
A Revocable Backup System
(extended abstract)

Dan Boneh Richard J. Lipton�

dabo@cs.princeton.edu rjl@cs.princeton.edu

Department of Computer Science

Princeton University

Princeton, NJ 08544

Abstract

We present a system which enables a user to re-
move a �le from both the �le system and all the
backup tapes on which the �le is stored. The ability
to remove �les from all backup tapes is desirable in
many cases. Our system erases information from the
backup tape without actually writing on the tape.
This is achieved by applying cryptography in a new
way: a block cipher is used to enable the system
to \forget" information rather than protect it. Our
system is easy to install and is transparent to the
end user. Further, it introduces no slowdown in sys-
tem performance and little slowdown in the backup
procedure.

1 Introduction

On many systems the remove-�le command misleads
the user into thinking that his �le has been perma-
nently removed. Usually the �le is still available on
a backup tape. This is an important feature used
to protect against accidental �le erasure or system
crashes. However, it has the draw back that the user
is unable to completely remove his �les. In many sce-
narios it is desirable on the part of the user to erase
all copies of a certain �le. This is frequently the case
with personal mail messages. Similarly, a user may
wish to remove the history and cache �les of his web
browser. Other examples include a patient remov-
ing his medical �les from the hospital's system upon
checkout and �nancial data that should be erased
after a short period of time. Our goal is to make
it so that the sensitive data becomes inaccessible to
anyone (including the data's owner).

A naive solution is to erase the data from the �le

�Supported in part by NSF CCR{9304718.

system. Then mount the backup tapes one by one
and erase the sensitive data from them. This method
is impractical for several reasons. First it inconve-
niences the user. To implement this scheme the user
must call a computer operator whenever such an
erasure is to take place. Furthermore, this method
is quite complicated considering the backup policy
which many institutes employ. Usually a backup of
the entire �le system is done once every time period,
e.g. every month. The backup tape is then stored
forever in a \cellar" or sometimes o� site. This
backup policy enables users to restore their entire
directory structure to any point in the past. Clearly
the naive approach is doomed to fail whenever this
backup policy is used. The computer operator has
to remove the data from many backup tapes. This
procedure is painstaking, but is also insecure since
the operator might \forget" to remove the data from
one of the old backup tapes.

We propose a system which avoids the problems
mentioned above. Our system will enable the user
to remove a �le from the �le system and all backup
tapes without ever mounting a single tape. At �rst
this seems impossible: it is not possible to remove
data from a tape without physically erasing the tape.
Fortunately, cryptography enables us to do just that.
The basic idea can be described as follows: when a
�le is backed up to tape it is �rst encrypted using
a randomly generated key. The encrypted version
of the �le is the one written to tape. When the
user wishes to remove the �le from the backup tape
he instructs the system to \forget" the key used to
encrypt the �le. The act of forgetting the encryp-
tion key renders the data on the tape useless. No
one, including the �le owner, can ever access the �le
again. In e�ect, the �le has been erased from the
tape. Notice that the encrypt-before-backup is com-
pletely transparent to the user. It is crucial that no
one but the operating system know which key was



used to encrypt the �le during backup. This en-
sures that when the operating system is instructed
to forget the encryption key, the tape data becomes
unreadable.

The rest of the paper is devoted to describing an
implementation of the above idea. The tricky part
of the implementation is managing the encryption
keys. Clearly the encryption keys have to be backed
up as well. We have devised several methods for
backuping the encryption keys while still preserving
the fundamental properties described above.

It is interesting to compare our system to the cryp-
tographic �le system implemented by Blaze [2]. In a
cryptographic �le system the �les are always stored
in an encrypted form. Whenever a �le needs to be
accessed it is decrypted on the 
y using the owner's
key. The backup tape is a direct dump of the �le
system, i.e. the tape contains the encrypted version
of every �le. Clearly the owner of the �le is the only
person who has access to the backed up version of
the �le. This does not guarantee that his backed up
�les will not be accessed by an unauthorized party.
The owner might be forced to reveal his key, e.g. due
to a court order. Thus, the cryptographic �le system
does not conform to our requirements: it does not
guarantee that the backup tape data will not be ac-
cessed. On the other hand, in our scheme the backed
up data becomes inaccessible to everyone once it is
\erased" from the tape. In addition it is important
to point out that our system is very easy to install.
Only the backup system has to be modi�ed. The
cryptographic �le system requires far more exten-
sive modi�cations.

2 Key management

In this section we give a detailed description of our
backup system. In our system the user can specify
a collection of �les that are to be encrypted during
backup. Each such �le has an encryption key asso-
ciated with it. The encryption key has a life time
which is speci�ed by the user. When the key expires
the system generates a new key for the �le and adds
the expired key to a list of old keys. The maximum
number of expired keys that the system remembers
is a parameter speci�ed by the user. When the list
of keys is at its maximal size the oldest expired key
in the list is erased to make room for the new key.

The above mechanism is very 
exible. We give
some examples to illustrate its use. Suppose a user
is preparing a document and he wants to make sure
that old and invalid copies of his draft are inacces-

sible to anyone. He could set the key-life for that
document to be one month and instruct the system
to store 12 expired keys for this document. This
means that a new key is generated once a month
causing a year old key to be erased. The result is
that once a month all backup copies older than a
year are revoked. To revoke all copies that are more
than 6 month old, the user can manually instruct the
system to remove all keys that expired more than 6
month ago. Of course the user can decide to delete
the �le altogether by instructing the system to re-
move all keys (including the current key) for the �le.
In case of disk crash the most recent version of the
document can be restored from tape using the cur-
rent key.

More generally, institutions may wish to adopt
backup revocation policies. For instance, to prevent
law suits regarding old data, an institution may de-
cide to revoke all backup tapes that are more than 3
years old. This is done by instructing the system to
delete all keys that expired more than 3 years ago.
We point out once more that the revocation process
has the e�ect of removing �les from all old backup
tapes without ever mounting a single tape.

The most important component of our system is
the key management. All encryption keys are stored
in one �le which we refer to as the key-�le. This �le
should be protected meaning that only privileged
processes should be allowed to read it. The key-�le
contains one record per each �le that has ever been
encrypted during back up. There are two types of
entries in the key-�le: directory and �le entries. The
structure of a single entry in the �le is described in
Figure 1. The �elds in a �le entry contain the �le-
name, the maximum number of expired keys that the
system should store, the life time of a single key and
a list of keys. The list of keys includes the current
key (as the �rst entry in the list) followed by the
expired keys ordered chronologically. When a new
key is generated the keys in the list are shifted and
the last (oldest) entry is lost.

The �elds in a directory entry specify the direc-
tory path and indicate whether all �les in the direc-
tory and subdirectories should be encrypted during
backup. When the cont 
ag is turned on the di-
rectory is scanned and all new �les in it are added
to the key-�le. The num keys and key life �elds
for these new �le entries are set to the values taken
from the corresponding �elds in the directory entry.
A directory entry must always precede a �le entry
in order to specify the path to the �le.

The key-�le is permanently stored on the �le sys-
tem. This �le is extremely important since without



it the backup tapes are useless. For this reason the
key-�le must be backed up as well. However, the �le
can not be written to tape as is. If it were written to
tape the system would not be able to permanently
erase keys from the key-�le. This would defeat the
purpose of our system. Our solution is to generate
a new master-key during every backup. The key-�le
will be written to tape after it has been encrypted
using this new master-key. The master-key itself is
not written to tape. Notice that in case of a disk
crash, the master-key is crucial for recovering the
key-�le. Without the master-key the key-�le can
not be recovered and as a result all backup tapes us-
ing our system become useless. For this reason the
master-key must be handled with care. We discuss
methods for storing the master-key in Section 2.1.

To make sure that the key-�le is backed up to tape
we treat it as any other �le which is to be encrypted
during backup. This means that the key-�le is stored
on the �le system for which it used. Further, the
key-�le contains an entry which corresponds to the
key-�le itself. The �le-name �eld in this entry con-
tains the key-�le name and the key �eld contains the
master-key. Hence, the master-key is actually stored
in the key-�le and is used to encrypt the key-�le dur-
ing backup. To make sure that a new master-key is
generated during every backup the key-life �eld is
set to zero. Similarly, to make sure that only the
current master-key is stored, the num-keys �eld is
set to 1. This has the e�ect of revoking the old copy
of the key-�le during every backup.

We can now describe the details of the backup and
restore operations. The schematics of the backup
procedure are described in Figure 2. We brie
y
sketch these steps here.

Initialize When the backup process is initialized
the entire key-�le is loaded into memory. Then
all directories in the key-�le which have the
cont flag turned on are scanned and their con-
tents is added to the memory image of the key
�le. The touch key file() routine will update
the last modi�cation date of the key-�le. This
guarantees that the key-�le is written to tape
even during an incremental backup1.

New keys Next, new keys are generated for all �les
who need them. A new key is generated for all
�les for which date key issued + key life <

current date. The date key issued �eld is
updated for each new generated key.

Write all �les to tape Loop on all �les in the �le

1An incremental backup of a certain level only backups

�les that were modi�ed since the last backup of that level.

system. Each �le is dumped to tape, after en-
cryption if necessary. The old master-key is
erased from the key-�le just before the key-�le
itself is dumped to tape. This ensures that the
old master-key is not written to tape when the
key-�le is backed up. Had this not been done,
old master-keys could be read from the backup
tape. This would be disastrous for our system.

Terminate Finally, write the key-�le back to disk
and store the new master-key using the methods
described in Section 2.1.

The modi�cations to the restore operation are
even simpler. During restore we use the key-�le to
�nd the appropriate key for each �le. The system
�rst reads the date written on the backup tape. This
date is the date on which the backup was done. For
each �le to be restored the system retrieves the key
used to encrypt the �le on the backup date. This
key is then used to decrypt the �le when it is read
from the tape.

In case of a disk crash the �rst thing that has to
be recovered is the key-�le. This is done by creating
a temporary key-�le containing a single entry. This
entry contains the key-�le as its �le name and the
master-key as the key. The operator can now use re-
store to recover and decrypt the most recent backed
up version of the key-�le. Now a full restore of the
�le system is possible.

2.1 Master key management

As was mentioned above, the master-key is a crucial
component of the system. Without it, all the backup
tapes are useless. We �rst describe the properties
that a master-key storage system must satisfy. Ob-
serve that the master-key can not be written to tape
in the clear. If it was, then the key-�le on the tape
would be accessible and with it all the �les on the
tape. This will again defeat the purpose of our sys-
tem. Furthermore, wherever we choose to store the
master-keys we must make sure that only the most
recent key is accessible. As before, an old master-
key will enable access to the contents of old tapes.
Hence, any system which stores master keys must
\forget" all but the most recent one.

We propose two solutions which can be used in
conjunction with one another. The �rst one is the
simplest; at the end of each backup the computer
operator is asked to write down (on paper or on a

oppy disk) the current master-key. He then de-
stroys his copy of the previous master-key.

The second method involves an internet server



union keyfile_entry {

struct file_entry { /* Structure of file entry */

char *filename;

char *keys[]; /* Keys used to encrypt file */

int num_keys; /* Number of keys to be saved */

time_t key_life; /* Life time of a single key */

time_t date_key_issued; /* Date current encryption key */

/* for file was issued */

time_t last_backup_date; /* Date file was last backed up */

} file

struct dir_entry { /* Structure of directory entry */

char *dirpath; /* Directory path */

char cont_flag; /* Indicate if files in dir */

/* should be added to key-file */

int num_keys; /* Default num keys to be saved */

time_t key_life; /* Default life time of a key */

} dir;

}

Figure 1: key-�le structure

load_key_file();

scan_sub_dir();

generate_new_keys();

touch_key_file(); /* key-file will be stored */

/* during incremental backup */

Loop on all files in file-system {

file_entry = get_key_file_entry(current_file);

if (file_entry != NULL) { /* If file has an entry in */

key = get_key(file_entry); /* key-file then get */

else /* encryption key. Otherwise, */

key = NULL; /* don't encrypt file. */

if (is_key_file(current_file)) /* Erase current master-key */

erase_master_key_from_disk(); /* before writing key-file. */

Loop on blocks in file { /* Write file blocks to tape */

/* encrypting them if */

if (key != NULL) /* necessary. */

encrypt(current_block, key);

dump(current_block); /* Write block to tape. */

}

if (file_entry != NULL) /* Update backup date field */

file_entry->last_backup_date = current_date;

}

write_key_file(); /* Write key-file back to disk. */

store_master_key(); /* Take extra care to store the new master key. */

Figure 2: Backup operation



which is used for master-key storage. Suppose a site
performs daily incremental backups. This is com-
mon in many sites. The master-key-storage-server
generates a public/private key pair on a daily basis.
Every day all sites performing backups encrypt their
daily master-key using the server's current public-
key and write the resulting string on their backup
tape. In case of a disk crash a site can recover its
daily master-key by performing the following steps:
the local computer operator �rst reads the encryp-
tion of the master-key written on his tape. He
then sends the encrypted master-key to the storage-
server. The storage-server, after authenticating the
identity of the sender, decrypts the master-key and
sends the result back to the computer operator. The
operator can now restore his �le system. The same
public/private key pair can be used by all sites in the
world which use daily (incremental) backups. Hence,
the master-key-storage-server simply provides the
service of generating a public/private key pair on
a daily basis.

The above description is not much di�erent than a
standard key escrow system. The new twist is that
to make sure that old master-keys are inaccessible
the master-key-storage-server must erase all but its
most recent private-key. Otherwise old master-keys
can be recovered from old tapes. These master-keys
then enable anyone to read the contents of old tapes.
Since the storage-server is providing a commercial
service it is in its best interest to be trustworthy
and indeed \forget" all old private keys. To increase
the security and reliability of the scheme one can
use k out of l secret sharing techniques [4]. This
means that a given site will employ l storage-servers
and exactly k of them are required to recover the
daily master-key. Now an old master-key can not
be recovered even if k � 1 of the storage-severs are
untrustworthy. Similarly, even if l�k storage-servers
crash and lose their current private-key a site can
still recover its current master-key. The parameters
l and k can be �ne tuned to the site's needs.

For increased reliability some sites may wish to
be able to access a small number (e.g. three) of
old master-keys. For instance, if the most recent
backup tape is lost, the previous one can be used if
the corresponding master-key is still accessible. As
a result some sites may want the storage-server to
save a small number of its most recent private-keys.
To accommodate this need the storage server can
o�er k (where k < 10) types of public/private key
pairs. For type 1 only the most recent private key
is available. For type 2 the two most recent private
keys are available, etc. This arrangement requires
the storage-server to generate k new public/private

key pairs daily. A site who wishes to have access to
its three most recent master-keys may use a type 3
public key published by the storage server.

3 The user interface

Two utilities enable a user to interact with our sys-
tem. The �rst utility enables a user to declare that a
�le or directory has the revocable-backup attribute.
The second enables a user to revoke backup copies
of his �les. These two utilities comprise the most
basic interface. Naturally utilities for obtaining the
status of a given �le are also provided.

mkrvcbl The make-revocable command will add
a �le (or directory) to the key-�le. The user can
specify the key-life and num-keys parameters on the
command line. The default values for these parame-
ters is in�nity for the key-life and one for num-keys.
This means that there is a single key associated with
the �le throughout the life of the �le. This enables
the user to revoke all backup copies of the �le when
he wishes to completely remove the �le from the sys-
tem. Executing mkrvcbl dir-name will add the di-
rectory to the key-�le with the cont flag turned on.
During backup all �les in the directory and its sub-
directories will be added to the key-�le. Only the
owner of the �le (or directory) is permitted to apply
mkrvcbl to the �le (or directory).

rvkbck The revoke-backup command is activated
as rvkbck file-name [date]. Only the �le owner
is permitted to apply rvkbck to a �le. The command
removes all keys that expired before date from the
�le's entry in the key-�le. If the date parameter is
left blank the entire �le's record is removed from the
key-�le. In doing so, all keys used to decrypt the �le
from the backup tapes are lost. As a result, the �le
can no longer be restored from the backup tapes.
Unfortunately this is not quite true. Recall that the
key-�le itself is also backed up on tape. Hence, the
removed entry can still be found in the backup ver-
sion of the key-�le. However, at the next backup
the master-key will change making the old backed
up version of the key-�le useless. Therefore, the en-
try is permanently removed from the key-�le after
the next backup operation. For example, in a sys-
tem where an incremental backup takes place daily
the rvkbck file-name command will permanently
remove the �le within 24 hours of the time the com-
mand is issued.

The two utilities described above enable a user to



manipulate the key-�le according to his needs. By
de�nition, the key-�le contains an entry for every �le
that has ever been encrypted during backup (and
has not been revoked). This could make the key-�le
large. Once every time period, e.g. once a year, the
computer operator may wish to prune the key-�le by
removing all entries which correspond to �les which
are no longer present on the �le system. This is done
using the prune-key-�le utility.

prunekey�le The command prunekeyfile date

will remove all entries in the key-�le which corre-
spond to �les which no longer exist on the �le system
and whose last backup date is prior to `date'. The
utility will write the removed entries to a �le called
key-file.`date'. This �le will be backed up to
tape as a regular �le (without encryption) and then
removed from the �le system. Notice that by doing
so the user is no longer able to revoke the backed up
copy of the �les corresponding to the removed en-
tries. This is �ne since these �les are old �les which
are no longer present on the �le system.

4 Summary and future work

We described a system which enables a user to per-
manently remove a �le from the �le system and all
backup tapes. The ability to revoke backup copies
of �les is important and may be of interest to many
institutions. Our system is very easy to install and
provides a simple user interface.

Our scheme applies cryptography in a new way.
Here cryptography is used to erase information
rather than protect it. Since the backed up �les
are stored for extended periods of time it is desir-
able that the block cipher used to encrypt the �les
be extremely secure. Hence we suggest using block
ciphers with longer keys than are usually used. For
instance one could apply triple DES twice to obtain
a 224 bit key.

To simplify the installation of our system we chose
not to modify the existing �le system. Our imple-
mentation has the drawback that the backup key in-
formation does not become a part of the �le. Thus,
when the �le is moved or copied the resulting �le will
not be securely backed up. A full-scale implementa-
tion of our scheme could embed a new �le attribute
in the �le header. This attribute would indicate that
the �le is to be securely backed up. This way when
the �le is moved or copied, the new �le will have the
same attributes.

The size of the key-�le can be reduced by incor-

porating the ideas used in Lamport's one-time pass-
word scheme [3, pp. 230{232]. We thank Steven
Bellovin [1] for pointing this out. Let f be a one
way permutation. The idea is to only store the old-
est accessible key in the key-�le. The more recent
keys can be obtained by repeatedly applying f to
this key. When the oldest key k expires it is sim-
ply replaced by f(k). Since given f(k) it is hard to
compute k we may say that k has been \forgotten".
For e�ciency it is desirable to store both the oldest
and most recent keys in the key-�le. Using this ap-
proach we can make do with storing only two keys
per key-�le entry.

As a �nal note we point out that standard UNIX
backup utilities, e.g. dump and tar, do not enable
a user to specify a collection of �les that should not
be backed up. There are several types of �les for
which this option is important due to privacy con-
siderations. The typical example is the history and
cache �les of the user's web browser. On the one
hand, the information is usually not important to
the user. On the other hand the information might
be private and the user may not want extra copies
of it 
oating around. We suggest that this feature
be incorporated into commercial backup systems.

Acknowledgments

We thank Jim Roberts and Matt Norcross for a very
helpful explanation of our local backup system.

References

[1] S. Bellovin, private communications.

[2] M. Blaze, \A Cryptographic File System for
Unix",
available at http://www.cert-kr.or.kr/
doc/Crypto-File-System.ps.asc.html

[3] C. Kaufman, R. Perlman, M. Speciner, \Net-
work Security", Prentice Hall, 1995.

[4] A. Shamir, \How to share a secret", CACM,
Vol. 22, Nov. 1979, pp. 612{613.


