
ME 352 Supplemental Notes:

Infinite and Truncated Series

1 Learning objectives

After studying these notes you should. . .

• Be able to define an infinite series

• Be able to distinguish geometric series from a power series

• Be able to write the generic formula for a Taylor series

• Be able to write the first three terms of the series representations of ex,
sin(x), and cos(x).

2 Infinite Series: A Review

2.1 Definitions

Sequence: a function whose domain is a set of positive integers

(n, f(n)) : n = 1, 2, 3, ...

Example: f(n) = 1/n

Example: (Fibonacci)

f(1) = 1 (n = 1)
f(2) = 1 (n = 2)
f(n) = f(n− 2) + f(n− 1) n = 3, 4, . . .

Exercise: Write out the first ten terms of the Fibonacci series

2.2 Limit of a Sequence

• limn→∞ f(n) = L

• Limit of f(n) exists only if its graph has an asymptote

• Limit may or may not exist

Example:

f(n) = 1/n has the limit 0
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2.3 Sequence of Partial Sums 2

Example:

f(n) = n/(n + 1) has the limit 1
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2.3 Sequence of Partial Sums

s1 = u1

s2 = u1 + u2

s3 = u1 + u2 + u3

. . .

sn = u1 + u2 + u3 + . . . + un =
n∑

k=1

uk

Each member of the sequence is a sum of n terms. The sequence can be defined
recursively

s1 = u1

sn = sn−1 + un n > 1

where un is the nth term.

2.4 Infinite Series

A series (usually partial sums) with an infinite number of terms

Example:

1 + 2 + 3 + 4 + . . .

Example:

1 + 1/2 + 1/3 + 1/4 + . . .
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2.5 Convergence of Infinite Series 3

2.5 Convergence of Infinite Series

If a series converges, it has a limit. However, the existence of a limit is a
necessary condition, not a sufficient condition

Example

f(n) = 1 + 2 + 3 + 4 + . . . n does not converge.
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Example

f(n) = 1 + 1/2 + 1/3 + 1/4 + . . . + 1/n does not converge.

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

n

S
um

 o
f 1

, 1
/2

, 1
/3

, .
..,

 1
/n

A series
u1 + u2 + . . . + un + . . .

will not converge unless limn→∞ un = 0. This is a necessary, not sufficient
condition
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2.6 Geometric Series 4

2.6 Geometric Series

An infinite series of the form

a + ax + ax2 + ax3 + . . . + axn + . . .

is called a Geometric Series. If a 6= 0, then the ratio of successive terms is x,
i.e.

axn

axn−1
= x

Consider the sum of the first n terms of the geometric series

sn = a + ax + ax2 + ax3 + . . . + axn−1 (1)

Multiply both sides by x

xsn = ax + ax2 + ax3 + ax4 + . . . + axn (2)

Subtract Equation (2) from Equation (1)

(1− x)sn = a− axn

= a(1− xn)

If x 6= 1 divide both sides by 1− x to get

sn =
a(1− xn)

1− x
(x 6= 1) (3)

Now, assume that |x| < 1 and take the limit as n→∞

lim
n→∞

sn = lim
n→∞

a(1− xn)
1− x

=
a

1− x
|x| < 1

Summary If |x| < 1, then

a + ax + ax2 + ax3 + . . . + axn + . . . =
a

1− x

2.7 Power series expansions

An power series is an expression of the form

∞∑
k=0

akxk = a0 + a1x + a2x
2 + . . . + akxk + . . .

The geometric series is a power series with all ak = a, where a is a constant.
Note that a truncated power series is just a polynomial.
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2.8 Taylor series expansions

Taylor series expansions are special power series designed to approximate a
function.

Given y = f(x), we seek polynomials of the form

fn(x) = a0 + a1x + a2x
2 + . . . + anxn

such that fn(x) is a good approximation to f(x).
Consider the constant approximation to f(x)

f0(x) = a0

The best choice of a0 is the value of the function at some point. Designate x̃ as
the point where f0(x) and f(x) are supposed to agree. Hence, a0 = f(x̃)

Next consider the linear approximation to f(x)

f1(x) = a0 + a1x

We want the good agreement at x̃ so rewrite this as

f1(x− x̃) = a0 + a1(x− x̃)

The best choice of a0 is once again f(x̃). Geometric reasoning shows that the
best choice of a1 is the slope of the function f(x) at x = x̃. Therefore, the linear
approximation to f(x) near x̃ is

f1(x = x̃) = f(x̃) + (x− x̃)
df

dx

∣∣∣∣
x=x̃

Repeating this argument gives the Taylor series with remainder

f(x) = f(x̃) + (x− x̃)
df

dx

∣∣∣∣
x=x̃

+
(x− x̃)2

2
d2f

dx2

∣∣∣∣
x=x̃

+
(x− x̃)3

3!
d3f

dx3

∣∣∣∣
x=x̃

+ . . . + Rn(x, x̃)

2.9 Series Expansions for ex, sin(x) and cos(x)

The following series converge for all −∞ < x <∞. However, it is not practical
to evaluate these series for large x

ex = 1 + x +
x2

2!
+ · · ·+ xk

k!
+ · · ·

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . . +

(−1)k−1x2k−1

(2k − 1)!
+ . . .

cos(x) = 1− x2

2
+

x4

4!
− x6

6!
+ . . . +

(−1)kx2k

(2k)!
+ . . . .
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