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Abstract
This document is a summary of the theory and techniques used to

represent functions as power series.

1 Representation of Functions as Power Series
(8.6)

1.1 Theory

In this section, we develop several techniques to help us represent a function as
a power series. More precisely, given a function f (x), we will try to �nd a power

series
1X
n=0

cn (x� a)n such that f (x) =
1X
n=0

cn (x� a)n. Part of the work will

involve �nding the values of x for which this is valid. Part of the reason for doing
this is that a power series looks like a polynomial (except that it has in�nitely
many terms). Polynomials are among the easiest functions to work with. They
are easy to di¤erentiate, integrate, ... So, if f is a complicated function, replacing
it with a power series amounts to replacing it with a polynomial. Therefore,
working with f becomes easier. There are some technical di¢ culties to resolve,
we will address those as we develop the technique.
First, we will look at techniques which will allow us to obtain a series rep-

resentation by using known series representations. The techniques involved are
substitution, di¤erentiation and integration. Then, we will learn a technique
which will allow us to �nd a series representation for a given function f directly,
without having to use known series.
We now look at each technique (substitution, di¤erentiation and integration)

in details, using examples. At this point, we only know the following series
representation:

1

1� x = 1 + x+ x2 + x3 + ::: in (�1; 1)

=
1X
n=0

xn
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When �nding the power series of a function, you must �nd both the series
representation and when this representation is valid (its domain).

1.2 Substitution

We derive the series for a given function using another function for which we
already have a power series representation. Then, we do the following:

1. Figure out which substitution can be applied to transform the function
for which we know the series representation to the function for which we
want a series representation.

2. Apply the same substitution to the known series. This will give us the
series representation we wanted.

3. The domain of the new function is obtained by applying the same substi-
tution to the domain of the known series.

Example 1 Find a power series representation for f (x) =
1

1 + x
and its do-

main.
We use the representation of

1

1� x , replacing x by �x. We obtain:

1

1 + x
=

1

1� (�x)
= 1 + (�x) + (�x)2 + (�x)3 + :::
= 1� x+ x2 � x3 + :::

=

1X
n=0

(�1)n xn

The series representation for
1

1� x was valid if jxj < 1. If we apply the same
substitution, we see that this representation is valid if j�xj < 1 or jxj < 1. In
other words, the interval of convergence is also (�1; 1).

Example 2 Find a power series representation for f (x) =
1

1� x2 .

Proceeding as above and remembering that
1

1� x =
1X
n=0

xn, we have:

1

1� x2 =
1X
n=0

�
x2
�n

=
1X
n=0

x2n

= 1 + x2 + x4 + :::
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This is a geometric series which converges when
��x2�� < 1 that is when x2 < 1

or �1 < x < 1.

Example 3 Find a power series representation for
1

2 + x
and �nd its domain.

First, we rewrite
1

2 + x
=
1

2

1

1 +
x

2

. Now, we �nd a power series representation

for
1

1 +
x

2

, then we will multiply it by
1

2
.

1

1 +
x

2

can be obtained from
1

1� x by

replacing x by �x
2
. Since

1

1� x =
1X
n=0

xn, we have:

1

1 +
x

2

=
1X
n=0

�
�x
2

�n
=

1X
n=0

(�1)n
�x
2

�n
Therefore,

1

2 + x
=
1

2

1X
n=0

(�1)n
�x
2

�n
=

1X
n=0

(�1)n xn

2n+1

1

1� x converges when jxj < 1, so this series converges when
����x
2

��� < 1 =) jxj <
2. So, the interval of convergence is (�2; 2), the radius of convergence is 2.

Remark 4 In the �rst of these two examples, we applied the substitution to the

expanded form of
1

1� x . In the second, we applied it to the compact form. You
can do it either way, it is simply a matter of choice.

Example 5 Suppose that you are given that a series repersentation for ex is

ex =
1X
n=0

xn

n!
in (�1;1). What is a series representation for ex2 and what is

its domain?
We go from ex to ex

2

using the substitution x! x2. Thus

ex
2

=

1X
n=0

�
x2
�n
n!

=
1X
n=0

x2n

n!

also valid in (�1;1)
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1.3 Di¤erentiation and Integration

The driving force behind the integration and di¤erentiation techniques is the
theorem below which we state without proof.

Theorem 6 If the power series
1X
n=0

cn (x� a)n has a radius of convergence

R > 0 then the function de�ned by f (x) =
1X
n=0

cn (x� a)n = c0 + c1 (x� a) +

c2 (x� a)2 + ::: is di¤erentiable (hence) continuous on (a�R; a+R) and

1. f
0
(x) = c1 + 2c2 (x� a) + 3c3 (x� a)2 + ::: In other words, the series can

be di¤erentiated term by term.

2.
R
f (x) dx = C + c0 (x� a)+ c1

(x� a)2

2
+ c2

(x� a)3

3
+ ::: In other words,

the series can be integrated term by term.

3. Note that whether we di¤erentiate or integrate, the radius of convergence
is preserved. However, convergence at the endpoints must be investigated
every time.

Remark 7 This theorem simply says that the sum rule for derivatives and in-
tegrals also applies to power series. Remember that a power series is a sum, but
it is an in�nite sums. So, in general, the results we know for �nite sums do
not apply to in�nite sums. The theorem above says that it does in the case of
in�nite series.

Remark 8 The formula in part 1 of the theorem is obtained simply by di¤er-
entiating the series term by term. Since

f (x) = c0 + c1 (x� a) + c2 (x� a)2 + :::

then

f 0 (x) =
�
c0 + c1 (x� a) + c2 (x� a)2 + :::

�0
= (c0)

0
+ (c1 (x� a))0 +

�
c2 (x� a)2

�0
+ :::

= 0 + c1 + 2c2 (x� a) + 3c3 (x� a)2 + ::: (1)

Alternatively, one can also di¤erentiate the general formula. Since

f (x) =
1X
n=0

cn (x� a)n
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then

f 0 (x) =

 1X
n=0

cn (x� a)n
!0

=
1X
n=0

(cn (x� a)n)
0 by the theorem

=
1X
n=0

ncn (x� a)n�1

The �rst term of this series (when n = 0) is 0, thus we can start summation at
n = 1. Hence, we have

f 0 (x) =

1X
n=1

ncn (x� a)n�1 (2)

The reader should check that formulas 1 and 2 are identical.

Remark 9 The formula in part 2 of the theorem is obtained by integrating term
by term. It can also be obtained by integrating the general formula. Since

f (x) =
1X
n=0

cn (x� a)n

then Z
f (x) dx =

Z  1X
n=0

cn (x� a)n
!
dx

=

1X
n=0

Z
(cn (x� a)n) dx by the theorem

Since an antiderivative of cn (x� a)n is C +
cn (x� a)n+1

n+ 1
, we have

Z
f (x) dx = C +

1X
n=0

cn (x� a)n+1

n+ 1

If we expand this, we getZ
f (x) dx = C + c0 (x� a) + c1

(x� a)2

2
+ c2

(x� a)3

3
+ :::

Which is the formula which appears in the theorem.
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Example 10 Given that a power series representation for f (x) is

f (x) = 1 + x+ x2 + x3 + :::

=
1X
n=0

xn

�nd a power series representation for f 0 (x) and
R
f (x) dx.

� First, we �nd f 0 (x). From the theorem, we know it is enough to di¤eren-
tiate term by term. Thus,

f 0 (x) = 0 + 1 + 2x+ 3x2 + :::

= 1 + 2x+ 3x2 + :::

Note that we can also obtain the same result by using the general formula.
In this case,

f (x) =
1X
n=0

xn

Thus

f 0 (x) =
1X
n=0

(xn)
0

=

1X
n=0

nxn�1

=
1X
n=1

nxn�1

Which gives us the same answer.

� Next, we �nd
R
f (x) dx. From the theorem, it is enough to integrate term

by term. Thus since f (x) = 1 + x+ x2 + x3 + :::, we have:Z
f (x) dx = C + x+

x2

2
+
x3

3
+
x4

4
+ :::

Alternatively, we can work from the general formula. Since f (x) =
1X
n=0

xn,

we have Z
f (x) dx =

1X
n=0

Z
(xn) dx

= C +
1X
n=0

xn+1

n+ 1

Which is the same formula.
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1.3.1 Di¤erentiation

This time, we �nd the series representation of a given series by di¤erentiating
the power series of a known function. More precisely, if f 0 (x) = g (x), and if
we have a series representation for f and need one for g, we simply di¤erentiate
the series representation of f . The theorem above tells us that the radius of
convergence will be the same. However, we will have to check the endpoints.

Example 11 Find a series representation for
1

(1� x)2
, �nd the interval of

convergence.

We begin by noting that
�

1

1� x

�0
=

1

(1� x)2
. Since

1

1� x = 1+x+x
2+x3+::::,

we have:
1

(1� x)2
=

�
1 + x+ x2 + x3 + :::

�0
= 1 + 2x+ 3x2 + 4x3 + ::::

=

1X
n=1

nxn�1

The radius of convergence is still 1. Since
1

1� x converges for x in (�1; 1), we

know that
1

(1� x)2
will also converge in (�1; 1). It might also converge at the

endpoints, so we need to check them. Do it as an exercise.

Remark 12 If you prefer to work from the compact form of the series, it can
be done.

1

1� x =
1X
n=0

xn

1

(1� x)2
=

 1X
n=0

xn

!0

=
1X
n=0

(xn)
0

=
1X
n=1

nxn�1

However, you have to be careful with the starting value of n.

Example 13 Suppose you know that a series representation for sinx is

sinx = x� x
3

3!
+
x5

5!
� x

7

7!
+ :::

=
1X
n=0

(�1)n x2n+1

(2n+ 1)!
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Find a power series representation for cosx.

cosx = (sinx)
0

=

�
x� x

3

3!
+
x5

5!
� x

7

7!
+ :::

�0
= 1� x

2

2!
+
x4

4!
� x

6

6!
+ :::

=
1X
n=0

(�1)n x2n

(2n)!

Example 14 Find a power series representation for 2xex
2

given that a series

repersentation for ex is ex =
1X
n=0

xn

n!
in (�1;1).

We can do this problem two ways.

Method 1 Using substitution, we can �nd a power series representation for
ex

2

, then multiply what we �nd by 2x. The �rst part was done earlier,

and we found that ex
2

=
1X
n=0

x2n

n!
on (�1;1). Thus,

2xex
2

=
1X
n=0

2xx2n

n!

=

1X
n=0

2x2n+1

n!

also in (�1;1).

Method 2 We note that 2xex
2

=
�
ex

2
�0
. So, using substitution, we can �nd

a power series representation for ex
2

, then di¤erentiate it to get a series
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representation for 2xex
2

.

2xex
2

=
�
ex

2
�0

=

 1X
n=0

x2n

n!

!0

=
1X
n=0

2nx2n�1

n!

=
1X
n=1

2nx2n�1

n!
when n = 0,

2nx2n�1

n!
= 0

=
1X
n=1

2x2n�1

(n� 1)!

=

1X
n=0

2x2n+1

n!

So, either way, we �nd the same answer.

1.3.2 Integration

This time we �nd the power series representation of a function by integrating
the power series representation of a known function. If g (x) =

R
f (x) dx and we

know a power series representation for f (x), we can get a series representation
for g (x) by integrating the series representation of f .

Example 15 Find a power series representation for ln (1� x).
We know that ln (1� x) = �

R dx

1� x . By our earlier work, we found that

1

1� x = 1 + x+ x
2 + x3 + ::: in (�1; 1), so

� ln (1� x) = C + x+ x
2

2
+
x3

3
+ :::

We also know that ln 1 = 0, From the above equation, we get that C = 0 by
letting x = 0. Therefore

� ln (1� x) = x+
x2

2
+
x3

3
+ :::

=
1X
n=0

xn+1

n+ 1

Therefore,

ln (1� x) = �
1X
n=0

xn+1

n+ 1
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Since the original series converges in (�1; 1), this one will also converge there.
The end points should be checked, we leave it as an exercise.

Example 16 Find a power series rpresentation for tan�1 x.

We use the fact that tan�1 x =
R dx

1 + x2
. First, since

1

1� x = 1+x+x
2+x3+:::,

se see that
1

1 + x2
= 1� x2 + x4 � x6 + ::: and therefore

tan�1 x = C + x� x
3

3
+
x5

5
� x

7

7
+ :::

Using the fact that tan�1 0 = 0 gives us C = 0. Thus

tan�1 x = x� x
3

3
+
x5

5
� x

7

7
+ :::

1.4 Things to Know

� Be able to �nd the series representation of a function by substitution,
integration or di¤erentiation.

� Problems assigned: # 1, 3, 5, 7, 11, 13, 21, 35 on pages 604, 605

2 Taylor and Maclaurin�s Series (8.7)

2.1 Introduction

The previous section showed us how to �nd the series representation of some
functions by using the series representation of known functions. The methods
we studied are limited since they require us to relate the function to which
we want a series representation with one for which we already know a series
representation. In this section, we develop a more direct approach. When
dealing with functions and their power series representation, there are three
fundamental questions one has to answer:

1. Does a given function have a power series representation?

2. If it does, how do we �nd it?

3. What is the domain in other words, for which values of x is the represen-
tation valid?

Question 1 is more theoretical, we won�t address it. We will concentrate on
questions 2 and 3.
Assuming f has a power series representation that is f (x) = c0+c1 (x� a)+

c2 (x� a)2 + :::, we want to �nd what the power series representation is, that
is we need to �nd the coe¢ cients c0; c1; c2; :::. It turns out that it is not very
di¢ cult. The technique used is worth remembering. We �rst �nd c0. Having
found c0 we next �nd c1. Then, we �nd c2 and so on.
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� Finding c0. Since

f (x) = c0 + c1 (x� a) + c2 (x� a)2 + c3 (x� a)3 + c4 (x� a)4 + ::: (3)

it follows that

f (a) = c0 + c1 (0) + c2 (0)
2
+ :::

= c0

� Finding c1. Di¤erentiating equation 3 gives us

f 0 (x) = c1 + 2c2 (x� a) + 3c3 (x� a)2 + 4c4 (x� a)3 + :::

Therefore,
f 0 (a) = c1

� Finding c2. We proceed the same way. First, we compute f 00 (x), then
f 00 (a).

f 00 (x) = 2c2 + (2) (3) c3 (x� a) + (3) (4) c4 (x� a)2 + :::

Therefore
f 00 (a) = 2c2

or

c2 =
f 00 (a)

2

� In general. Continuing this way, we can see that

cn =
f (n) (a)

n!

2.2 De�nitions and Theorems

Theorem 17 If the function f has a power series representation, that is if

f (x) =

1X
n=0

cn (x� a)n = c0 + c1 (x� a) + c2 (x� a)2 + ::: for jx� aj < R then

its coe¢ cients are given by:

cn =
f (n) (a)

n!

In other words

f (x) = f (a) + f 0 (a) (x� a) + f 00 (a) (x� a)
2

2
+ f 000 (a)

(x� a)3

3!
+ :::

De�nition 18 1. The series in the previous theorem

 1X
n=0

f (n) (a)

n!
(x� a)n

!
is called the Taylor series of the function f at a.
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2. The nth partial sum is called the nth order Taylor polynomial It is denoted
Tn: So,

Tn (x) =
nX
i=0

f (i) (a)

i!
(x� a)i

3. In the special case a = 0, the series is called a Maclaurin�s Series. So, a

Maclaurin�s series is of the form
1X
n=0

f (n) (0)

n!
xn and the Maclaurin�s series

for a function f is given by

f (x) =
1X
n=0

f (n) (0)

n!
xn

= f (0) + f 0 (0)x+ f 00 (0)
x2

2
+ f 000 (0)

x3

3!
+ :::

2.3 Examples

We now look how to �nd the Taylor and Maclaurin�s series of some functions.

Example 19 Find the Maclaurin�s series for f (x) = ex, �nd its domain.

The series will be of the form
1X
n=0

f (n) (0)

n!
xn, we simply need to �nd the coef-

�cients f (n) (0). This is easy. Since all the derivatives of ex are ex, it follows
that f (n (x) = ex, thus f (n) (0) = e0 = 1, hence

ex =
1X
n=0

f (n) (0)

n!
xn

=

1X
n=0

xn

n!

To �nd where this series converges, we use the ration test and compute:

lim
n!1

����an+1an

���� = lim
n!1

��������
xn+1

(n+ 1)!
xn

n!

��������
= lim

n!1

n! jxjn+1

(n+ 1)! jxjn

= lim
n!1

jxj
n+ 1

= 0

Thus the domain is all real numbers.
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Example 20 Find a Taylor series for f (x) = ex centered at 2.

The series will be of the form
1X
n=0

f (n) (2)

n!
(x� 2)n, we simply need to �nd the

coe¢ cients f (n) (2). This is easy. Since all the derivatives of ex are ex, it follows
that f (n (x) = ex, thus f (n) (2) = e2, hence

ex =
1X
n=0

f (n) (2)

n!
(x� 2)n

=
1X
n=0

e2

n!
(x� 2)n

Example 21 Find the nth order Taylor polynomial for ex centered at 0 and
centered at 2. Plot these polynomials for n = 1; 2; 3; 4; 5. What do you notice?
We already computed the power series corresponding to these two situations.
We found that

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+ :::

and

ex = e2 + e2 (x� 2) + e2 (x� 2)
2

2!
+ e2

(x� 2)3

3!
+ :::

= e2

 
1 + (x� 2) + (x� 2)

2

2!
+
(x� 2)3

3!
+
(x� 2)4

4!
+
(x� 2)5

5!
+ :::

!

If we denote Tn the nth order Taylor polynomial for ex centered at 0 and Qn
the nth order Taylor polynomial for ex centered at 2, we have:

� nth order Taylor polynomials for ex centered at 0.

T1 (x) = 1 + x

T2 (x) = 1 + x+
x2

2!

T3 (x) = 1 + x+
x2

2!
+
x3

3!

T4 (x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!

T5 (x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!

The graphs is shown on the next page.
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� Graphs of ex and the �rst 5 Taylor polynomials centered at 0. The func-
tions have the following colors:

ex : black

T1 : blue

T2 : red

T3 : green

T4 : purple

T5 : yellow
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� nth order Taylor polynomial for ex centered at 2:

Q1 (x) = e2 (1 + (x� 2))

Q2 (x) = e2

 
1 + (x� 2) + (x� 2)

2

2!

!

Q3 (x) = e2

 
1 + (x� 2) + (x� 2)

2

2!
+
(x� 2)3

3!

!

Q4 (x) = e2

 
1 + (x� 2) + (x� 2)

2

2!
+
(x� 2)3

3!
+
(x� 2)4

4!

!

Q5 (x) = e2

 
1 + (x� 2) + (x� 2)

2

2!
+
(x� 2)3

3!
+
(x� 2)4

4!
+
(x� 2)5

5!

!

The graphs are shown on the next page..
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� Graphs of ex and the �rst 5 Taylor polynomials centered at 2. The func-
tions have the following colors:

ex : black

Q1 : blue

Q2 : red

Q3 : green

Q4 : purple

Q5 : yellow

We can see the following:

� The Taylor polynomial approximates the functions well near the point at
which the series is centered. As we move away from this point, the ap-
proximation deteriorates very quickly.

� The approximation is better the higher the degree of the Taylor polynomial.
More speci�cally, the Taylor polynomial stay closer to the function over a
larger interval, the higher its degree.
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Example 22 Find a Maclaurin�s series for f (x) = sinx and �nd its domain

The series will be of the form
1X
n=0

f (n) (0)

n!
xn, we simply need to �nd the coe¢ -

cients f (n) (0). That is we need to �nd all the derivatives of sinx and evaluate
them at x = 0. We summarize our �ndings in the table below:
n f (n) (x) f (n) (0)
0 sinx 0
1 cosx 1
2 � sinx 0
3 � cosx �1
4 sinx 0
So, we see that we will have coe¢ cients only for odd values of n. In addition,
the sign of the coe¢ cients will alternate. Thus, since

f (x) = f (0) + f 0 (0)x+ f 00 (0)
x2

2
+ f 000 (0)

x3

3!
+ f (4) (0)

x4

4!
+ :::

we have

sinx = 0 + x+ 0� x
3

3!
+ 0 +

x5

5!
� :::

= x� x
3

3!
+
x5

5!
� x

7

7!
+ :::

=
1X
n=0

(�1)n x2n+1

(2n+ 1)!

To �nd where this series converges, we use the ration test and compute lim
n!1

����an+1an

����.
Since an =

x2n+1

(2n+ 1)!
, an+1 =

x2n+3

(2n+ 3)!
. Therefore,

lim
n!1

����an+1an

���� = lim
n!1

��������
x2n+3

(2n+ 3)!

x2n+1

(2n+ 1)!

��������
= lim

n!1

jxj2n+3 (2n+ 1)!
jxj2n+1 (2n+ 3)!

= jxj2 lim
n!1

(2n+ 1)!

(2n+ 3)!

= jxj2 lim
n!1

1

(2n+ 2) (2n+ 3)

= 0

Thus the series representation is valid for all x.
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Here are some important functions and their corresponding Maclaurin�s se-
ries

1

1� x = 1 + x+ x2 + x3 + x4 + ::: (�1; 1)

ex = 1 + x+
x2

2!
+
x3

3!
+ ::: (�1;1)

sinx = x� x
3

3!
+
x5

5!
� x

7

7!
+ ::: (�1;1)

cosx = 1� x
2

2!
+
x4

4!
� x

6

6!
+ ::: (�1;1)

tan�1 x = x� x
3

3
+
x5

5
� x

7

7
+ ::: [�1; 1]

Remark 23 The nthorder Taylor polynomial (Tn) associated with the series
expansion of a function f is the nthdegree polynomial obtained by truncating the
series expansion and keeping only the terms of degree less than or equal to n.
In the case of sinx, since

sinx = x� x
3

3!
+
x5

5!
� x

7

7!
+ :::

It follows that
T1 = x

T2 = x

T3 = x�
x3

3!

T4 = x�
x3

3!

T5 = x�
x3

3!
+
x5

5!

T6 = x�
x3

3!
+
x5

5!

and so on.

2.4 Summary

We now have four di¤erent techniques to �nd a series representation for a func-
tion. These techniques are:

1. Substitution

2. Di¤erentiation

3. Integration

18



4. Taylor/Maclaurin�s series.

It may appear that the last technique is much more powerful, as it gives
us a direct way to derive the series representation. In contrast, the �rst three
techniques require we start from a known series representation. However, the
�rst three techniques should not be ignored. In many cases, they make the work
easier. We illustrate this with a few examples.

Example 24 Find a Maclaurin�s series for f (x) = e�x
2

.
Of course, this can be done directly. But consider the problem of �nding all the
derivative of e�x

2

. One can also start from ex and substitute �x2 for x. Since

ex =
1X
n=0

xn

n!

= 1 + x+
x2

2
+
x3

3!
+
x4

4!

it follows that

e�x
2

=
1X
n=0

�
�x2

�n
n!

=
1X
n=0

(�1)n x
2n

n!

This was pretty painless. To convince yourself that this is the way to do it, try
the direct approach instead!

Example 25 Find a Maclaurin�s series for cosx.
Again, one can try the direct approach as in example 22. It is not too di¢ cult.
One can also realize that (sinx)0 = cosx. Thus, one can start with the series for
sinx (which we already derived) and �nd the series for cosx by di¤erentiating
it. We get

cosx = (sinx)
0

=

 1X
n=0

(�1)n x2n+1

(2n+ 1)!

!0

=
1X
n=0

�
(�1)n x2n+1

(2n+ 1)!

�0
=

1X
n=0

(�1)n x2n

(2n)!

= 1� x
2

2
+
x4

4!
� x

6

6!
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2.5 Things to Remember

� Given a function, be able to �nd its Taylor or Maclaurin�s series.

� Be able to �nd the radius and interval of convergence of Taylor or Maclau-
rin�s series.

� Section 8.7: # 3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 31 on pages 615, 616.

3 Applications

The purpose of this section is to show the reader how Taylor series can be used
to approximate functions. The approximation can then be used to either evalu-
ate a function at speci�c values of x, to integrate or to di¤erentiate the function.
Of course, we would only use this technique with functions for which the tra-
ditional calculus methods do not work. For example, we may need to compute
1Z
0

e�x
2

dx. This cannot be done using the integration techniques learned in a

traditional calculus class since e�x
2

does not have an antiderivative which can
be expressed in terms of elementary functions. Another application might be to
approximate sin (0:01), without a calculator. The di¢ culty does not lie in the
series representation of a given function, we now know how to represent func-
tions as power series. However, series have in�nitely many terms, for practical
purposes, we can only use a �nite number of them. Thus, we replace the in�-
nite series by the corresponding Taylor polynomial (see de�nition 18) of order
n (Tn), for some n. We then use the Taylor polynomial instead of the function.
This can be used to evaluate a function, integrate a function or di¤erentiate a
function. However, when we perform the following approximation

f (x) � f (a) + f 0 (a) (x� a) + f
00 (a)

2!
(x� a)2 + :::+ f

(n) (a)

n!
(x� a)n

there are several questions to answer before we can carry it out:

1. How do we pick a, the number around which the series is centered?

2. How do we pick n so the Taylor polynomial Tn approximates the given
function f within the desired accuracy?

Answer to question 1 There are several factors to take under consideration. First, since we have
to evaluate f (n) (a), a must be picked so we can do this evaluation easily.
Second, you will recall that the accuracy of the approximation decreases
as x gets further away from a. Therefore, we need to pick a so that the
values at which f (x) will be approximated are in the domain of the series,
and not too far from a. For example, if we had to approximate sin (:001),
then a = 0 would be a good choice because it satis�es both criteria.
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Answer to question 2 Once we have selected a and have a series representation for f , we use the
techniques studied to approximate a series and �nd the error.

The examples below illustrate these applications.

Example 26 Find the nth order Taylor polynomial for f (x) = cosx when
n = 2; 3; 4; 5; 6. Sketch the graph of cosx as well as the Taylor polynomials
found.
We already know the power series for cosx.

cosx = 1� x
2

2!
+
x4

4!
� x

6

6!
+
x8

8!
::::

So,

P2 (x) = 1� x
2

2!

P3 (x) = 1� x
2

2!

P4 (x) = 1� x
2

2!
+
x4

4!

P5 (x) = 1� x
2

2!
+
x4

4!

P6 (x) = 1� x
2

2!
+
x4

4!
� x

6

6!

You will note that because every other coe¢ cient in the series expansion of cosx
is 0; P3 = P2, P5 = P4. The graph of these polynomials is shown on �gure 1.

Remark 27 You will notice that as n increases, Pn gets closer to the graph
of cosx. In other words, the accuracy of our approximation increases with n.
However, Pn is a good approximation for cosx in a neighborhood of 0, as we
move away from 0, Pn gets further and further away from cosx. This is impor-
tant. When one approximates a function with a Taylor polynomial about a, the
approximation is good only for values of x close to a.

Example 28 Approximate cos 0:01 with an error less than 10�20.
First, we note that since :01 is close to 0, we can use a Taylor polynomial
centered at 0 to approximate cos (:01). Therefore, using the Taylor polynomial
for cosx centered at 0, and replacing x by 0:01, we get:

cos 0:01 =
nX
i=0

(�1)i 0:01
2i

(2i)!

We need to �nd n so that if we approximate
1X
i=0

(�1)i 0:01
2i

(2i)!
by

nX
i=0

(�1)i 0:01
2i

(2i)!
,

the error is less than 10�20. We notice that
1X
i=0

(�1)i 0:01
2i

(2i)!
is an alternating
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Figure 1: Graph of cosx and some Taylor polynomials

series with bn =
0:012n

(2n)!
, so we know how to estimate its error. The error is

always less than bn+1. So, if we want the error to be less than 10�20, it is
enough to solve:

bn+1 < 10�20

0:012(n+1)

(2n+ 2)!
< 10�20

We solve this by trying various values of n . The table below shows this proce-
dure:
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n
0:012(n+1)

(2n+ 2)!
1 4� 10�10
2 1� 10�15
3 2� 10�21

We see that n = 3 is enough. Therefore:

cos 0:01 �
3X

n=0

(�1)n 0:01
2n

(2n)!

� 0:999950000416665

Example 29 Approximate
R 1
0
e�x

2

dx with an error less than 0:001.

First, we �nd a series representation for e�x
2

. Since

ex =
1X
n=0

xn

n!

it follows that

e�x
2

=
1X
n=0

(�1)n x
2n

n!

Therefore Z
e�x

2

dx =
1X
n=0

(�1)n x2n+1

(2n+ 1)n!

and therefore

Z 1

0

e�x
2

dx =

1X
n=0

(�1)n x2n+1

(2n+ 1)n!

�����
1

0

=
1X
n=0

(�1)n 1

(2n+ 1)n!

This is an alternating series
1X
n=0

(�1)n bn with bn =
1

(2n+ 1)n!
. From our

knowledge of alternating series, we know that if we approximate
1X
i=0

(�1)i 1

(2i+ 1) i!

by
nX
i=0

(�1)i 1

(2i+ 1) i!
, the error will be less than bn+1 =

1

(2n+ 3) (n+ 1)!
. So,

we �nd n such that
1

(2n+ 3) (n+ 1)!
< :001
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We try several values of n, we �nd that when n = 3,
1

(2n+ 3) (n+ 1)!
= :00463

and when n = 4,
1

(2n+ 3) (n+ 1)!
= :0007576. So,

4X
n=0

(�1)n 1

(2n+ 1)n!
= 0:747 49

gives us the desired approximation.

3.1 Problems

The problems assigned for power series, Taylor series and representation of
functions as power series were:

� Section 8.6: # 1, 3, 5, 7, 11, 13, 21, 35 on pages 610, 611.

� Section 8.7: # 3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 31 on pages 615, 616.

� In addition, for the applications discussed in this section, do # 3, 5, 7 on
page 628.
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