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Abstract—Finding the entropy rate of Hidden Markov Pro- We sometimes omit the realization of the variableY’, so

cesses is an active research topic, of both theoretical and practicalp(y) should be understood aB(Y = y). The entropy

importance. A recently used approach is studying the asymptotic 540 can also be computed via the conditional entropy as:
behavior of the entropy rate in various regimes. In this paper we _

_ . N—1 . .
generalize and prove a previous conjecture relating the entropy H(Y) = thﬁoo .H(YA_’HY]l )f s.|nce for a statlon.allry
rate to entropies of finite systems. Building on our new theorems, Process the two limits exist and coincide ([4]). The conditional

we establish series expansions for the entropy rate in two different entropy H (Y| X) (whereX,Y are sets of r.v.s.) represents the
regimes. We also study the radius of convergence of the two Seriesaverage uncertainty df, assuming that we knouX, that is
expansions. H(Y|X) =Y, P(X = 2)H(Y|X = ). By the chain rule
for entropy, it can also be viewed as a difference of entropies,
o ) H(Y|X)=H(X,Y)— H(X), which will be used later.

Let {Xy} be a finite state stationary markpv pr.oces.?here is at present no explicit expression for the entropy rate
over the alphabets = {1,...,s}. Let {¥y} be its noisy .o 111 (5]). Few recent works (5], [6], [7]) have dealt
observation (on the same aIphapet). Bét= Mors = {migh iin finding the asymptotic behavior @f in several parameter
be _th_e 'V'a”‘of’ tran3|t|on matrlx.anoR - ) Roxs be the regimes. However, they concentrated only on binary alphabet,
emission matrix, Le.P(Xny1 = jlXn = i) = my and_ and proved rigorously only bounds or at most second ([7])
P(Yny = j| Xy = 1) = r;;. We assume that the Markov matrlxorder behavior.

M I? st.nctly positive {n;; > 0), and d.en(.)te IES StatlcinaryHere we generalize and prove a conjecture posed in [7], which
distribution by the (column) vectar, sat.lsfymgw M : N justifies (under some mild assumptions) the computation of
The process” can be viewed as a noisy observation.f H as a series expansion in the High Signal-to-Noise-Ratio

through a noisy channel. It is known asHidden Markov , .. , . . - .
, . ('High-SNR’) regime. The expansion coefficients were given

Process (HMP)and is determined by the parametdisand . S . .
in [7], for the symmetric binary case. In this case, the matrices

R. HMPs have a rich and developed theory, and enourmo&@ . ]

— . . i and R are given by:
applications in various fields (see [1], [2]).
An important quantity of the procedsis its entropy rate. The M — I-p p R— l1—e € @)
Shannon entropy rate of a stochastic process ([3]) measures the p 1—-p) ~ € 1—e¢
amount of 'uncertainty per-symbol’. More formally, for< j,
let [Y]? denote the vectofY;, ..., Y;)
H(Y) is defined as:

I. INTRODUCTION

and the process is characterized by the two parameters
- Then the entropy rate The High-SNR expansion in this case is an expansiom in
around zero.
A(Y) = lim H([Y])M) B In secti9n I, we prc.eseht and prov§ our two. mair] theorems;
N—oo N Thm. 1 is a generalization of a conjecture raised in [7] which
WhereH(Y) = — >y P(Y)log P(Y'). Here and throughout connects the coefficients of entropies using finite histories to
the paper we use natural logarithms, so the entropy is mélae entropy rate. Proving it justifies the High-SNR expansion
sured iINnNATS and also adopt the conventidHog0 = 0. of [7]. We also give Thm. 2, which is the analogue of Thm. 1



in a different regime, termed 'Almost-Memoryless’ (A-M’). Although it may appear technically involved, the proof of
In section Il we use our two new theorems to compute tHEhm. 1 is based on the following two simple ideas. First,
first coefficients in the series expansions for the two regimesge distinguish between the noise parameters at different sites.
We give the first-order asymptotics for a general alphabet, &Bis is done by considering a more general procgss },

well as higher order coefficients for the symmetric binary casehere Z;'s emission matrix isR; = I + ¢7. The joint

In section IV we estimate the radius of convergence of odistribution of [Z] is thus determined by, T and [¢]
expansions using a finite number of terms, and compare d\e define the following functions:

results for the two regimes. We end with conclusions and

future directions. Fn(M,T, [6]]1V) = H([ZHV) - H([Z]:]L\Pl) )

Il. FROM FINITE SYSTEM ENTROPY TO ENTROPY RATE  Setting all thee;’s equal reduces us back to thé process,
and in particularFy (M, T, (¢, ... ,€)) = Cn(e).

Second we observe that if a partrcul-arrs set to zero, the
corresponding observatioff; must equal the stat&’;. Thus,
conditioning back to the past is 'blocked’. This can be used
A. The High SNR Regime to prove the following:

This regime was dealt in further details in [7], [8], albeit with Leémma 1:Assumee; = 0 for somel < j < N. Then:
no rigorous justification for the obtained series expansion. In N N

. . . . En([ey) = FN*j‘Fl([G]j‘rl)
the High-SNR regime the observations are likely to be equal
to the states, or in other words, the emission maftiis close Proof:
to the identity matrixI. We therefore write? = I +€7', where  F can be written as a sum of conditional entropies:
e > 0 is a small constant anfl = {¢;;} is a matrix satisfying
tii < 0,15 >0,Vi#j andZ‘;.:1 t;; = 0. The entropy rate in
this regime can be given as an expansion around zero. We Fn = — » _ P( P(Zx|[Z)Y ") log P(Zn|[Z)) 1)
state here our new theorem, connecting the entropy of finite (217 ©)

systems to the entropy rate in this regime.
y ) Py g N Where the dependence &} and M, T comes through the
Theorem 1:Let Hy = Hy(M,T,e) = H([Y]y') be the . o .,
probabilitiesP(..). Sincee; = 0, we must haveX; = Z;, and

entropy of a system of lengtly, and letCy = Hy — H
by y g N N N therefore (since the;’s form a Markov chain), cond|t|on|ng
Let B,(0) C C be some (complex) neighborhood of zero,
urther to the past is 'blocked’, that is:

which the functionC} and H are analytic ire, with Taylor

In this section we prove our main results, namely Thms.
and 2, which relate the coefficients of the finite bourts
to those of the entropy ratd in two different regimes.

expansions given by: €6 =0= P(ZNHZHV_l) - P(ZNHZE‘V_l) 7)
Cn(M,T,¢) = ZCﬁ)ek, H(M,T,e) =) _ C™e" (3) (Note that eq. (7) is true foj < N, but not forj = N).

k=0 k=0 Substituting in eq. (6) gives:
(The coefficientsCJ(\’,“) are functions of the parametei$ and N1 N1
T. From now on we omit this dependence). Then: Z Pl P(2nllz ] ) log P(ZNHZ]j )=

k+3 (k) k
N> || =0y =c® 4

- { 2 1 " @ —ZP P(Zy|[2)] 1) log P(Zn|[Z])}7)
The analyticity of {Cx} and H arounde = 0 was recently
shown in [9]. One can also use [10], which showed that the P 8
law of the procesd” is Gibbsian, together with the complete T NI (8)
analyticity results for Gibbsian measures in [11] to deduce -

analyticity of . ) Letk = [k])Y be a vector with:; € {NUO0}. Define its ‘weight’
Cy is actually an upperbound ([4]) fof{. The behavior aSw(E) _ZN k.. Define also:
- =1 """ .
stated in Thm. 1 was discovered previously using symbolic )
computations, but was proven only fér< 2 , and only for Jo *H® Fy ©)

the symmetric binary case (see [7]). N9k oy

€=0



With the above definitionC](\’f) is obtained by summing?}f,
on all k's with weight k, and dividing byk!:
(k) _ 1 3
CN = y Z Fy

" Rw(®)=k

(10)

As is shown next, one does not need to sum on all stigh
since many of them give zero contribution:
Lemma 2:Let k = [k]N. If 3i,j, 1 < i < j < N, with
kj <1< k;, thenFE =0.
Proof: Assume firstk; = 0. Using lemma 1 we get

o2 POR (N PR
N Dk .. DehN o Dekr . Deky o
- oFy (@],
86’1“17...,862"’371,...,8%\,” Oe; .
oy

The casek; = 1 is more difficult, but follows the same

principles. Write the probability of:
P([Z)Y) = Y P(XI)PZIYI[X)Y) =
Xy
N
> PUXI) [ 6Ox.z. + eitx.z.)

(X

12)

—_

i=

This gives:

OIP([Z)1)log P(Zn|[Z]Y )]
a€j

Ej:()

2 N(i—a) N-1
> taz, {PUZIYY ™) 10g P(Zx 11217+
a=1

P2V ™) = Pzx| 12 P21 1Y)

€;=0
(15)

And therefore:
OFN

an

Ej:O

—Ztazj{z (P21 ") 10g P(Zx]12) )~

(21

Pz |21 P21 )] }

€; =0
{—itazj > [Pz og P(zu121) Y-
a=l  [z]¥

(16)

J

P12 P2 )] }

61:0

whered,; is Kronecker delta. Write the partial derivative withWhere the latter equality comes from using eq. (7), which

respect toe;:

aP([Z]})
O¢;

6]’:0

>

(X1

P(X)V)tx,z, [[(0x.z + Gitxiz,)] =
i#j o

(13)

{fjtazﬂ[zﬁv W“))}

Where[Z]{V(j_’“) denotes the vector which is equal[fg] ¥ in
all coordinates except on coordinatewhere Z; = a. Using

N
Bayes’ ruleP(Zy|[Z]) 1) = %, we get:

6j=0

OP(Zn|1Z)7 )
a(—fj

€;=0
P([Z}N_l) Ztazj {P([Z]{V(j—nz))i

P(zy|[Z1 P21 (14)

Ej:O

'blocks’ the dependence backwards. Eqg. (16) shows that

s does not depend om; for i < j, therefore
J 6]‘:0

k41 -

%%FN =0 and FJ’f, —0. -

O€, " O¢

Before proving Thm. 1, we need one more lemma, which
already shows a ’settling’ behavior. More precisely, we prove
here that adding zeros to the left bfleavesF%, unchanged:

Lemma 3:Let ¥ = [k]¥ with k&, < 1. Denote k("
the concatenation of with r zeros on the leftk(" =
(0,...,0,k1,...,kn). Then:

——

Fh=FN vreN
Proof: Assume firstt; = 0. Using lemma 1, we get:

*ENE,  n([d7Y)

ko kn
€2y, 06

F)
FE (i) =

€=0

aw(E)FN([G]:ﬂV)

= PR
86]:12, .. ,aeffiN T+

€=0
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The case:; = 1 is reduced back to the cage = 0 by taking
the derivative. We next prove the claim for= 1 and for



greater values it follows by induction. Using egs. (16,17), wiaterestingly, similarly to the High-SNR regime, the condi-

get:
w(k)—1 OF
B N+1 0 N+1
F =
N+1([ ] ) = 86’;2 o 36?\/111 Oeg 52—0‘| o
aw(lg)fl S
dek2 Dk a Z taz, Z
3 N+1 a=1 [Z]i\7+1

(P21 ) og P(Zy sl [21})-

62:0} | [e]f“rl:O
6w(E)—1

8eva {_ ;taZ2 Z

8652 ... 2

P(Zy |21 P(21Y )]

P21 ") log P(2Zy|[2)N ) -

P(Zn|[ZN P21 )]

(18)
L

tional entropy given a finite history gives the correct entropy
rate up to a certain order which depends on the finite history
taken. In the A-M regime we can also prove analyticity of

{Cy} and H in § neard = 0. This is stated as:

Theorem 2:Let Hy = Hy(R,T,5) = H([Y]Y) be the
entropy of a finite system of lengtl, and letCy = Hy —
Hy_,. Let B,(0) C C be some (complex) neighborhood of
§ = 0, in which the (one-variable) function§Cy}, H are
analytic iné, with Taylor expansions given by:

ZC

oo
~(M,T,6) H(M,T,e) ZC
k=0

B (20)
(The coefficients(]}vk) are functions of the parametetd and
T.) Then:

c*)

Eiﬂ o _

N>[
=72

(21)

Proof: The proof is very similar to that of Thm. 1.
Distinguishing between the sites by setting, = U + §;T
in site ¢, we notice that if one set§; = 0 for somez,
then M; becomes uniform, and thus knowirffj 'blocks’ the

We are now ready to prove Thm. 1, which follows directlwependence OZN on previoust’S (V] < Z) The rest of the

from lemmas 2 and 3:
Proof:

Let & = [k]V with

considering only entriestrictly larger than one) alégl?) =N+

1—miny,~1{i}. It easily follows from lemma 2 that iFE # 0,

then all the entries of: except some of its leftmost entries

are at least '2', and thus we must hai@) <
Therefore, according to lemma 3 we have:

(552 -1

sk )

L (ka 1
[ 1+ (19)

Fﬁ:ﬂ%ﬁ

k+3
2

w(k) = k. Define its 'length’ (from right,

proof continues in an analogous way to the proof of Thm. 1
(including the three lemmas therein), and its details are thus
omitted here. ]

IIl. COMPUTATION OF THE SERIES COEFFICIENTS

An immediate application of Thms. 1 and 2 is the computa-
tion of the first terms in the series expansion for(assuming

its existence), by simply computing these termsdby for N

large enough. In this section we compute, for both regimes,
the first order for the general alphabet case, and also give few
higher order terms for the simple symmetric binary case. Our

for all k's in the sum. From eq. 10, by summing over almethOd for computing>®) is straightforward. We compute

F]f[ with the same 'weight’, we ge@’( C(’Z)H], VN >
[%£37. From the analyticity ofCy and H arounde = 0,
one can show by induction ok that lim x _ o C](\’f) =),
therefore we must havely) = C%), VN > [Ei3]. [ |

B. The Almost Memoryless Regime

C ) for N = ("‘+31 by simply enumerating all sequences
[Y]Y, computing thek-th coefficient inP([Y]Y) log P([Y]Y)

for each one, and summing their contribution. This computa-
tion is, however, exponential ity and thus raises the challenge
of designing more efficient algorithms, in order to compute
further orders and for larger alphabets.

In the A-M regime, the Markov transition matrix is close tdBefore giving the calculated coefficients, we need some new

uniform. Thus, throughout this section, we assume ftfais

notations. For a vectat, diag(«) denotes the square matrix

given by M = U + 6T, such thatU is a constant (uniform) with o’s elements on the diagonal. We use Matlab-like no-
matrix, u;; = s~!, 6 > 0 is a small constant and@ satisfies tation to denote element-by-element operations on matrices.

25—

1 ti; = 0. Thus the process is entirely characterized byhus, for matricesA and B, logA is a matrix whose elements

the set of parameter&R, T\ ¢), where R again denotes the are {loga;;}, and [A. « B] is a matrix whose elements are

emission matrix.

{a;;b;j}. € denotes the (column) vector éf ones.



A. The High-SNR expansion B. The almost memoryless expansion

According to Thm. 1, computing, enables us to extract By Thm. 2, one can expand the entropy rate arodfic= U
H®)_ This is used to show the following: by simply computing the coefficienG](\’f) for N large enough.
Proposition 1: Let R = I + ¢T. Assume that the entropy FOr €xample, by computing, we have established, in analogy

rate A is analytic in some neighborhood ef= 0. Then # t0 prop. 1, the first order: )

satisfies: Proposition 2: Let M = U + 0T. Then H satisfies:
_ 7o gt te\]
A = —'[M. +1og M¢ + €' { diag(log(m)) T* diag(m) M~ H =logs — s ¢ Rllog(R'¢)]

¢t [(s—lRtTR). «log(s 'R'UR)| &5 + O(6?)  (27)

. t 7. . 2
[diag(m)MT +T"diag(m)M]. [log(dzag(W)M)]}§6+O(e ) Proof: Since H = Cs + O(6%), we expand’, (as given

(22) in eq. (25)) ind. M is simply replaced by/+4T. Dealing with

o 2Proof:f_ Ntotlng th?t accortclilng o thr:' Ut = ?'t+b 7 is more problematic. Note that the stationary distribution of
(¢7), we first compute (exactly’s, and then expand it by Uis s71¢ We write = s71¢ + 6y + O(6?), and solve:

substitutingR = I + €T'. Write C5, as:
(s71E" + 0YN) (U 4 6T) = (s~ '+ 09") + 0(6%)  (28)

It follows that+) should satisfy!(I — U) = ¢'T, wherel is
_ ZP(YN =, Y1 =i)log (Yn =j,YN-1=1) the identity matrix. We cannot inveft— U since it is of rank

Cy=HYy|YN-1) =

- P(Yy_1=1) s — 1. The extra equation needed for determininginiquely
(23)  comes from the requiremeft;_, ¢; = 0. Substitutingh/ =
We can express the above probabilities as: U+ 6T andrn = s~1¢ + 5 + O(6%) in eq. (25), one gets:
P(Yn_1 = i) = [r'R]; Cy = {zog(s—lgtR)s—lRtUR—
P(Yy =j,Yy_1 = i) = [R'diag(x)MR);; = Fi;  (24) (s R'UR). + log(s‘lRtUR)]}é‘wL

Substituting eq. (24) in eq. (23), and writing in matrix form, {1og(slgtR)Rt [s  diag(&)T + diag(y))U]R—
we get:

Cy = {UOQ(WtR)]F —EHF. * logF]}§ (25) ¢ [(Rt(s_ldmg(f)T + diag(w)U)R) ok

-1t 2
SubstitutingR = I + €T gives: (SU +log(s™ R UR))} }55 +0(5%) (29)
After further simplification, most terms in eq. (29) cancel out,
and we are left with the result (27). |
F. # log F = [diag(w)M]. * log(diag(x) M)+ In [12] it was shown that the first order term vanishes for
the symmetric binary case, which is consistent with eq. (27).
{[diag(ﬂ)MT + Ttdiag(m)M)]. * [I + 10g(diag(ﬂ)M)]}€+ Our result holds for general alphabets and process parameters.
Looking at the symmetric binary case might be misleading
O(é?) (26) here, since by doing so one fails to see the linear behavior in
o _ _ S o0 for the general case.
Substituting these in eq. (25) gives, after simplification, thge have computed higher orders for the symmetric binary case
result (22). B by expandingCy for N = 8, which gives usC'®) for k < 13.
We note that prop. 1 above is a generalization of the resyltthis case the expansion is in the paraméte:r% — p, and

obtained by [5] for a binary alphabet. gives (for better readability the dependencyeas represented
Turning now into the symmetric binary case, the first elevagere viap = 1 — 2¢):

orders of the series expansion were given in [7], but only ~ 4

the first two were proved to be correct. Thm. 1 proves the 1 =10g(2) — ut(26° + §(7M4 — 124 +6)5"+
correctness of the entire expansion from [7], which is not 39

repeated here. 1—5(46/,L8 — 12015 + 1200* — 602 + 15)0%+

F = diag(m)M + [diag(7)MT + T'diag(m) M]e + O(¢?),
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i(ugmm — 4088110 + 596415 — 45365 + 1946,,* —

High-SNR Entropy-Rate Expansion for p=0.2

QO

512 8
504pu° + 84)6% + E(3346;116 — 15120 + 28800u'% — 11-term Expansion
14r | — 10-term Expansion
30120 +189904® — 7560u° + 1980u* — 3602 + 45)5' 0+ 9-term Expansion

L2 | = Upper Bound

1024
| [~ - Lower Bound

T (159230120 — 874632418 +209110011¢ — 285736014+

246510012 — 1400960 4 5323124° — 1359605+

Entropy—Rate
—

241454* — 33002 + 330)0'2| + O(6'*); (30)

The above expansion generalizes a result from [12], who 0 001 0.02 0.03 0.04 0.05 0.06
provedH = log(2) — 21452 +0(6%). Note that for the first few

coefficients, all odd powers af vanish, and the coefficients b. A-M Entropy-Rate Expansion for  €=0.2

are all polynomials ofi:2, which makes this series simpler 1+ i —

than the one obtained in the High-SNR regime ([7]). 0%

0.9

The usefulness of a series expansion such as the 0né§
derived in eq. (30) and in [7] for practical purposes, highly %0'857
depends on the radius of convergence. Determining the radiu'E 08
is a difficult problem, as it relates to the domain of analyticity u

of H. In Thm. 2 we proved that the radius for the A-M 075y | | | — Lower‘Bound |
expansion is positive. 0 01 02 03 04 05
For the High-SNR case, we gave a numerical estimation of P

the radius of convergence(p) as a function ofp ([8]), ) o o o ) )

. . Fig. 1. Approximations forH using first few terms in its series expansion.
based on the first few known terms. When one applles tg.eThe High-SNR expansions usifg10 and 11 terms forp = 0.2 deviate
same procedure to the coefficients of the A-M expansion, thiem the bounds for large values of The first few terms of the expansion

numerical values of the estimated radius are much highB?Ve alternating signs, therefore the direction of the deviation is determined
by the parity of the number of terms taken. b. The A-M expansions using

The difference is demonstrated in fig. 1. In this figure, th§, 10 and 12 terms fore = 0.2 remain within the bounds for any value pf
(finite) series expansions with up to twelfth order is compared
to two known bounds ond from [4]. The upper bound

is simply Cxy = H(Yy|[Y]Y") and the lower bound is
en = H(Yn| X1, [Y]Y 1), for N = 2. As can be seen from
the figure, for the High-SNR case at= 0.2, the finite-order
expansions are not within the bounds for large values Bbr

the A-M case, fore = 0.2, the finite-order expansions remain We presented a generalization and proof of the conjecture
within the bounds for any) < p < % introduced in [7], relating the expansion coefficients of finite
The estimated radiug(p) for the High-SNR expansion, is System entropies to those of the entropy rateHdPs Our
plotted as a function of in fig. 2.a. In our context, the new theorems shed light on the connection between finite and
result of [9] proves thaff (p, ¢) is real analytic in the domain infinite chains, as well as give a practical and straightforward
QcCc R Q= {(pe):0 < pe< 1} (it is not known way to compute the entropy rate as a series expansion up to
whether(2 is maximal with that respect). This domain is showan arbitrary power.

in fig. 2.b. For any0 < ¢ < 1, the A-M expansion is near The surprising 'settling’ of the expansion coefficiext -

the point (e, 1) which is an interior point of2. The High- C®) for N > [££37, holds for the entropy. For other functions
SNR expansion is near some poifpt 0), which lies on the involving only conditional probabilities (e.g. relative entropy
boundary of(Q2. between twoHMPs) a weaker result holds: the coefficients

IV. RADIUS OF CONVERGENCE

Rate

12-term Expansion
— 10-term Expansion

8-term Expansion
+=Upper Bound

V. CONCLUSION
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non-trivial result, as it is known that for other regimes (e.g.
‘rare-transitions’ [13]), a finite chain of any length does not
give the correct asymptotic behavior even to the first order. We
also estimated the radius of convergence for the expansion in
the two regimes, 'High-SNR’ and 'A-M’, and demonstrated
their quantitatively different behavior. Further research in this
direction, which closely relates to the domain of analyticity of
the entropy rate, is still required.
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