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The black hole, which arises solely from an incorrect analysis of the Hilbert solution,
is based upon a misunderstanding of the significance of the coordinate radius r. This
quantity is neither a coordinate nor a radius in the gravitational field and cannot of
itself be used directly to determine features of the field from its metric. The appropriate
quantities on the metric for the gravitational field are the proper radius and the curvature
radius, both of which are functions of r. The variable r is actually a Euclidean
parameter which is mapped to non-Euclidean quantities describing the gravitational
field, namely, the proper radius and the curvature radius.

1 Introduction

The variable r has given rise to much confusion. In the con-
ventional analysis, based upon the Hilbert metric, which is
almost invariably and incorrectly called the “Schwarzschild”
solution, r is taken both as a coordinate and a radius in
the spacetime manifold of the point-mass. In my previous
papers [1, 2] on the general solution for the vacuum field,
I proved that r is neither a radius nor a coordinate in the
gravitational field (Mg, gg), as Stavroulakis [3, 4, 5] has also
noted. In the context of (Mg, gg) r is a Euclidean parameter
in the flat spacetime manifold (Ms, gs) of Special Relativity.
Insofar as the point-mass is concerned, r specifies positions
on the real number line, the radial line in (Ms, gs), not in
the spacetime manifold of the gravitational field, (Mg, gg).
The gravitational field gives rise to a mapping of the distance
D=

∣
∣r − r0

∣
∣ between two points r, r0 ∈< into (Mg, gg).

Thus, r becomes a parameter for the spacetime manifold
associated with the gravitational field. If Rp ∈ (Mg, gg) is
the proper radius, then the gravitational field gives rise to a
mapping ψ,

ψ :
∣
∣r − r0

∣
∣ ∈ (<− <−)→Rp ∈ (Mg, gg) , (A)

where 06Rp<∞ in the gravitational field, on account of
Rp being a distance from the point-mass located at the point
Rp(r0)≡ 0.

The mapping ψ must be obtained from the geometrical
properties of the metric tensor of the solution to the vacuum
field. The r-parameter location of the point-mass does not
have to be at r0 =0. The point-mass can be located at any
point r0 ∈<. A test particle can be located at any point
r∈<. The point-mass and the test particle are located at
the end points of an interval along the real line through r0
and r. The distance between these points is D=

∣
∣r − r0

∣
∣.

In (Ms, gs), r0 and r may be thought of as describing 2-
spheres about an origin rc=0, but only the distance between

these 2-spheres enters into consideration. Therefore, if two
test particles are located, one at any point on the 2-sphere
r0 6=0 and one at a point on the 2-sphere r 6= r0 on the
radial line through r0 and r, the distance between them
is the length of the radial interval between the 2-spheres,
D=

∣
∣r − r0

∣
∣. Consequently, the domain of both r0 and r is

the real number line. In this sense, (Ms, gs) may be thought
of as a parameter space for (Mg, gg), because ψ maps the
Euclidean distance D=

∣
∣r − r0

∣
∣ ∈ (Ms, gs) into the non-

Euclidean proper distance Rp ∈ (Mg, gg): the radial line in
(Ms, gs) is precisely the real number line. Therefore, the
required mapping is appropriately written as,

ψ :
∣
∣r − r0

∣
∣ ∈ (Ms, gs)→Rp ∈ (Mg, gg) . (B)

In the pseudo-Euclidean (Ms, gs) the polar coordinates
are r, θ, ϕ, but in the pseudo-Riemannian manifold (Mg,
gg) of the point-mass and point-charge, r is not the radial
coordinate. Conventionally there is the persistent miscon-
ception that what are polar coordinates in Minkowski space
must also be polar coordinates in Einstein space. This how-
ever, does not follow in any rigorous way. In (Mg, gg) the
variable r is nothing more than a real-valued parameter,
of no physical significance, for the true radial quantities
in (Mg, gg). The parameter r never enters into (Mg, gg)
directly. Only in Minkowski space does r have a direct
physical meaning, as mapping (B) indicates, where it is
a radial coordinate. Henceforth, when I refer to the radial
coordinate or r-parameter I always mean r∈ (Ms, gs).

The solution for the gravitational field of the simple con-
figurations of matter and charge requires the determination of
the mapping ψ. The orthodox analysis has completely failed
to understand this and has consequently failed to solve the
problem.

The conventional analysis simply looks at the Hilbert
metric and makes the following unjustified assumptions, ta-
citly or otherwise;
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(a) The variable r is a radius and/or coordinate of some
kind in the gravitational field.

(b) The regions 0<r< 2m and 2m<r<∞ are both
valid.

(c) A singularity in the gravitational field must occur only
where the Riemann tensor scalar curvature invariant
(Kretschmann scalar) f =RαβγδRαβγδ is unbounded.

The orthodox analysis has never proved these assumptions,
but nonetheless simply takes them as given, finds for itself
a curvature singularity at r=0 in terms of f , and with
legerdemain reaches it by means of an ad hoc extension
in the ludicrous Kruskal-Szekeres formulation. However, the
standard assumptions are incorrect, which I shall demonstrate
with the required mathematical rigour.

Contrary to the usual practise, one cannot talk about
extensions into the region 0<r< 2m or division into R
and T regions until it has been rigorously established that
the said regions are valid to begin with. One cannot treat
the r-parameter as a radius or coordinate of any sort in the
gravitational field without first demonstrating that it is such.
Similarly, one cannot claim that the scalar curvature must be
unbounded at a singularity in the gravitational field until it
has been demonstrated that this is truly required by Einstein’s
theory. Mere assumption is not permissible.

2 The basic geometry of the simple point-mass

The usual metric gs of the spacetime manifold (Ms, gs) of
Special Relativity is,

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (1)

The foregoing metric can be statically generalised for the
simple (i. e. non-rotating) point-mass as follows,

ds2=A(r)dt2−B(r)dr2−C(r)
(
dθ2 + sin2 θdϕ2

)
, (2a)

A,B,C > 0 ,

where A,B,C are analytic functions. I emphatically remark
that the geometric relations between the components of the
metric tensor of (2a) are precisely the same as those of (1).

The standard analysis writes (2a) as,

ds2=A(r)dt2 −B(r)dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (2b)

and claims it the most general, which is incorrect. The
form of C(r) cannot be pre-empted, and must in fact be
rigorously determined from the general solution to (2a). The
physical features of (Mg, gg)must be determined exclusively
by means of the resulting gμμ ∈ (Mg, gg), not by foisting
upon (Mg, gg) the interpretation of elements of (Ms, gs) in
the misguided fashion of the orthodox relativists who, having
written (2b), incorrectly treat r in (Mg, gg) precisely as the
r in (Ms, gs).

With respect to (2a) I identify the coordinate radius, the
r-parameter, the radius of curvature, and the proper radius
as follows:

(a) The coordinate radius is D= |r − r0|.

(b) The r-parameter is the variable r.

(c) The radius of curvature is Rc=
√
C(r).

(d) The proper radius is Rp=
∫ √

B(r)dr.

The orthodox motivation to equation (2b) is to evidently
obtain the circumference χ of a great circle, χ ∈ (Mg, gg)
as,

χ=2πr ,

to satisfy its unproven assumptions about r. But this equation
is only formally the same as the equation of a circle in the
Euclidean plane, because in (Mg, gg) it describes a non-
Euclidean great circle and therefore does not have the same
meaning as the equation for the ordinary circle in the Euclid-
ean plane. The orthodox assumptions distort the fact that r is
only a real parameter in the gravitational field and therefore
that (2b) is not a general, but a particular expression, in which
case the form of C(r) has been fixed to C(r)= r2. Thus,
the solution to (2b) can only produce a particular solution,
not a general solution in terms of C(r), for the gravitational
field. Coupled with its invalid assumptions, the orthodox
relativists obtain the Hilbert solution, a correct particular
form for the metric tensor of the gravitational field, but
interpret it incorrectly with such a great thoroughness that
it defies rational belief.

Obviously, the spatial component of (1) describes
a sphere of radius r, centred at the point r0 =0. On this
metric r> r0 is usually assumed. Now in (1) the distance D
between two points on a radial line is given by,

D= |r2 − r1| = r2 − r1 . (3)

Furthermore, owing to the “origin” being usually fix-
ed at r1= r0 =0, there is no distinction between D and
r. Hence r is both a coordinate and a radius (distance).
However, the correct description of points by the spatial part
of (1) must still be given in terms of distance. Any point in
any direction is specified by its distance from the “origin”.
It is this distance which is the important quantity, not the
coordinate. It is simply the case that on (1), in the usual sense,
the distance and the coordinate are identical. Nonetheless, the
distance from the designated “origin” is still the important
quantity, not the coordinate. It is therefore clear that the
designation of an origin is arbitrary and one can select any
r0 ∈< as the origin of coordinates. Thus, (1) is a special case
of a general expression in which the origin of coordinates
is arbitrary and the distance from the origin to another point
does not take the same value as the coordinate designating it.
The “origin” r0 =0 has no intrinsic meaning. The relativists
and the mathematicians have evidently failed to understand
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this elementary geometrical fact. Consequently, they have
managed to attribute to r0 =0 miraculous qualities of which
it is not worthy, one of which is the formation of the black
hole.

Equations (1) and (2a) are not sufficiently general and
so their forms suppress their true geometrical characteristics.
Consider two points P1 and P2 on a radial line in Euclidean
3-space. With the usual Cartesian coordinates let P1 and P2
have coordinates (x1, y1, z1) and (x2, y2, z2) respectively.
The distance between these points is,

D=
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 =

=
√
|x1 − x2|2 + |y1 − y2|2 + |z1 − z2|2 > 0 .

(4)

If x1= y1= z1=0, D is usually called a radius and so
written D≡ r. However, one may take P1 or P2 as an origin
for a sphere of radius D as given in (4). Clearly, a general
description of 3-space must rightly take this feature into
account. Therefore, the most general line-element for the
gravitational field in quasi-Cartesian coordinates is,

ds2=Fdt2 −G
(
dx2 + dy2 + dz2

)
−

− H
(
|x− x0|dx+ |y − y0 |dy + |z − z0 |dz

)2
,

(5)

where F,G,H > 0 are functions of

D=
√
|x− x0|2 + |y − y0 |2 + |z − z0 |2= |r − r0| ,

and P0 (x0, y0 , z0) is an arbitrary origin of coordinates for a
sphere of radius D centred on P0 .

Transforming to spherical-polar coordinates, equation (5)
becomes,

ds2= −H|r − r0|
2dr2 + Fdt2−

−G
(
dr2 + |r − r0|

2dθ2 + |r − r0|
2 sin2 θdϕ2

)
=

=A(D)dt2−B(D)dr2− C(D)
(
dθ2+ sin2 θdϕ2

)
,

(6)

where A,B,C > 0 are functions of D= |r − r0|. Equation
(6) is just equation (2a), but equation (2a) has suppressed
the significance of distance and the arbitrary origin and is
therefore invariably taken with D≡ r> 0, r0 =0.

In view of (6) the most general expression for (1) for
a sphere of radius D= |r − r0|, centred at some r0 ∈<, is
therefore,

ds2= dt2 − dr2 −
(
r−r0

)2 (
dθ2 + sin2 θdϕ2

)
= (7a)

= dt2−

(
r−r0

)
2

|r−r0|2
dr2−

∣
∣r−r0

∣
∣2 (dθ2+sin2 θdϕ2

)
= (7b)

= dt2 −
(
d|r−r0|

)2
−
∣
∣r−r0

∣
∣2 (dθ2 + sin2 θdϕ2

)
. (7c)

The spatial part of (7) describes a sphere of radius D=
=
∣
∣r − r0

∣
∣, centred at the arbitrary point r0 and reaching to

some point r∈<. Indeed, the curvature radius Rc of (7) is,

Rc=

√(
r − r0

)2
=
∣
∣r − r0

∣
∣ , (8)

and the circumference χ of a great circle centred at r0 and
reaching to r is,

χ=2π
∣
∣r − r0

∣
∣ . (9)

The proper radius (distance) Rp from r0 to r on (7) is,

Rp=

|r−r0|∫

0

d
∣
∣r−r0

∣
∣ =

r∫

r0

[
r−r0∣
∣r−r0

∣
∣

]

dr=
∣
∣r−r0

∣
∣ . (10)

Thus Rp≡Rc≡D on (7), owing to its pseudo-
Euclidean nature.

It is evident by similar calculation that r≡Rc≡Rp in
(1). Indeed, (1) is obtained from (7) when r0 =0 and r> r0
(although the absolute value is suppressed in (1) and (7a)).
The geometrical relations between the components of the
metric tensor are inviolable. Therefore, in the case of (1), the
following obtain,

D= |r|= r ,

Rc=
√
|r|2=

√
r2= r ,

χ=2π|r|=2πr ,

Rp=

|r|∫

0

d |r| =

r∫

0

dr= r .

(11)

However, equation (1) hides the true arbitrary nature of
the origin r0 . Therefore, the correct geometrical relations
have gone unrecognized by the orthodox analysis. I note, for
instance, that G. Szekeres [6], in his well-known paper of
1960, considered the line-element,

ds2= dr2 + r2dω2 , (12)

and proposed the transformation r= r − 2m, to allegedly
carry (12) into,

ds2= dr2 + (r − 2m)2 dω2 . (13)

The transformation to (13) by r= r − 2m is incorrect:
by it Szekeres should have obtained,

ds2= dr2 + (r + 2m)
2
dω2 . (14)

If one sets r= r − 2m, then (13) obtains from (12).
Szekeres then claims on (13),
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“Here we have an apparent singularity on the
sphere r=2m, due to a spreading out of the
origin over a sphere of radius 2m. Since the
exterior region r > 2m represents the whole of
Euclidean space (except the origin), the interior
r < 2m is entirely disconnected from it and re-
presents a distinct manifold.”

His claims about (13) are completely false. He has made
an incorrect assumption about the origin. His equation (12)
describes a sphere of radius r centred at r=0, being identical
to the spatial component of (1). His equation (13) is precisely
the spatial component of equation (7) with r0 =2m and
r> r0 , and therefore actually describes a sphere of radius
D= r − 2m centred at r0=2m. His claim that r=2m
describes a sphere is due to his invalid assumption that
r=0 has some intrinsic meaning. It did not come from
his transformation. The claim is false. Consequently there is
no interior region at all and no distinct manifold anywhere.
All Szekeres did unwittingly was to move the origin for a
sphere from the coordinate value r0 =0 to the coordinate
value r0 =2m. In fact, he effectively repeated the same
error committed by Hilbert [8] in 1916, an error, which in
one guise or another, has been repeated relentlessly by the
orthodox theorists.

It is now plain that r is neither a radius nor a coordinate
in the metric (6), but instead gives rise to a parameterization
of the relevant radii Rc and Rp on (6).

Consider (7) and introduce a test particle at each of the
points r0 and r. Let the particle located at r0 acquire mass.
The coordinates r0 and r do not change, however in the
gravitational field (Mg, gg) the distance between the point-
mass and the test particle, and the radius of curvature of a
great circle, centred at r0 and reaching to r in the parameter
space (Ms, gs), will no longer be given by (11).

The solution of (6) for the vacuum field of a point-
mass will yield a mapping of the Euclidean distance D =
|r − r0| into a non-Euclidean proper radius RP (r) in the
pseudo-Riemannian manifold (Mg, gg), locally generated by
the presence of matter at the r-parameter r0 ∈ (Ms, gs), i. e.
at the invariant point Rp(r0)≡ 0 in (Mg, gg).

Transform (6) by setting,

Rc=
√
C(D(r))=

χ

2π
, (15)

D= |r − r0| .

Then (6) becomes,

ds2 = A∗(Rc)dt
2 −B∗(Rc)dR

2
c −

−R2c
(
dθ2 + sin2 θdϕ2

)
.

(16)

In the usual way one obtains the solution to (16) as,

ds2=

(
Rc − α
Rc

)

dt2 −

−

(
Rc

Rc − α

)

dR2c −R
2
c(dθ

2 + sin2 θdϕ2) ,

α=2m,

which by using (15) becomes,

ds2=

(√
C − α
√
C

)

dt2 −

−

( √
C

√
C−α

)
C ′2

4C

[
r−r0
|r−r0|

]2
dr2 − C(dθ2+ sin2 θdϕ2) ,

that is,

ds2=

(√
C − α
√
C

)

dt2 −

−

( √
C

√
C − α

)
C ′2

4C
dr2 − C(dθ2 + sin2 θdϕ2) ,

(17)

which is the line-element derived by Abrams [7] by a dif-
ferent method. Alternatively one could set r=Rc in (6), as
Hilbert in his work [8] effectively did, to obtain the familiar
Droste/Weyl/(Hilbert) line-element,

ds2=

(
r − α
r

)

dt2 −

(
r

r − α

)

dr2−

− r2(dθ2 + sin2 θdϕ2) ,

(18)

and then noting, as did J. Droste [9] and A. Eddington [10],
that r2 can be replaced by a general analytic function of
r without destroying the spherical symmetry of (18). Let
that function be C(D(r)), D= |r − r0|, and so equation
(17) is again obtained. Equation (18) taken literally is an
incomplete particular solution since the boundary on the
r-parameter has not yet been rigorously established, but
equation (17) provides a way by which the form of C(D(r))
might be determined to obtain a means by which all particular
solutions, in terms of an infinite sequence, may be con-
structed, according to the general prescription of Eddington.
Clearly, the correct form of C(D(r)) must naturally yield the
Droste/Weyl/(Hilbert) solution, as well as the true Schwarz-
schild solution [11], and the Brillouin solution [12], amongst
the infinitude of particular solutions that the field equations
admit. (Fiziev [13] has also shown that there exists an infinite
number of solutions for the point-mass and that the Hilbert
black hole is not consistent with general relativity.)

In the gravitational field only the circumference χ of a
great circle is a measurable quantity, from which Rc and Rp
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are calculated. To obtain the metric for the field in terms of
χ, use (15) in (17) to yield,

ds2=

(

1−
2πα

χ

)

dt2 −

(

1−
2πα

χ

)−1
dχ2

4π2
−

−
χ2

4π2
(
dθ2 + sin2 θdϕ2

)
,

α=2m.

(19)

Equation (19) is independent of the r-parameter entirely.
Since only χ is a measurable quantity in the gravitational
field, (19) constitutes the correct solution for the gravitational
field of the simple point-mass. In this way (19) is truely
the only solution to Einstein’s field equations for the simple
point-mass.

The only assumptions about r that I make are that the
point-mass is to be located somewhere, and that somewhere
is r0 in parameter space (Ms, gs), the value of which must
be obtained rigorously from the geometry of equation (17),
and that a test particle is located at some r 6= r0 in parameter
space, where r, r0 ∈<.

The geometrical relationships between the components
of the metric tensor of (1) must be precisely the same in
(6), (17), (18), and (19). Therefore, the circumference χ of a
great circle on (17) is given by,

χ=2π
√
C(D(r)) ,

and the proper distance (proper radius) Rp(r) on (6) is,

Rp(r)=

∫ √
B(D(r))dr .

Taking B(D(r)) from (17) gives,

Rp(D)=

∫ √ √
C

√
C − α

C ′

2
√
C
dr =

=

√
√
C(D)

(√
C(D)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(D) +

√√
C(D)− α

K

∣
∣
∣
∣
∣
∣
,

(20)

D= |r − r0| ,

K = const.

The relationship between r and Rp is,

as r→ r±0 , Rp(r)→ 0+ ,

or equivalently,

as D→ 0+, Rp(r)→ 0+ ,

where r0 is the parameter space location of the point-mass.
Clearly 06Rp<∞ always and the point-mass is invariantly
located at Rp(r0)≡ 0 in (Mg, gg), a manifold with boundary.

From (20),

Rp(r0)≡ 0=

√
√
C(r0)

(√
C(r0)− α

)

+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(r0) +

√√
C(r0)− α

K

∣
∣
∣
∣
∣
∣
,

and so, √
C(r0)≡α, K =

√
α.

Therefore (20) becomes

Rp(r)=

√
√
C(|r−r0|)

(√
C(|r−r0|)− α

)

+

+α ln

∣
∣
∣
∣
∣
∣

√√
C(|r−r0|) +

√√
C(|r−r0|)− α

√
α

∣
∣
∣
∣
∣
∣
,

(21)

r, r0 ∈< ,

and consequently for (19),

2πα<χ<∞ .

Equation (21) is the required mapping. One can see
that r0 cannot be determined: in other words, r0 is entirely
arbitrary. One also notes that (17) is consequently singular
only when r= r0 in which case g00=0,

√
Cn(r0)≡α,

and Rp(r0)≡ 0. There is no value of r that makes g11=0.
One therefore sees that the condition for singularity in the
gravitational field is g00= 0; indeed g00(r0)≡ 0.

Clearly, contrary to the orthodox claims, r does not
determine the geometry of the gravitational field directly.
It is not a radius in the gravitational field. The quantity
Rp(r) is the non-Euclidean radial coordinate in the pseudo-
Riemannian manifold of the gravitational field around the
point Rp=0, which corresponds to the parameter point r0 .

Now in addition to the established fact that, in the case of
the simple (i .e . non-rotating) point-mass, the lower bound on
the radius of curvature

√
C(D(r0))≡α, C(D(r)) must also

satisfy the no matter condition so that when α=0, C(D(r))
must reduce to,

C(D(r))≡
∣
∣r − r0

∣
∣2 =(r − r0)

2 ; (22)

and it must also satisfy the far-field condition (spatially
asympotically flat),

lim
r→±∞

C(D(r))
(
r − r0

)2 → 1. (23)
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When r0 =0 equation (22) reduces to,

C(|r|)≡ r2 ,

and equation (23) reduces to,

lim
r→±∞

C(|r|)
r2

→ 1.

Furthermore, C(r) must be a strictly monotonically in-
creasing function of r to satisfy (15) and (21), and C ′(r) 6=0
∀ r 6= r0 to satisfy (17) from (2a). The only general form for
C(D(r)) satisfying all the required conditions (the Metric
Conditions of Abrams [7]), from which an infinite sequence
of particular solutions can be obtained [1] is,

Cn(D(r))=
(∣
∣r − r0

∣
∣n + αn

) 2
n

, (24)

n∈<+, r∈<, r0 ∈< ,

where n and r0 are arbitrary. Then clearly, when α=0,
equations (7) are recovered from equation (17) with (24),
and when r0 =0 and α=0, equation (1) is recovered.

According to (24), when r0 =0 and r> r0 , and n is
taken in integers, the following infinite sequence of particular
solutions obtains,

C1(r)= (r + α)
2 (Brillouin’s solution [12])

C2(r)= r
2 + α2

C3(r)= (r
3 + α3)

2
3 (Schwarzschild’s solution [11])

C4(r)= (r
4 + α4)

1
2 , etc.

When r0 =α and r∈<+, and n is taken in integers,
the following infinite sequence of particular solutions is
obtained,

C1(r)= r
2 (Droste/Weyl/(Hilbert) [9, 14, 8])

C2(r)= (r − α)2 + α2

C3(r)= [(r − α)3 + α3]
2
3

C4(r)= [(r − α)4 + α4]
1
2 , etc.

The Schwarzschild forms obtained from (24) satisfy Ed-
dington’s prescription for a general solution.

By (17) and (24) the circumference χ of a great circle in
the gravitational field is,

χ=2π
√
Cn(r)= 2π

(
|r − r0|

n + αn
) 1
n , (25)

and the proper radius Rp(r) is, from (21),

Rp(r)=

√
(
|r−r0|n+αn

)1
n

[(
|r−r0|n+αn

)1
n −α

]
+

+α ln

∣
∣
∣
∣
∣
∣

(
|r−r0|

n+αn
) 1
2n+

√(
|r−r0|n+αn

)1
n −α

√
α

∣
∣
∣
∣
∣
∣
.

(26)

According to (24),
√
Cn(D(r0))≡α is a scalar invari-

ant, being independent of the value of r0 . Nevertheless the
field is singular at the point-mass. By (21),

lim
r→±∞

R2p
|r − r0|2

=1 ,

and so,

lim
r→±∞

R2p
Cn(D(r))

= lim
r→±∞

R2p
|r−r0 |

2

Cn(D(r))
|r−r0 |

2

=1 .

Now the ratio χ
Rp

> 2π for all finite Rp, and

lim
r→±∞

χ

Rp
=2π ,

lim
r→r±0

χ

Rp
=∞ ,

so Rp(r0)≡ 0 is a quasiregular singularity and cannot be
extended. The singularity occurs when parameter r= r0 ,
irrespective of the values of n and r0 . Thus, there is no
sense in the orthodox notion that the region 0<r<α is
an interior region on the Hilbert metric, since r0 6=0 on
that metric. Indeed, by (21) and (24) r0 =α on the Hilbert
metric. Equation (26) amplifies the fact that it is the distance
D= |r − r0| that is mapped from parameter space into the
proper radius (distance) in the gravitational field, and a dis-
tance must be > 0.

Consequently, strictly speaking, r0 is not a singular point
in the gravitational field because r is merely a parameter for
the radial quantities in (Mg, gg); r is neither a radius nor
a coordinate in the gravitational field. No value of r can
really be a singular point in the gravitational field. However,
r0 is mapped invariantly to Rp=0, so r= r0 always gives
rise to a quasiregular singularity in the gravitational field, at
Rp(r0)≡ 0, reflecting the fact that r0 is the boundary on the
r-parameter. Only in this sense should r0 be considered a
singular point.

The Kretschmann scalar f =RαβγδRαβγδ for equation
(17) with equation (24) is,

f =
12α2

[Cn(D(r))]3
=

12α2

(
|r − r0|n + αn

) 6
n

. (27)

Taking the near-field limit on (27),

lim
r→ r±0

f =
12

α4
,

so f(r0)≡
12
α4 is a scalar invariant, irrespective of the values

of n and r0, invalidating the orthodox assumption that the
singularity must occur where the curvature is unbounded.
Indeed, no curvature singularity can arise in the gravitational
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field. The orthodox analysis claims an unbounded curvature
singularity at r0 =0 in (18) purely and simply by its invalid
initial assumptions, not by mathematical imperative. It incor-
rectly assumes

√
Cn(r)≡Rp(r)≡ r, then with its additional

invalid assumption that 0<r<α is valid on the Hilbert
metric, finds from (27),

lim
r→ 0+

f(r)=∞ ,

thereby satisfying its third invalid assumption, by ad hoc
construction, that a singularity occurs only where the curva-
ture invariant is unbounded.

The Kruskal-Szekeres form has no meaning since the r-
parameter is not the radial coordinate in the gravitational
field at all. Furthermore, the value of r0 being entirely
arbitrary, r0 =0 has no particular significance, in contrast
to the mainstream claims on (18).

The value of the r-parameter of a certain spacetime event
depends upon the coordinate system chosen. However, the
proper radiusRp(D(r)) and the curvature radius

√
Cn(D(r))

of that event are independent of the coordinate system. This
is easily seen as follows. Consider a great circle centred at
the point-mass and passing through a spacetime event. Its
circumference is measured at χ. Dividing χ by 2π gives,

χ

2π
=
√
Cn(D(r)) .

Putting χ
2π =

√
Cn(D(r)) into (21) gives the proper ra-

dius of the spacetime event,

Rp(r)=

√
χ

2π

( χ
2π
− α

)
+ α ln

∣
∣
∣
∣
∣
∣

√
χ
2π +

√
χ
2π − α

√
α

∣
∣
∣
∣
∣
∣
,

2πα6χ<∞,

which is independent of the coordinate system chosen. To
find the r-parameter in terms of a particular coordinate sys-
tem set,

χ

2π
=
√
Cn(D(r))=

(∣
∣r − r0

∣
∣n + αn

) 1
n

,

so

|r − r0|=
[( χ
2π

)n
− αn

] 1
n

.

Thus r for any particular spacetime event depends upon
the arbitrary values n and r0 , which establish a coordinate
system. Then when r= r0 , Rp=0, and the great circum-
ference χ=2πα, irrespective of the values of n and r0 . A
truly coordinate independent description of spacetime events
has been attained.

The mainstream insistence, on the Hilbert solution (18),
without proof, that the r-parameter is a radius of sorts in
the gravitational field, the insistence that its r can, without

proof, go down to zero, and the insistence, without proof,
that a singularity in the field must occur only where the
curvature is unbounded, have produced the irrational notion
of the black hole. The fact is, the radius always does go
down to zero in the gravitational field, but that radius is
the proper radius Rp (Rp=0 corresponding to a coordinate
radius D=0), not the curvature radius Rc, and certainly not
the r-parameter.

There is no escaping the fact that r0 =α 6=0 in (18).
Indeed, if α=0, (18) must give,

ds2= dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

the metric of Special Relativity when r0 =0. One cannot
set the lower bound r0 =α=0 in (18) and simultaneously
keep α 6=0 in the components of the metric tensor, which is
effectively what the orthodox analysis has done to obtain the
black hole. The result is unmitigated nonsense. The correct
form of the metric (18) is obtained from the associated
Schwarzschild form (24): C(r)= r2, r0 =α. Furthermore,
the proper radius of (18) is,

Rp(r)=

r∫

α

√
r

r − α
dr ,

and so

Rp(r)=
√
r (r − α) + α ln

∣
∣
∣
∣

√
r +

√
r − α

√
α

∣
∣
∣
∣ .

Then,

r→α+⇒D= |r − α|= (r − α) → 0 ,

and in (Mg, gg),

r2≡C(r)→C(α)=α2⇒Rp(r)→Rp(α)= 0 .

Thus, the r-parameter is mapped to the radius of cur-
vature

√
C(r)= χ

2π by ψ1, and the radius of curvature is
mapped to the proper radius Rp by ψ2. With the mappings
established the r-parameter can be mapped directly to Rp
by ψ(r)=ψ2 ◦ψ1(r). In the case of the simple point-mass
the mapping ψ1 is just equation (24), and the mapping ψ2 is
given by (21).

The local acceleration of a test particle approaching the
point-mass along a radial geodesic has been determined by
N. Doughty [15] at,

a=

√
−grr (−grr) |gtt,r|

2gtt
. (28)

For (17) the acceleration is,

a=
α

2C
3
4
n

(
C

1
2
n − α

) 1
2

.
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Then,
lim
r→ r±0

a=∞,

since Cn(r0)≡α
2; thereby confirming that matter is indeed

present at the point Rp(r0)≡ 0.
In the case of (18), where r∈<+,

a=
α

2r
3
2 (r − α)

1
2

,

and r0 =α by (24), so,

lim
r→α+

a=∞ .

Y. Hagihara [16] has shown that all those geodesics which
do not run into the boundary at r=α on (18) are complete.
Now (18) with α<r<∞ is a particular solution by (24),
and r0 =α is an arbitrary point at which the point-mass is
located in parameter space, therefore all those geodesics in
(Mg, gg) not running into the point Rp(r0)≡ 0 are complete,
irrespective of the value of r0 .

Modern relativists do not interpret the Hilbert solution
over 0<r<∞ as Hilbert did, instead making an arbitrary
distinction between 0<r<α and α<r<∞. The modern
relativist maintains that one is entitled to just “choose” a
region. However, as I have shown, this claim is inadmissible.
J. L. Synge [17] made the same unjustified assumptions on
the Hilbert line-element. He remarks,

“This line-element is usually regarded as having
a singularity at r=α, and appears to be valid
only for r >α. This limitation is not commonly
regarded as serious, and certainly is not so if
the general theory of relativity is thought of
solely as a macroscopic theory to be applied to
astronomical problems, for then the singularity
r=α is buried inside the body, i. e. outside the
domain of the field equations Rmn=0. But if we
accord to these equations an importance com-
parable to that which we attach to Laplace’s eq-
uation, we can hardly remain satisfied by an ap-
peal to the known sizes of astronomical bodies.
We have a right to ask whether the general
theory of relativity actually denies the existence
of a gravitating particle, or whether the form
(1.1) may not in fact lead to the field of a particle
in spite of the apparent singularity at r=α.”

M. Kruskal [18] remarks on his proposed extension of the
Hilbert solution into 0<r< 2m,

“That this extension is possible was already in-
dicated by the fact that the curvature invariants
of the Schwarzschild metric are perfectly finite
and well behaved at r=2m∗.”

which betrays the very same unproven assumptions.
G. Szekeres [6] says of the Hilbert line-element,

“. . . it consists of two disjoint regions, 0 < r
< 2m, and r > 2m, separated by the singular
hypercylinder r=2m.”

which again betrays the same unproven assumptions.
I now draw attention to the following additional problems

with the Kruskal-Szekeres form.

(a) Applying Doughty’s acceleration formula (28) to the
Kruskal-Szekeres form, it is easily found that,

lim
r→ 2m−

a=∞.

But according to Kruskal-Szekeres there is no matter
at r=2m. Contra-hype.

(b) As r→ 0, u2−v2→−1. These loci are spacelike, and
therefore cannot describe any configuration of matter
or energy.

Both of these anomalies have also been noted by Abrams
in his work [7]. Either of these features alone proves the
Kruskal-Szekeres form inadmissible.

The correct geometrical analysis excludes the interior
Hilbert region on the grounds that it is not a region at all,
and invalidates the assumption that the r-parameter is some
kind of radius and/or coordinate in the gravitational field.
Consequently, the Kruskal-Szekeres formulation is meanin-
gless, both physically and mathematically. In addition, the
so-called “Schwarzschild radius” (not due to Schwarzschild)
is also a meaningless concept - it is not a radius in the
gravitational field. Hilbert’s r=2m is indeed a point, i. e. the
“Schwarzschild radius” is a point, in both parameter space
and the gravitational field: by (21), Rp(2m)= 0.

The form of the Hilbert line-element is given by Karl
Schwarzschild in his 1916 paper, where it occurs there in
the equation he numbers (14), in terms of his “auxiliary
parameter” R. However Schwarzschild also includes there

the equation R=
(
r3 + α3

) 1
3 , having previously established

the range 0<r<∞. Consequently, Schwarzschild’s auxi-
liary parameter R (which is actually a curvature radius)
has the lower bound R0=α=2m. Schwarzschild’s R2 and
Hilbert’s r2 can be replaced with any appropriate analytic
function Cn(r) as given by (24), so the range and the bound-
ary on r will depend upon the function chosen. In the case
of Schwarzschild’s particular solution the range is 0<r<∞

(since r0 =0, C3(r) =
(
r3 + α3

) 2
3 ) and in Hilbert’s par-

ticular solution the range is 2m<r<∞ (since r0 =2m,
C1(r)= r

2).
The geometry and the invariants are the important prop-

erties, but the conventional analysis has shockingly erred in
its geometrical analysis and identification of the invariants,
as a direct consequence of its initial invalidated assum-
ptions about the r-parameter, and clings irrationally to these
assumptions to preserve the now sacrosanct, but nonetheless
ridiculous, black hole.
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The only reason that the Hilbert solution conventionally
breaks down at r=α is because of the initial arbitrary and
incorrect assumptions made about the parameter r. There is
no pathology of coordinates at r=α. If there is anything
pathological about the Hilbert metric it has nothing to do
with coordinates: the etiology of a pathology must therefore
be found elewhere.

There is no doubt that the Kruskal-Szekeres form is a
solution of the Einstein vacuum field equations, however that
does not guarantee that it is a solution to the problem. There
exists an infinite number of solutions to the vacuum field
equations which do not yield a solution for the gravitational
field of the point-mass. Satisfaction of the field equations is
a necessary but insufficient condition for a potential solution
to the problem. It is evident that the conventional conditions
(see [19]) that must be met are inadequate, viz.,

1. be analytic;

2. be Lorentz signature;

3. be a solution to Einstein’s free-space field equations;

4. be invariant under time translations;

5. be invariant under spatial rotations;

6. be (spatially) asymptotically flat;

7. be inextendible to a wordline L;

8. be invariant under spatial reflections;

9. be invariant under time reflection;

10. have a global time coordinate.

This list must be augmented by a boundary condition at
the location of the point-mass, which is, in my formulation of
the solution, r→ r±0 ⇒ Rp(r)→ 0. Schwarzschild actually
applied a form of this boundary condition in his analysis.
Marcel Brillouin [12] also pointed out the necessity of such a
boundary condition in 1923, as did Abrams [7] in more recent
years, who stated it equivalently as, r→ r0⇒C(r)→α2.
The condition has been disregarded or gone unrecognised
by the mainstream authorities. Oddly, the orthodox analysis
violates its own stipulated condition for a global time coor-
dinate, but quietly disregards this inconsistency as well.

Any constants appearing in a valid solution must appear
in an invariant derived from the solution. The solution I
obtain meets this condition in the invariance, at r= r0 , of
the circumference of a great circle, of Kepler’s 3rd Law
[1, 2], of the Kretschmann scalar, of the radius of curvature
C(r0)=α

2, of Rp(r0)≡ 0, and not only in the case of the
point-mass, but also in all the relevant configurations, with
or without charge.

The fact that the circumference of a great circle ap-
proaches the finite value 2πα is no more odd than the
conventional oddity of the change in the arrow of time in
the “interior” Hilbert region. Indeed, the latter is an even
more violent oddity: inconsistent with Einstein’s theory. The
finite limit of the said circumference is consistent with the

geometry resulting from Einstein’s gravitational tensor. The
variations of θ and ϕ displace the proper radius vector,
Rp(r0)≡ 0, over the spherical surface of finite area 4πα2,
as noted by Brillouin. Einstein’s theory admits nothing more
pointlike.

Objections to Einstein’s formulation of the gravitational
tensor were raised as long ago as 1917, by T. Levi-Civita
[20], on the grounds that, from the mathematical standpoint,
it lacks the invariant character actually required of General
Relativity, and further, produces an unacceptable consequen-
ce concerning gravitational waves (i.e they carry neither
energy nor momentum), a solution for which Einstein vague-
ly appealed ad hoc to quantum theory, a last resort obviated
by Levi-Civita’s reformulation of the gravitational tensor
(which extinguishes the gravitational wave), of which the
conventional analysis is evidently completely ignorant: but
it is not pertinent to the issue of whether or not the black
hole is consistent with the theory as it currently stands on
Einstein’s gravitational tensor.

3 The geometry of the simple point-charge

The fundamental geometry developed in section 2 is the same
for all the configurations of the point-mass and the point-
charge. The general solution for the simple point-charge
[2] is,

ds2=

(

1−
α
√
Cn
+
q2

Cn

)

dt2−

(

1−
α
√
Cn
+
q2

Cn

)−1
×

×
C ′n

2

4Cn
dr2 − Cn(dθ

2 + sin2 θdϕ2) ,

(29)

Cn(r) =
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β = m+
√
m2 − q2 , q2 < m2 ,

n ∈ <+, r, r0 ∈< .

where n and r0 are arbitrary.
From (29), the radius of curvature is given by,

Rc=
√
Cn(r)=

(∣
∣r − r0

∣
∣n + βn

) 1
n

,

which gives for the near-field limit,

lim
r→ r±0

√
Cn(r)=

√
Cn(r0)=β=m+

√
m2 − q2 .

The expression for the proper radius is,

Rp(r) =

√
C(r)− α

√
C(r) + q2 +

+ m ln

∣
∣
∣
∣
∣
∣

√
C(r)−m+

√
C(r)−α

√
C(r)+q2

√
m2−q2

∣
∣
∣
∣
∣
∣
.
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Then
lim
r→ r±0

Rp(r)= Rp(r0)≡ 0 .

The ratio χ
Rp
> 2π for all finite Rp, and

lim
r→±∞

χ

Rp(r)
= 2π ,

lim
r→ r±0

χ

Rp(r)
=∞ ,

so Rp(r0)≡ 0 is a quasiregular singularity and cannot be
extended.

Now, since the circumference χ of a great circle is the
only measurable quantity in the gravitational field, the unique
solution for the field of the simple point-charge is,

ds2 =

(

1−
2πα

χ
+
4π2q2

χ2

)

dt2−

−

(

1−
2πα

χ
+
4π2q2

χ2

)−1
dχ2

4π2
−

−
χ2

4π2
(dθ2 + sin2 θdϕ2) ,

(30)

2π
(
m+

√
m2 − q2

)
<χ<∞ .

Equation (30) is entirely independent of the r-
parameter.

In terms of equation (29), the Kretschmann scalar takes
the form [21],

f(r)=

8

[

6
(
m
√
Cn(r)− q2

)2
+ q4

]

C4n(r)
, (31)

so

lim
r→ r±0

f(r)= f(r0)=
8
[
6
(
mβ − q2

)2
+ q4

]

β8

=

8

[

6
(
m2 +m

√
m2 − q2 − q2

)2
+ q4

]

(m+
√
m2 − q2)8

,

which is a scalar invariant. Thus, no curvature singularity
can arise in the gravitational field of the simple point-charge.

The standard analysis incorrectly takes
√
Cn(r)≡Rp(r)

≡ r, then with this assumption, and the additional invalid
assumption that 0<r<∞ is true on the Reissner-Nordstrom
solution, obtains from equation (31) a curvature singularity at
r=0, satisfying, by an ad hoc construction, its third invalid
assumption that a singularity can only arise at a point where
the curvature invariant is unbounded.

Equation (29) is singular only when g00=0; indeed
g00(r0)≡ 0. Hence, 06 g006 1.

Applying Doughty’s acceleration formula (28) to
equation (29) gives,

a=

∣
∣
∣m
√
Cn(r)− q2

∣
∣
∣

Cn(r)
√
Cn(r)− α

√
Cn(r) + q2

.

Then,

lim
r→ r±0

a=

∣
∣mβ − q2

∣
∣

β2
√
β2 − αβ + q2

=∞ ,

confirming that matter is indeed present at Rp(r0)≡ 0.

4 The geometry of the rotating point-charge

The usual expression for the Kerr-Newman solution is, in
Boyer-Lindquist coordinates,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
r2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dr2−ρ2dθ2,

(32)

a =
L

m
, ρ2 = r2 + a2 cos2 θ ,

Δ = r2 − rα+ a2 + q2, 0 < r <∞ .

This metric is alleged to have an event horizon rh and
a static limit rb, obtained by setting Δ= 0 and g00=0
respectively, to yield,

rh=m±
√
m2 − a2 − q2

rb=m±
√
m2 − q2 − a2 cos2 θ .

These expressions are conventionally quite arbitrarily
taken to be,

rh=m+
√
m2 − a2 − q2

rb=m+
√
m2 − q2 − a2 cos2 θ ,

apparently because no-one has been able to explain away the
meaning of the the “inner” horizon and the “inner” static
limit. This in itself is rather disquieting, but nonetheless
accepted with furtive whispers by the orthodox theorists.
It is conventionally alleged that the “region” between rh and
rb is an ergosphere, in which spacetime is dragged in the
direction of the of rotation of the point-charge.

The conventional taking of the r-parameter for a radius
in the gravitational field is manifest. However, as I have
shown, the r-parameter is neither a coordinate nor a radius
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in the gravitational field. Consequently, the standard analysis
is erroneous.

I have already derived elsewhere [2] the general solution
for the rotating point-charge, which I write in most general
form as,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
Cn + a

2
)
dϕ− adt

]2
−
ρ2

Δ

C ′n
2

4Cn
dr2 − ρ2dθ2 ,

Cn(r) =
(∣
∣r − r0

∣
∣n + βn

) 2
n

, n ∈ <+ , (33)

r, r0 ∈ <, β = m+
√
m2 − q2 − a2 cos2 θ ,

a2 + q2 < m2, a =
L

m
, ρ2 = Cn + a

2 cos2 θ ,

Δ = Cn − α
√
Cn + q

2 + a2 ,

where n and r0 are arbitrary.
Once again, since only the circumference of a great circle

is a measurable quantity in the gravitational field, the unique
general solution for all configurations of the point-mass is,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2

[(
χ2

4π2
+ a2

)

dϕ− adt

]2
−
ρ2

Δ

dχ2

4π2
− ρ2dθ2 ,

a2 + q2 < m2, a =
L

m
, ρ2 =

χ2

4π2
+ a2 cos2 θ , (34)

Δ =
χ2

4π2
−
αχ

2π
+ q2 + a2 ,

2π
(
m+

√
m2 − q2 − a2 cos2 θ

)
<χ<∞ .

Equation (34) is entirely independent of the r-parameter.
Equation (34) emphasizes the fact that the concept of a

point in pseudo-Euclidean Minkowski space is not attainable
in the pseudo-Riemannian gravitational field. A point-mass
(or point-charge) is characterised by a proper radius of zero
and a finite, non-zero radius of curvature. Einstein’s universe
admits of nothing more pointlike. The relativists have assum-
ed that, insofar as the point-mass is concerned, the Minkow-
ski point can be achieved in Einstein space, which is not
correct.

The radius of curvature of (33) is,

√
Cn(r)=

(
|r − r0|

n
+ βn

) 1
n , (35)

which goes down to the limit,

lim
r→ r±0

√
Cn(r)=

√
Cn(r0)=β=

=m+
√
m2 − q2 − a2 cos2 θ ,

(36)

where the proper radius Rp(r0)≡ 0. The standard analysis
incorrectly takes (36) for the “radius” of its static limit.

It is evident from (35) and (36) that the radius of curva-
ture depends upon the direction of radial approach. There-
fore, the spacetime is not isotropic. Only when a=0 is
spacetime isotropic. The point-charge is always located at
Rp(r0)≡ 0 in (Mg, gg), irrespective of the value of n, and
irrespective of the value of r0 . The conventional analysis
has failed to realise that its rb is actually a varying radius
of curvature, and so incorrectly takes it as a measurable
radius in the gravitational field. It has also failed to realise
that the location of the point-mass in the gravitational field
is not uniquely specified by the r-coordinate at all. The
point-mass is always located just where Rp=0 in (Mg, gg)
and its “position” in (Mg, gg) is otherwise meaningless.
The test particle has already encountered the source of the
gravitational field when the radius of curvature has the value
Cn(r0)=β. The so-called ergosphere also arises from the
aforesaid misconceptions.

When θ=0 the limiting radius of curvature is,

√
Cn(r0)=β=m+

√
m2 − q2 − a2 , (37)

and when θ= π
2 , the limiting radius of curvature is,

√
Cn(r0)=β=m+

√
m2 − q2 ,

which is the limiting radius of curvature for the simple point-
charge (i. e. no rotation) [2].

The standard analysis incorrectly takes (37) as the
“radius” of its event horizon.

If q=0, then the limiting radius of curvature when
θ=0 is,

√
Cn(r0)=β=m+

√
m2 − a2 , (38)

and the limiting radius of curvature when θ= π
2 is,

√
Cn(r0)=β=2m=α ,

which is the radius of curvature for the simple point-mass.
The radii of curvature at intermediate azimuth are given

generally by (36). In all cases the near-field limits of the radii
of curvature give Rp(r0)≡ 0.

Clearly, the limiting radius of curvature is minimum at the
poles and maximum at the equator. At the equator the effects
of rotation are not present. A test particle approaching the
rotating point-charge or the rotating point-mass equatorially
experiences the effects only of the non-rotating situation of
each configuration respectively. The effects of the rotation
manifest only in the values of azimuth other than π

2 . There is
no rotational drag on spacetime, no ergosphere and no event
horizon, i. e. no black hole.
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The effects of rotation on the radius of curvature will
necessarily manifest in the associated form of Kepler’s 3rd
Law, and the Kretschmann scalar [22].

I finally remark that the fact that a singularity arises in
the gravitational field of the point-mass is an indication that
a material body cannot collapse to a point, and therefore
such a model is inadequate. A more realistic model must be
sought in terms of a non-singular metric, of which I treat
elsewhere [23].

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).
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