;

� domain-speci�c, semantic pattern matching to complement the facilities developed during the �rst

phase of the project;

� the representation and support of processes and methodologies for reverse engineering; and

� robust program representations, user interfaces, and algorithms, capable of handling large collections

of software artifacts.

The rest of this section describes the steps that have been taken to provide data integration through a

common repository for a variety of tools for program understanding. In addition, the section describes the

subsystem of the environment responsible for control integration.

6.1 Repository schema

The University of Toronto contribution focuses on the development of an information schema and the

implementation of a repository to support program understanding. The repository needs to store both the

22

extracted information gathered during the discovery phase as well as the abstractions generated during the

identi�cation phase of reverse engineering. The information stored must be readily understandable, per-

sistent, shareable, and reusable. Moreover, the repository must have a common and consistent conceptual

schema that is a superset of the sub-schemas used by the program understanding tools, including those for

REFINE and Rigi. The repository should also provide simple repository operations to select and update

information pertinent to a speci�c tool. The schema is expected to change, and therefore it must support

dynamic evolution.

The schema is under development and is being implemented in three phases. The �rst phase, which

has already been implemented, captures the information currently required by REFINE and Rigi. This

information consists of programming language constructs from C, which are discovered through parsing, as

well as user-de�ned and tool-generated objects. For example, the concept of a Rigi subsystem is captured in

a class called \Module." This concept, however, is not supported by REFINE and therefore does not exist

in the REFINE sub-schema. Similarly, the programming language construct of an arithmetic expression is

captured in the REFINE sub-schema using the class \Expression." This construct has no Rigi sub-schema

representation since Rigi does not currently deal with intraprocedural details. As an example of a shared

concept, the notion of a function is common to both tools and is captured in the shared class \Function."

Each tool has a slightly di�erent view of this class, seeing only the common portions and the information

pertinent to itself. The second phase classi�es the patterns used and captures the analysis results generated

from each tool. The third phase will record other information relevant to reverse engineering, such as

designs, system requirements, domain modelling, and process information. The remainder of this section

describes the schema developed for the �rst phase.

The information model adopted for the repository schema is Telos, originally developed at the University

of Toronto [53]. Features of Telos include: an object-oriented framework that supports generalization,

classi�cation and attribution, a meta-modelling facility, and a novel treatment of attributes including

multiple inheritance of attributes and attribute classes. Telos was selected over other data models (for

example, REFINE, ObjectStore, C++-based) because it is more expressive with respect to attributes

and is extensible through its treatment of metaclasses. To support persistent storage for the repository,

however, we adopted the commercial object-oriented database ObjectStore.

As illustrated in Figure 3, the schema consists of three tiers. The top level (MetaClass Level) exploits

meta modelling facilities to de�ne: (1) the types of attribute values that the repository supports; and (2)

useful groupings of attributes to distinguish information that is pertinent to each of the individual tools.

For example, \RigiClass" is used to capture all data that pertains to Rigi at the level below and thus

it de�nes the kinds of attribute classes that the lower level Rigi classes can have. The use of this level

eases schema evolution and provides an important �ltering and factoring mechanism. The middle level

(Class Level) de�nes the repository schema, classifying in terms of the metaclasses and attributes de�ned

at the top level. For instance, \RigiObject," \RigiElement," \RigiProgrammingObject," and \Function"

(grouped in the grey shaded area in Figure 3, all use the attribute metaclasses de�ned in \RigiClass" above,

23

to capture information about particular Rigi concepts. As the example suggests, a repository object is

categorized based on the pertinent tool and whether it is automatically extracted or produced through

analysis. The bottom level (Token Level) stores the software artifacts needed by the individual tools.

Figure 3 shows three function objects: \listinit," \mylistprint," and \list�rst" corresponding to the actual

function de�nitions. These are created when Rigi parses the target source code.

6.2 Environment architecture

A generic architecture is one important step toward the goal of creating an integrated reverse engineering

environment. The main integration requirements of this environment concern data, control, and presen-

tation. Data integration is essential to ensure that the individual tools can communicate with each other;

this is accomplished through a common schema. Control integration enhances interoperability and data

integrity among the tools. This is realized through a data server built using a customizable and extensible

message server called the Telos Message Bus (TMB), as shown in Figure 4. This message server allows

all tools to communicate both with the repository and with each other, using the common schema as

interlingua. These messages form the basis for all communication in the system. The server has been

implemented on top of existing public domain software bus technology [54] using a layered approach that

provides both mechanisms and policies speci�cally tailored to a reverse engineering environment. For ex-

ample, the bottom layer provides mechanisms by which a particular tool can receive messages of interest

to it. The policy layer is built on top of the mechanism layer to determine if and how a particular tool

responds to those messages.

This architecture has been implemented. The motivation for the layered and modular approach to the

schema and architecture came from an earlier experience by the University of Toronto group in another

proejct. This project faced similar requirements, such as the need for a common repository to help integrate

disparate tools. Additional experience with this architecture for reverse engineering purposes is currently

ongoing.

7 Summary

There will always be old software that needs to be understood. It is critical for the information technology

sector in general, and software industry in particular, to deal e�ectively with the problems of software

evolution and the understanding of legacy software systems. Tools and methodologies that e�ectively aid

software engineers in understanding large and complex software systems can have a signi�cant impact.

Buss and Henshaw at IBM built several prototype toolkits in REFINE, each focused on detecting speci�c

errors in SQL/DS. Troster, also at IBM, developed a
exible approach that applies defect �lters against

24

the source code to improve the quality. Defect �ltering produces measurable results in software quality.

M�uller's research group at the University of Victoria developed the Rigi system, which focuses on the high-

level architecture of the subject system under analysis. Views of multiple, layered hierarchies are used

to present structural abstractions to the maintainers. A scripting layer allows Rigi to access additional

external tools.

Johnson of the National Research Council studies redundancy at the textual level. A number of uses are

relevant to the SQL/DS product: looking for code reused by cut-and-paste, building a simpli�ed model

for macro processing based on actual use, and providing overviews of information content in absolute or

relative (version or variant) terms.

Paul and Prakash of the University of Michigan match programming language constructs in the SCRUPLE

system. Instead of looking for low-level textual patterns or very high-level semantic constructs, SCRUPLE

looks for user-de�ned code clich�es. This approach is a logical progression from simple textual scanning

techniques.

Kontogiannis, De Mori, and Merlo of McGill University study semantic or behavioral pattern-matching. A

transformational approach based on complexity metrics is used to simplify syntactic programming struc-

tures and expressions by translating them to tuples. The use of a distance measure on these tuples forms

the basis of a method to �nd similar code fragments.

Defect �ltering generates a overwhelming amount of information that needs to be summarized e�ectively

to be meaningful. Extensible visualization and documentation tools such as Rigi are needed to manage

these complex details. However, Rigi by itself does not o�er the textual, syntactic, and semantic analysis

operations needed for a comprehensive reverse engineering approach. Early results indicate that an exten-

sible but integrated toolkit is required to support the multi-faceted analysis necessary to understand legacy

software systems. Such a uni�ed environment is under development, based on the schema and architecture

implemented by the group at the University of Toronto. This integration brings the strengths of the diverse

research prototypes together.

Acknowledgments

We are very grateful for the e�orts of the following people: Morris Bernstein, McGill University; David

Lauzon, University of Toronto; and Margaret-Anne Storey, Michael Whitney, Brian Corrie, and Jacek

Walkowicz,1 University of Victoria. Their contributions have been critical to the success of the various

research prototypes. We wish to thank the SQL/DS group members at IBM for their participation and the

sta� at CAS for their support. Finally, we are deeply indebted to Jacob Slonim for his continued guidance

1
Now at Macdonald-Dettwiler & Associates.

25

and encouragement in this endeavor.

Trademarks

AIX, IBM, OS/2, RISC System/6000, SQL/DS, System/370, VM/XA, VM/ESA, VSE/XA, and

VSE/ESA, are trademarks of International Business Machines Corporation.

The Software Re�nery and REFINE are trademarks of Reasoning Systems Inc.

SAS is a trademark of SAS Institute, Inc.

26

References

[1] T. A. Standish. An essay on software reuse. IEEE Transactions on Software Engineering, SE-
10(5):494{497, September 1984.

[2] P. Selfridge, R. Waters, and E. Chikofsky. Challenges to the �eld of reverse engineering | a position
paper. In WCRE '93: Proceedings of the 1993 Working Conference on Reverse Engineering, (Bal-
timore, Maryland; May 21-23, 1993), pages 144{150. IEEE Computer Society Press (Order Number
3780-02), May 1993.

[3] R. Brooks. Towards a theory of the comprehension of computer programs. International Journal of
Man-Machine Studies, 18:543{554, 1983.

[4] R. Arnold. Software Reengineering. IEEE Computer Society Press, 1993.

[5] E. J. Chikofsky and J. H. Cross II. Reverse engineering and design recovery: A taxonomy. IEEE
Software, 7(1):13{17, January 1990.

[6] R. Arnold. Tutorial on software reengineering. In CSM'90: Proceedings of the 1990 Conference on
Software Maintenance, (San Diego, California; November 26-29, 1990). IEEE Computer Society Press
(Order Number 2091), November 1990.

[7] A. O'Hare and E. Troan. RE-Analyzer: From source code to structured analysis. IBM Systems
Journal, 33(1), 1994.

[8] G. Myers. Reliable Software Through Composite Design. Petrocelli/Charter, 1975.

[9] M. R. Olsem and C. Sittenauer. Reengineering technology report (Volume I). Technical report,
Software Technology Support Center, August 1993.

[10] N. Zvegintzov, editor. Software Management Technology Reference Guide. Software Management
News Inc., 4.2 edition, 1994.

[11] G. Arango, I. Baxter, P. Freeman, and C. Pidgeon. TMM: Software maintenance by transformation.
IEEE Software, 3(3):27{39, May 1986.

[12] W. G. Griswold. Program Restructuring as an Aid to Software Maintenance. PhD thesis, University
of Washington, 1991.

[13] C. Rich and L. M. Wills. Recognizing a program's design: A graph-parsing approach. IEEE Software,
7(1):82{89, January 1990.

[14] P. A. Hausler, M. G. Pleszkoch, R. C. Linger, and A. R. Hevner. Using function abstraction to
understand program behavior. IEEE Software, 7(1):55{63, January 1990.

[15] J. E. Grass. Object-oriented design archaeology with CIA++. Computing Systems, 5(1):5{67, Winter
1992.

27

[16] R. Schwanke, R. Altucher, and M. Plato�. Discovering, visualizing, and controlling software structure.
ACM SIGSOFT Software Engineering Notes, 14(3):147{150, May 1989. Proceedings of the Fifth
International Workshop on Software Speci�cation and Design.

[17] M. Consens, A. Mendelzon, and A. Ryman. Visualizing and querying software structures. In ICSE'14:
Proceedings of the 14th International Conference on Software Engineering, (Melbourne, Australia;
May 11-15, 1992), pages 138{156, May 1992.

[18] T. J. Biggersta�, B. G. Mitbander, and D. Webster. The concept assignment problem in program
understanding. In WCRE '93: Proceedings of the 1993 Working Conference on Reverse Engineering,
(Baltimore, Maryland; May 21-23, 1993), pages 27{43. IEEE Computer Society Press (Order Number
3780-02), May 1993.

[19] E. Buss and J. Henshaw. A software reverse engineering experience. In Proceedings of CASCON '91,
(Toronto, Ontario; October 28-30, 1991), pages 55{73. IBM Canada Ltd., October 1991.

[20] S. Burson, G. B. Kotik, and L. Z. Markosian. A program transformation approach to automating
software re-engineering. In COMPSAC '90: Proceedings of the 14th Annual International Computer
Software and Applications Conference, (Chicago, Illinois; October, 1990), pages 314{322, 1990.

[21] J. Troster. Assessing design-quality metrics on legacy software. In Proceedings of CASCON '92,
(Toronto, Ontario; November 9-11, 1992), pages 113{131, November, 1992.

[22] J. Troster, J. Henshaw, and E. Buss. Filtering for quality. In the Proceedings of CASCON '93,
(Toronto, Ontario; October 25-28, 1993), pages 429{449, October 1993.

[23] E. Buss and J. Henshaw. Experiences in program understanding. In CASCON'92: Proceedings of the
1992 CAS Conference, (Toronto, Ontario; November 9-12, 1992), pages 157{189. IBM Canada Ltd.,
November 1992.

[24] D. N. Card and R. L. Glass. Measuring Software Design Quality. Prentice-Hall, 1990.

[25] D. N. Card. Designing software for producibility. Journal of Systems and Software, 17(3):219{225,
March 1992.

[26] H. L. Ossher. A mechanism for specifying the structure of large, layered systems. In B. D. Shriver and
P. Wegner, editors, Research Directions in Object-Oriented Programming, pages 219{252. MIT Press,
1987.

[27] H. A. M�uller. Rigi { A Model for Software System Construction, Integration, and Evolution based on
Module Interface Speci�cations. PhD thesis, Rice University, August 1986.

[28] M. Shaw. Larger scale systems require higher-level abstractions. ACM SIGSOFT Software Engineer-
ing Notes, 14(3):143{146, May 1989. Proceedings of the Fifth International Workshop on Software
Speci�cation and Design.

[29] H. A. M�uller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A reverse engineering approach to subsys-
tem structure identi�cation. Journal of Software Maintenance: Research and Practice, 5(4):181{204,
December 1993.

28

[30] J. K. Ousterhout. An Introduction to Tcl and Tk. Addison-Wesley, 1994. To be published.

[31] S. R. Tilley and H. A. M�uller. Using virtual subsystems in project management. In CASE '93:
The Sixth International Conference on Computer-Aided Software Engineering, (Institute of Systems
Science, National University of Singapore, Singapore; July 19-23, 1993), pages 144{153, July 1993.
IEEE Computer Society Press (Order Number 3480-02).

[32] S. R. Tilley, M. J. Whitney, H. A. M�uller, and M.-A. D. Storey. Personalized information structures.
In SIGDOC '93: The 11th Annual International Conference on Systems Documentation, (Waterloo,
Ontario; October 5-8, 1993), pages 325{337, October 1993. ACM Order Number 6139330.

[33] J. H. Johnson. Identifying redundancy in source code using �ngerprints. In Proceedings of CAS-
CON '92, (Toronto, Ontario; November 9-11, 1992), pages 171{183, November, 1992.

[34] R. M. Karp and M. O. Rabin. E�cient randomized pattern-matching algorithms. IBM J. Res.
Develop., 31(2):249{260, March 1987.

[35] Y. Chen, M. Nishimoto, and C. Ramamoorthy. The C Information Abstraction System. IEEE
Transactions on Software Engineering, 16(3):325{334, March 1990.

[36] L. Cleveland. PUNS: A program understanding support environment. Technical Report RC 14043,
IBM T.J. Watson Research Center, September 1988.

[37] R. Al-Zoubi and A. Prakash. Software change analysis via attributed dependency graphs. Technical
Report CSE-TR-95-91, Department of EECS, University of Michigan, May 1991.

[38] S. Paul and A. Prakash. Source code retrieval using program patterns. In CASE'92: Proceedings of
the Fifth International Workshop on Computer-Aided Software Engineering, (Montr�eal, Qu�ebec; July
6-10, 1992), pages 95{105, July 1992.

[39] S. Paul and A. Prakash. A framework for source code search using program patterns. IEEE Transac-
tions on Software Engineering, June 1994.

[40] K. Bruce and P. Wegner. An algebraic model of subtype and inheritance. In Advances in Database
Programming Languages. ACM Press, 1990.

[41] K. Kontogiannis. Toward program representation and program understanding using process algebras.
In CASCON'92: Proceedings of the 1992 CAS Conference, (Toronto, Ontario; November 9-12, 1992),
pages 299{317. IBM Canada Ltd., November 1992.

[42] L. M. Wills. Automated program recognition: A feasibility demonstration. Arti�cial Intelligence,
45(1{2), September 1990.

[43] W. Johnson and E. Soloway. PROUST. Byte, 10(4):179{190, April 1985.

[44] W. Kozaczynski, J. Ning, and A. Engberts. Program concept recognition and transformation. IEEE
Transactions on Software Engineering, 18(12):1065{1075, December 1992.

[45] S. Letovsky. Plan Analysis of Programs. PhD thesis, Department of Computer Science, Yale University,
December 1988.

29

[46] T. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-7(4):308{320,
September 1976.

[47] A. Albrecht. Measuring application development productivity. In Proceedings of the IBM Applications
Development Symposium, pages 83{92, October 1979.

[48] S. Henry, D. Kafura, and K. Harris. On the relationships among the three software metrics. In
Proceedings of the 1981 ACM Workshop/Symposium on Measurement and Evaluation of Software
Quality, March 1981.

[49] V. Basili and H. Rombach. Tailoring the software process to project goals and environments. In
ICSE '9: The Ninth International Conference on Software Engineering, pages 345{359, 1987.

[50] K. Kontogiannis, M. Bernstein, E. Merlo, and R. D. Mori. The development of a partial design
recovery environment for legacy systems. In the Proceedings of CASCON '93, (Toronto, Ontario;
October 25-28, 1993), pages 206{216, October 1993.

[51] A. Corazza, R. De Mori, R. Gretter, and G. Satta. Computation of probabilities for an island-driven
parser. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989.

[52] N. Kiesel, A. Sch�urr, and B. Westfechtel. GRAS: A graph-oriented database system for (software)
engineering applications. In CASE '93: The Sixth International Conference on Computer-Aided Soft-
ware Engineering, (Institute of Systems Science, National University of Singapore, Singapore; July
19-23, 1993), pages 272{286, July 1993. IEEE Computer Society Press (Order Number 3480-02).

[53] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing knowledge about
information systems. ACM Transactions on Information Systems, 8(4):325{362, October 1990.

[54] A. M. Carroll. ConversationBuilder: A Collaborative Erector Set. PhD thesis, University of Illinois,
1993.

30

The Software Re�nery is composed of three parts: DIALECT (the parsing system), REFINE (the object-

oriented database and programming language), and INTERVISTA (the user interface). The core of the

Software Re�nery is the REFINE speci�cation and query language, a multi-paradigm high-level program-

ming language. Its syntax is reminiscent of Lisp, but it also includes Prolog-like rules and support for

set manipulation. A critical feature of the Software Re�nery is its extensibility; it can be integrated into

various commercial application domains.

The foundation for software analysis is a tractable representation of the subject system that facilitates

its analysis. The DIALECT language model consists of a grammar used for parsing, and a domain model

used to store and reference parsed programs as abstract syntax trees (AST). The domain model de�nes a

hierarchy of objects representing the structure of a program. When parsed, programs are represented as an

unanotated AST and stored using the domain model's object hierarchy. The objects are then annotated

with the rules of the implementation language (such as linking each use of a variable to its declaration)

and are then ready for analysis.

Sidebar \The Software Re�nery"

31

The maintenance quality conformance hierarchy begins with low-level defects and climbs upward to

broader conceptual characteristics.

Functional defects are errors in a product's function. Usually detected in Product Test or Code Review

stages, they are often caused by the mistaken translation of a functional speci�cation to implemented

software. An example of a functional defect is a program expression that attempts to divide by zero.

When errors in software do not cause erroneous function but are internally incorrect, we refer to these

as non-functional defects. These cases of \working incorrect code" often become functional defects when

maintainers are making changes in the region of the non-functional defect. An example is a variable that

contains an undetermined value and is referenced, but does not cause the program to fail.

Non-portable defects are characteristics that limit the software developer's ability to migrate software

from one software environment to another. These environments may be new compilers, new hardware,

operating systems, and so on. A familiar example of non-portable software is one that depends on the byte

ordering used by the hardware or compiler.

Anti-maintenance defects are program characteristics that make use of unclear, undesirable, or side-

e�ect features in the implementation language. Less experienced maintainers who change the software in

regions where these features are present are more likely to inject further defects. Examples of this type are

common, such as inconsistent use of variable naming conventions, use of keywords as variable names, and

excessive use of GOTOs.

Part 1/2 of sidebar \The Conformance Hierarchy"

32

Minimizing non-portable and anti-maintenance defects means that the risks associated with software

maintenance are lowered and that software produced is more \�t for change." When assertions that

describe desirable software characteristics are then introduced and enforced, the software's quality is further

improved.

Pro-maintenance assertions state desirable attributes of the software that help prevent defects. Many

of these assertions are the opposite of anti-maintenance defects, such as the assertion \avoid the use of

GOTOs." Another example is the inclusion of pseudocode as part of the software's internal documentation.

Design assertions capture the positive aspects of the software's structure that maintain the design quality

of the code. For example, a design assertion may be \access to data structure COMMON DATA is controlled

by the access variable COMMON DATA LATCH, which must be set to 1 before accessing COMMON DATA and set

to 0 at all other times."

Architectural assertions are broad concepts that apply at a higher level of abstraction than design asser-

tions. They seek to maintain the architectural integrity of a software system. An example is \all access to

shared data structures must be controlled by a latch variable for that data structure." Often, architectural

assertions are generalizations of design assertions.

Part 2/2 of sidebar \The Conformance Hierarchy"

33

The follling module-level measures of SQL/DS were performed as part of the D-QMA process:

� the number of lines of code (LOC) per module excluding comments;

� the number of lines of comments per module;

� the number of changed lines of code for a particular release;

� the number of lines of code in each module including %INCLUDE structures;

� the software maturity index SMI(i) = LOC(i)�CSI(i)
LOC(i) ; (where LOC(i) is the number of lines of code

for module i and CSI(i) is the number of changed lines of code in module i);

� the number of declared variables used in module;

� the number of declared variables in structures that are super
uous;

� the number of executable statements; and

� McCabe's cyclomatic complexity V (G) = e � n + 2p; [46] (where V (G) is the cyclomatic number of
graph G, e is the number of edges, n is the number of nodes, and p is the number of unconnected
parts).

Figure 1: Module-level measurements of SQL/DS

34

Non−functional defects

Functional defects

Non−portable defects

Anti−maintenance defects

Pro−maintenance assertions

Design assertions

Architectural
 assertions

Figure 2: Maintenance quality conformance hierarchy

35

Figure 3: Repository schema

36

Figure 4: Environment architecture

37

Author's bios

Erich Buss IBM SWS Toronto Laboratory, 41/350/895/TOR, 895 Don Mills Road, North York, Ontario,

Canada M3C 1W3. (Electronic mail: buss@vnet.ibm.com). Mr. Buss is an Advisory Software Engineer-

ing Process Analyst in the Software Engineering Process Group of the IBM Software Solutions Toronto

Laboratory. He graduated with an M.Sc in Computer Science from the University of Western Ontario

in 1976. He joined IBM in the SQL/DS data group in 1988 and subsequently moved to the Centre for

Advanced Studies (CAS) in 1990. In CAS he was the IBM Principal Investigator for the Program Un-

derstanding Project for three years, where he worked on the practical application of reverse engineering

technology to real development problems. His current interests are in program analysis, defect �ltering

and object-oriented development.

Renato De Mori McGill University, School of Computer Science, 3480 University Street, Room 318,

Montr�eal, Qu�ebec, Canada H3A 2A7. (Electronic mail: demori@cs.mcgill.ca). Dr. De Mori received a

doctorate degree in Electronic Engineering from Politecnico di Torino, Torino, Italy, in 1967. He became

full professor in Italy in 1975. Since 1986, he has been Professor and the Director of the School of

Computer Science at McGill University. In 1991, he became associate of the Canadian Institute for

Advanced Research and project leader of the Institute for Robotics and Intelligent Systems, a Canadian

Center of Excellence. He is the author of many publications in the areas of computer systems, pattern

recognition, arti�cial intelligence, and connectionist models. His research interests are now stochastic

parsing techniques, automatic speech understanding, connectionist models, and reverse engineering. He is

a fellow of the IEEE-Computer Society, has been member of various committees in Canada, Europe, and

the United States, and is on the board of the following international journals: the IEEE Transactions on

Pattern Analysis and Machine Intelligence, Signal Processing, Speech Communication, Pattern Recognition

Letters, Computer Speech, and Language and Computational Intelligence.

W. Morven Gentleman Institute for Information Technology, National Research Council Canada, Mon-

treal Road, Building M-50, Ottawa, Ontario, Canada K1A 0R6. (Electronic mail:gentleman@iit.nrc.ca).

Dr. Gentleman is Head of the Software Engineering Laboratory in the Institute for Information Technology

at the National Research Council of Canada. Before going to NRC, he was for �fteen years professor of

computer science at the University of Waterloo, and before that member of technical sta� at Bell Telephone

Laboratories, Murray Hill. His Ph.D. is in Mathematics from Princeton in 1966. His research activities

include software engineering, computer architecture, robotics, computer algebra, and numerical analysis.

Dr. Gentleman has extensive experience building, supporting, and applying computer systems in research

and industrial environments. He has built and supported various commercial software products.

John Henshaw IBM SWS Toronto Laboratory, 41/350/895/TOR, 895 Don Mills Road, North York,

Ontario, Canada, M3C 1W3. (Electronic mail: henshaw@vnet.ibm.com). Mr. Henshaw is the manager of

the Software Engineering Process Group in the IBM Software Solutions Toronto Laboratory. Prior to his

current position, he was a sta� researcher on the Program Understanding Project at the IBM Centre for

38

Advanced Studies for about three years. John's interests are in the �elds of software engineering, database

performance and modelling, and programming languages and environments.

Howard Johnson Institute for Information Technology, National Research Council Canada, Montreal

Road, Building M-50, Ottawa, Ontario, Canada K1A 0R6. (Electronic mail: johnson@iit.nrc.ca). Dr.

Johnson is a Senior Research O�cer with the Software Engineering Laboratory of the National Research

Council. His current research interest is Software Re-engineering and Design Recovery using full-text

approaches. He received his B.Math. and M.Math. in Statistics from the University of Waterloo in 1973

and 1974 respectively. After working as a Survey Methodologist at Statistics Canada for four years, he

returned to the University of Waterloo and in 1983 completed a Ph.D. in Computer Science on applications

of �nite state transducers. Since then, he has been an assistant professor at the University of Waterloo

and later a manager of a software development team at Statistics Canada before joining NRC.

Kostas Kontogiannis McGill University, School of Computer Science, 3480 University Street, Room 318,

Montr�eal, Qu�ebec, Canada H3A 2A7. (Electronic mail: kostas@binkley.cs.mcgill.ca). Mr. Kontogiannis

received a B.Sc degree in Mathematics from University of Patras, Greece, and a M.Sc degree in Arti�cial

Intelligence from Katholieke Universiteit Leuven in Belgium. Currently, he is a Ph.D candidate at McGill

University, School of Computer Science. His thesis focuses on developing plan localization algorithms

and devising code similarity metrics. He is sponsored by IBM Centre for Advanced Studies and Natural

Sciences and Engineering Research Council of Canada. His interests include plan localization algorithms,

software metrics, arti�cial intelligence, and expert systems.

Ettore Merlo DGEGI, Departement de Genie Electrique, �Ecole Polytechnique, C.P. 6079, Succ. Centre

Ville, Montr�eal, Qu�ebec, Canada H3C 3A7. (Electronic mail: merlo@rgl.polymtl.ca). Dr. Merlo grad-

uated in Computer Science from the University of Turin (Italy) in 1983 and obtained the Ph.D. degree

in Computer Science from McGill University in 1989. From 1989 until 1993 he was the lead researcher

of the software engineering group at Computer Research Institute of Montreal (CRIM). He is currently

an Assistant Professor of Computer Engineering at �Ecole Polytechnique de Montr�eal where his research

interests include software reengineering, software analysis, and arti�cial intellligence. He is a member of

IEEE Computer Society.

Hausi A. M�uller Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC,

Canada V8W 3P6. (Electronic mail: hausi@csr.uvic.ca). Dr. M�uller is an Associate Professor of Com-

puter Science at the University of Victoria, where he has been since 1986. From 1979 to 1982 he worked

as a software engineer for Brown Boveri & Cie in Baden, Switzerland (now called ASEA Brown Boveri).

He received his Ph.D. in Computer Science from Rice University in 1986. In 1992/93 he was on sabbatical

at the IBM Centre for Advanced Studies in the Toronto Laboratory working with the program under-

standing group. His research interests include software engineering, software analysis, reverse engineering,

re-engineering, programming-in-the-large, software metrics, and computational geometry. He is currently

a Program Co-Chair of the International Conference on Software Maintenance|ICSM '94 in Victoria, a

39

Program Co-Chair of the International Workshop on Computer Aided Software Engineering|CASE '95

in Toronto, a member of the editorial board of IEEE Transactions on Software Engineering, and has been

a Co-Chair of a National Workshop on Software Engineering Education|NWSEE '93 in Toronto.

John Mylopoulos Department of Computer Science, University of Toronto, 6 King's College Road,

Toronto, Ontario, Canada M5S 1A4. (Electronic mail: jm@ai.utoronto.ca). Dr. Mylopoulus is Professor

of Computer Science at the University of Toronto. His research interests include knowledge representation

and conceptual modelling, covering languages, implementations and applications. His past research ac-

coplishments include requirements and design languages for information systems, the adoption of database

implementation techniques for large knowledge bases and the application of knowledge bases to software

repositories. He is currently leading a number of research projects and is principal investigator of both a

national and a provincial Centre of Excellence for Information Technology. Mylopoulos received his Ph.D.

degree from Princeton University in 1970. His publication list includes more than 120 refereed journal and

conference proceedings papers and three edited books. He is the recipient of the �rst ever Outstanding

Services Award given out by the Canadian AI Society (1992), also a co-recipient of a best paper award

given out by the 16th International Conference on Software Engineering.

Santanu Paul Software Systems Research Laboratory, Dept. of EECS, University of Michigan, Ann

Arbor, MI 48109. (Electronic mail: santanu@eecs.umich.edu). Mr. Paul received his B.Tech. degree in

Computer Science from the Indian Institute of Technology, Madras, in 1990 and an M.S. in Computer

Science and Engineering from the University of Michigan in 1992. At present, he is a Ph.D. candidate at

the University of Michigan, Ann Arbor. His thesis focuses on the design of algebraic languages to query

source code. His research interests include databases, reverse engineering, and multimedia systems. He was

the recipient of an IBM Canada Graduate Research Fellowship during 1991-93. He is a student member

of the IEEE Computer Society.

Atul Prakash Software Systems Research Laboratory, Dept. of EECS, University of Michigan, Ann

Arbor, MI 48109. (Electronic mail: aprakash@eecs.umich.edu). Dr. Prakash received his B.Tech. degree

in Electrical Engineering from the Indian Institute of Technology, New Delhi in 1982, and M.S. and Ph.D.

degrees in Computer Science from the University of California at Berkeley in 1984 and 1989, respectively.

Since 1989, he has been with the Department of Electrical Engineering and Computer Science at the

University of Michigan, Ann Arbor, where he is currently an Assistant Professor. His research interests

include toolkits and architectures for supporting computer-supported cooperative work, support for re-

engineering of software, and parallel simulation. His primary research focus at present is on providing

distributed systems and multimedia support for carrying out computer-supported cooperative work over

wide-area networks. He is a member of the ACM and the IEEE Computer Society.

Martin Stanley Department of Computer Science, University of Toronto, 6 King's College Road, Toronto,

Ontario, Canada M5S 1A4. (Electronic mail: mts@ai.utoronto.ca). Mr. Stanley received his M.S. degree

in Computer Science from the University of Toronto in 1987. His research interests include knowledge

40

representation and conceptual modeling, with particular application to the building of software repositories.

He is currently is a Research Associate in the Computer Science Department at the University of Toronto,

with primary responsibilty for the Reverse Engineering project at Toronto.

Scott R. Tilley Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC,

Canada V8W 3P6. (Electronic mail: stilley@csr.uvic.ca). Mr. Tilley is currently on leave from the IBM

Software Solutions Toronto Laboratory, and is a Ph.D. candidate in the Department of Computer Science

at the University of Victoria. His �rst book on home computing was published in 1993. His research

interests include end-user programming, hypertext, program understanding, reverse engineering, and user

interfaces. He is a member of the ACM and the IEEE.

Joel Troster IBM SWS Toronto Laboratory, 41/350/895/TOR, 895 Don Mills Road, North York, On-

tario, Canada M3C 1W3. (Electronic mail: jtroster@vnet.ibm.com). Mr. Troster is an Software Engineer-

ing Process Analyst in the Software Engineering Process Group of the IBM Software Solutions Toronto

Laboratory. Joel obtained his Bachelor of Applied Sciences in Electrical Engineering in 1972 and his

Masters of Applied Sciences in Biomedical Engineering in 1975, both from the University of Toronto.

Joel interests include software complexity metrics, technology propagation, software development process

benchmarking, enjoying family life, and growing orchids. He is a member of the IEEE Computer Society.

Kenny Wong Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC,

Canada V8W 3P6. (Electronic mail: kenw@csr.uvic.ca). Mr. Wong is a Ph.D. candidate in the Department

of Computer Science at the University of Victoria. His research interests include program understanding,

user interfaces, and software design. He is a member of the ACM, USENIX, and the Planetary Society.

END

41

