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Quantum mechanical ab initio calculation constitutes the biggest portion of the computer 
time in material science and chemical science simulations. As a computer center like 
NERSC, to better serve these communities, it will be very useful to have a prediction for 
the future trends of ab initio calculations in these areas. Such prediction can help us to 
decide what future computer architecture can be most useful for these communities, and 
what should be emphasized on in future supercomputer procurement. As the size of the 
computer and the size of the simulated physical systems increase, there is a renewed 
interest in using the real space grid method in electronic structure calculations. This is 
fueled by two factors. First, it is generally assumed that the real space grid method is 
more suitable for parallel computation for its limited communication requirement, 
compared with spectrum method where a global FFT is required. Second, as the size N of 
the calculated system increases together with the computer power, O(N) scaling 
approaches become more favorable than the traditional direct O(N3) scaling methods [1]. 
These O(N) methods are usually based on localized orbital in real space [2], which can be 
described more naturally by the real space basis.  In this report, we will compare the real 
space methods versus the traditional plane wave (PW) spectrum methods, for their 
technical pros and cons, and the possible of future trends. For the real space method, we 
will focus on the regular grid finite different (FD) method and the finite element (FE) 
method. These are the methods used mostly in material science simulation.  As for 
chemical science, the predominant methods are still Guassian basis method, and 
sometime the atomic orbital basis method. These two basis sets are localized in real space, 
and there is no indication that their roles in quantum chemical simulation will change 
anytime soon. We will focus on the density functional theory (DFT) [3], which is the 
most used method for quantum mechanical material science simulation.  
 
To calculate a system under density functional theory, especially under its local density 
approximation (LDA) [3, 4], one needs to solve the minima of the total energy as a 
function of the single particle wavefunction {ψi}: 
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here the occupied charge density is 
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and Vion(r) is the ionic potential, and ZR is the nuclei charge at R, and the function εXC(x) 
is the LDA exchange correlation function. The wavefunctions ψi satisfies the following 
orthonormal condition: 
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Finding the minimum of the energy in Eq.(1) is equivalent to find the solution for the 
following Kohn-Sham equation [4] (sometime it is also called Schrodinger’s equation): 
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here the total potential V(r) has the following expression:  
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here the second term is the Coulomb potential due to charge ρ(r), and the third term is the 
LDA exchange correlation potential coming from the derivative of ρεXC(ρ). In Eq.(4), we 
have also introduced a nonlocal potential V , which is a nonlocal operator acting on the 
wavefunction. This nonlocal potential is needed for pseudopotential calculations [1].  
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Given the above formalism, the different numerical methods distinguish themselves by 
their ways to represent the wavefunction ψi. In the plane wave (PW) method, the 
wavefunctions are expanded by plane wave basis set as:  
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Usually a periodic box (supercell) is chosen. Then the reciprocal lattice of the supercell 
defines a grid of q in the Fourier space. As a convention, all the q points within a sphere 

defined by a kinetic energy cutoff 2

2
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cc qE =  is chosen in the summation of Eq.(6). In the 

PW method, the wavefunctions are kept in reciprocal space (q-space), represented by the 
coefficients Ci(q). Major operations, like the enforcement of the orthonormal conditions 
of Eq.(3) are carried out in this reciprocal space representation. However, to carry out 
operations like the V(r)Ψi(r), the wavefunction is transformed via FFT into the real space 
on a regular real space grid. After the V(r) and Ψi(r) multiplication, the result is then 



Fourier transformed back to the reciprocal space. This due space representation is 
illustrated in Fig.1.  
 

 
            Fig.1, the due space representation of the PW method. The reciprocal space (right 

box) and real space (left box). The wavefunction q vectors (G=q in this figure) inside 
the cutoff Gc1 are chosen in the summation of Eq.(6), while the potential V and 
charge density ρare represented by the planewave q inside a larger cutoff Gc2. Gc1 
is half of Gc2. FFT is used to transform the wavefunction from reciprocal space 
representation to a real space grid.  

 
 
The PW formalism has the following advantage. Given the wavefunction expression in 
Eq.(6), the local minimum of Eq.(1) can be evaluated almost numerically exactly without 
further approximations. The only numerical approximation for the evaluation of Eq.(1) is 
the calculation of the LDA exchange correlation term (the fourth term) in Eq(1), but the 
error is found to be very small [1]. Thus, the solution is numerically exact, and it is truly 
variational. The only approximation is the use of limited planewave basis function in 
Eq.(6). This numerical exactness is only rivaled by the Gaussian method in quantum 
chemistry calculation, where the numerical integrals have analytical expressions.  
 
The numerically variational feature provide the following two properties: (1) the total 
energy found from Eq.(1) is always an upper bound of the exact solution; (2) the error in 
the energy ∆E is proportional to the square of the error in the wavefunction ∆Ψ. Besides, 
a variational solution allows one to calculate the atomic forces using the Hellman-
Feynman theory [1]. This is very important for atomic relaxation and molecular dynamics 
simulations.  
 
The computational disadvantage of the PW method for large scale parallel computation is 
the requirement for the FFT. While the number of floating point operation is moderate, 
the global communication for the FFT can be a serious bottleneck. Efficient FFT have 
been demonstrated using a few thousand processors in electronic structure calculations 



[5]. But for even larger number of processors, the communication message size can be 
very fragmented, and the communication latency can significantly slow down the FFT. 
However, a critical difference between the electronic structure calculations and many 
other calculations (e.g., fluid dynamics and classical electric-magnetic field simulation) is 
that there are many wavefunctions ψi (the index i) to be calculated in electronic structure 
calculations. For a few thousand atom system, the number of the wavefunctions is also a 
few thousands. This provides another way of parallelization, that is a parallelization 
among the wavefunction index i.  Using this double parallelization scheme (one on the 
wavefunction index, another on the planewave vector q), Q-box has successfully run on 
>100,000 processors on the IBM BG/L computer [6].  
 
To avoid the possible impediment of a large global FFT, and to implement the localized 
orbital O(N) method, many researchers have started to explore the real space grid 
methods. There are two most widely explored real space grid methods, one is the finite 
element (FE) method, another is the finite difference method (FD). Let’s first discuss the 
FE method.  
 
There are many possible FE basis set [7]. One commonly used one is the so called C0 FE 
basis set, within which each basis function Φm(r) is a continuous function within a finite 
local region crossing a few grid points in each direction. The basis function Φm(r) is one 
at one grid point (rm), and zero at all the other grid point. As a result, the wavefunction ψi 

is expanded as: 
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and C )()( mii rm ψ= , and here rm is the grid point.  
 
C0 FE basis set does not require the basis function to be smooth, i.e., its derivative could 
be not continuous, and its Laplacian (first term in Eq.(1)) could be ill defined. However, 
this problem can be avoided by rewriting the first term in Eq.(1) as: 

. There could be different orders of Crdrr ii
3* )()( ψψ ∇•∇∫ 0 FE basis functions. The 

linear order Φm(r) is a piece wise straight line between grid points (or a linear function in 
a 3D region). A quadratic Φm(r) is a second order function of r, while a cubic Φm(r) is a 
third order polynomial. Regardless of its order, one Φm(r) is only nonzero within a few 
grid points interval in any direction. This makes the basis set spatially local. With the FE 
basis set, the Eq.(1) and the corresponding Eq.(4) can be solved variationally [8, 9]. But 
not everything has been worked out, and there are many complications. Imagine a Nth 
order polynomial is used for the basis function Φm(r) to describe the wavefunction ψi, 
then because the charge density ρ(r) calculated from Eq(2) is a quadratic function of the 
wavefunction, a 2Nth order FE basis function is needed to describe the charge density. 
Further more, it is not clear what order is needed to describe the potential in Eq.(5). If the 
potential V(r) is not described accurately in a given order of FE basis, then the 
corresponding matrix element ∫  for the Kohn-Sham equation cannot rdrrVr nm
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be calculated accurately. This can introduce serious errors. Currently, the most discussion 
in the literature is centered around how to calculate the Laplacian term: 

, but not at the potential term. The potential term is further 

complicated by the need to solve the Poisson equation. Currently, the Poisson equation is 
solved in real space by multilevel method, either use FE basis or FD method [10]. But 
whether the solved potential described in a FE basis or on a grid contains enough 
information to evaluate ∫  accurately is not fully investigated. The 

central question is: how big a numerical approximation is involved when we evaluate the 
total energy in Eq.(1) based on the wavefunction expression in Eq.(7). For the planewave 
approach [1], there are techniques at every step of the total energy evaluation to make 
sure that the final total energy is calculated exactly given the original wavefunction 
expansion of Eq.(6). In the current FE formalism, sometime higher density grid is used to 
calculate ρ(r) and V(r), e.g., a double grid had been used [9]. Although in planewave 
formalism, a double grid can ensure that the discrete numerical summation result will be 
the same as the exact analytical result [1],  there is no such guarantee in the FE method.  
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Despite the above uncertainties in the formalism, it has been shown that the FE method 
can result is a variational solution of the LDA total energy. When the grid size h 
decreases, the total energy also decreases, approaching the exact value (calculated by the 
PW method) from above. Thus, the solutions are lower bounded. Using 3D 32-node 
“serendipity” finite elements, which satisfies the cubic completeness [7], it has been 
shown that the total energy converges to the exact result as O(h-6) [8]. Unfortunately, in 
that work of Pask et.al. [8],  it has not been shown whether the ∆E scales as the square of 
∆Ψ, an more stringent requirement for a variational solution.  
 
Computationally, the FE is more local and compact than the FD method. Only short 
range neighboring grid interaction (hence communication) is needed. It produces very 
sparse matrix, and fits well with large parallel computation. Besides, mature computer 
packages exist for parallel FE calculation. FE has also been tested based on nonuniform 
grid and adaptive grid, especially for all electron calculations. Unfortunately, it is found 
that huge number (tens of thousands) of finite element basis per atom is required for such 
all electron calculations [11,12]. Thus, currently, pseudopotential is used to reduce the 
number of basis set, and regular equal space grid is used to generate the finite elements. 
Overall, despite the maturity of the FE method itself in other fields, like the civil 
engineers and fluid dynamic, and the existence of FE computer packages, its usage in 
electronic structure calculations is still very limited. Partly this is due to the relative 
complication of its formalism, and partly it is because there are still technical 
uncertainties (e.g., the solution and representation of the potential function to guarantee 
the variational solution of the total energy). Further algorithmic research is still needed to 
make the FE method more widely accepted by the electronic structure community. At this 
stage, it is difficult to say how large a role the FE method will play in the future of 
electronic structure calculations.   
 
We now discuss the FD method. FD method benefits from the fact that it is very similar 
to the planewave method, which is widely known in material science simulation 



community. In the FD method [13], the wavefunction ψi(r) is represented by its values at 
the grid points. This is a discretization approach of the exact equations (1) and (4). There 
is no basis set for the wavefunction expansion, and the subsequent numerical evaluation 
of the total energy in Eq.(1) is also discretized. In the FD approach, the Laplacian is 
evaluated by a finite difference formula: 
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This is an Mth order formula. The error could scale as O(hM-1) for a smooth function ψ(r). 
Note that, in a plane wave method, we have 
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This is essentially the same as the Eq.(8). The only difference is that, in Eq.(9), the 
convolution summation is carried out over all the grid point i’, while in Eq.(8), the 
summation is done up to the M/2_th neighbor. But for large enough M, the in Eq.(8) 
can be chosen to approach 

M
nA

)( 'ii xxA −  in Eq.(9).  
 
In practice, one major difference between the FD method and the PW method is that, in 
FD method the wavefunction is kept in real space grid, while in the PW method, it is kept 
in reciprocal space as in Eq.(6). If the same real space numerical grids are used for these 
two methods, then due to the use of half sized sphere in the PW method as shown in Fig.1, 
the number of coefficients in the PW method is more than 8 times smaller than the real 
space FD method.  
 
In terms of formalism, the FD method is almost exactly the same as the PW method, 
except the way in which the Laplacian is carried out, and the book keeping of the 
wavefunction (one in real space, one in reciprocal space). But due to the lack of basis set 
in FD, it loses the variational feature of the PW and the FE calculations. For one thing, 
the total energy can approach the final energy from below as the grid point increases. 
This is shown in Fig.2. Furthermore, the ∆E does not scale as the square of ∆Ψ. Instead, 
it just scales as ∆Ψ itself. This is shown in Fig.3, taken from Ref.14. For the same ∆E, 
and the atomic forces, it is found that [15] the number of grid point (n1,n2,n3) of FD 
method should be between 0.5 to 1 of the number of grid points used in the PW method. 
As a result, the number of coefficient (thus the memory) of the real space FD method 
could be about 4 times that of the PW method for the same accuracy calculation. This 
could be a serious draw back for the FD calculation. Not only it increases its memory 
requirement, it increases the computation to enforce the orthonormal condition of Eq.(3). 
Because for large system calculations, the orthogonalization enforcement takes much 
more time (it is the origin of the O(N3) scaling)  than the Schrodinger’s equation 
application of the wavefunction (Eq.(4), the FFT), thus the increase of the wavefunction 



coefficient can slow down the overall calculation, and makes the FD method slower than 
the PW method.  
 
 

             
 
Fig.2, the convergence comparison between the FD code PARSEC and the PW code PEtot. A 
C6H12 benzene molecule is calculated inside a supercell. The cubic supercell has an n3 real space 
grid. The errors of the total energies are plotted against the size of the grid n. In (a), nonlocal 
pseudopotential is used for the C atom, while in (b) only local pseudopotentials are used. In the 
PW PEtot calculation, the size of the grid n is directly related to the planewave cut off Ec2 
( ), as shown in Fig.1. In a normal calculation, as shown in Fig.1, Gc1=0.5Gc2, thus 
Ec2 = 4 Ec1 ( ). However, for a fixed n, one can always make the Ec1 (Gc1) larger in 
the program (although it might lose some of the exactness in the total energy evaluation of 
Eq.(1)). Thus, we have also shown the PEtot results with Ec2=2Ec1. In terms of energy, it 
approaches the final result faster. The PEtot results approach the final result from above, while 
the PARSEC result for a given n can be either larger (denoted by +) or smaller (denoted by -)  
than the final result.  
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Another draw back of the FD method is the difficulty to use preconditioner in the 
iterative solution of the Schrodinger’s equation. Although multigrid method can be used 
as the preconditioner, in practice, due to its coding complication, and due to the intrinsic 
atomic length scale (multigrid cannot be grosser than the characteristic atomic features), 
the usage of the multigrid technique is limited, and in many cases not used at all. 
However, due to the lack of efficient preconditioner, different methods than the 
conventional preconditioned conjugate gradient method [1] has been developed to solve 
the Schrodinger’s equation. These methods (restart Lanczos, and Davison methods) do 
not use the preconditioner [16]. Recently, a Chebyshev polynomial filter method is 
developed. What is really helpful for this filter method is its reduction of the required 
orthogonalization steps. Using this method, a 10,000 atom Si quantum dot has been 
calculated (although it took more than a month to converge the result on a cluster 
machine).  
 
 

                                        
 
Fig.3, the error in the total energy versus the error in the wavefunction (taken from Ref.14). For 
the conventional FD and the modified FD method by Maragakis et al. [15], the absolute energy 
error scales as the first power of the wavefunction error. However, for the plane wave method, the 
energy error scales as the square of the wavefunction error, a property of variational solution.  
 
As shown in Fig.2, one consequence of losing the variational principle is that the 
calculated total energy for a given grid size can be smaller than the exact result. This is 
mostly due to the finite difference kinetic energy expression. Because the kinetic energy 
in Eq.(8) is a convolution in real space, it can be expressed as a multiplication in 



reciprocal space: ∑ . Here f(q) is the Fourier transformation of 

used in Eq.(8). It turns out, for the used in conventional FD formulism, f(q) is 
smaller than 0 for large q. Thus, for large q (small number of grid points), the FD 
kinetic energy is a under estimation. This under estimation leads to a smaller kinetic 
energy, hence a total energy smaller than the exact solution. To correct this, Maragakis 
et.al [17] have introduced a new A  which ensures that the f(q) is always larger than 

for all q.  This makes the FD result always approaches the exact solution from the 
above. Unfortunately, this also makes the method converges slower.  More importantly, 
this still does not make ∆E scale as the square of ∆Ψ. Like the original FD method, the 
∆E scales in the same order as ∆Ψ,  as shown in Fig.3.   
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A recent significant advance of the FD method in electronic structure calculation is the 
development and release of the PARSEC package by Chelikowsky and Saad’s group [16, 
18, 19]. This is a parallel code with several new algorithms implemented. As reported in 
Ref.18, it can be faster than the traditional PW code. For a fair comparison, however, one 
has to use a grid which provides the same accuracy as in a standard PW code. 
Unfortunately, we have so far not seen a comprehensive study comparing the FD results 
from PARSEC with the PW results. We have encountered cases where the published 
PARSEC results significantly differ from our own PW calculations.  But fairly large 
systems (a few thousand atoms) have been calculated using the PARSEC package, 
especially with their Chebyshev filter algorithm. Sometime to calculate such large 
systems (e.g., quantum dots), group theory is used to take the advantage of the symmetric 
of the system [16], and block diagonalize the Hamiltonian matrix. This is a technique 
heavily used in the early days (70’s-80’s) of ab initio calculations. It is currently not used 
in most ab initio calculation package (due to the use of iterative method). Overall, there is 
no doubt that with the release of this code, the FD method will play a significant part in 
large scale electronic structure calculations.   
 
The parallel implementation of PARSEC is not as straight forward as one might think. 
The high order FD method (e.g, M=12) makes the communication not so local, especially 
if the number of processors is large for a given grid size. Fortunately, there are many well 
established routines to partition the real space grid data to achieve a load balance and 
reduce the communication cost. This is an area heavily studied in the applied math 
community. In PARSEC, the package Metis [20] is used to partition the grid in a 
distributed memory parallel machine. Thus, in short, the grid is not distributed in regular 
cubic as one might imagine. Instead, special partitioning routines are used to help with 
this task. So far, PARSEC can scale to about hundred processors. But it is yet to be 
proved that it can scale to thousands of processors.  
 
One of the biggest drive for real space method is the O(N) algorithms which usually 
employ the localized orbitals. PARSEC is still a O(N3) code. As far as the traditional 
O(N3) algorithm is concerned, the PW approach with its double parallelization in both q 
space and wavefunction index will probably still be adequate for future large computers. 
However, when the computer gets larger, and the systems to be simulated also get larger, 



some kind of O(N) approach is unavoidable.  Does this mean the future of quantum 
mechanical material science simulation will be dominated by real space codes? This is 
not necessarily true. First, there are many ab initio methods, especially the ones beyond 
LDA, are based on planewave formalism (for example, the GW method). These methods 
are mostly naturally implemented by planewave codes. Second, as for O(N) methods, PW 
method can still play an important role. For example, Payne’s group has developed a 
“FFT box” technique to describe the localized orbitals [21]. The FFT involved is not the 
full FFT of the whole system, rather it is carried out in a fixed size box independent of 
the overall size of the whole system. Similarly, we have developed a linear scaling three 
dimensional fragment (LS3DF) method [22], which solves the small fragments of a large 
system using PW method. Again, the FFT involved does not cover the whole space. It is 
also a local FFT. Thus, some kind of local FFT can still play a role in the future O(N) 
methods.  
 
In summary, the real space method will certainly play an important role in future 
electronic structure calculations. This is especially true for the FD method, mostly due to 
its conceptual simplicity and similarity to the PW method. However, more studies are 
needed to establish the accuracy and the true computational costs of these methods. Due 
to the possible increase of the number of expansion coefficients, some part of the 
calculations (e.g, the orthogonalization part) can be more expensive than the PW method. 
It is also needed to establish their scalability in large parallel computation. Some of the 
real space methods (e.g,, the high order FD method) might not be so straight forward to 
be implemented. Very often, their implementations rely on existing FD and FE software. 
The real space method might play a major role in future O(N) algorithms. But the parallel 
scalabilities of such codes are still need to be demonstrated. PW code will not disappear 
in future electronic structure calculations. It might still play a dominant role. However, it 
is not likely that the algorithm will require a full machine and whole physical system FFT 
for larger than 10,000 processor computers. Instead, a double parallelization over the PW 
vector q and wavefunction index i might be used. As a result, the FFT will only be run on 
part of the machine (e.g, on  number of processors, where  is the total number 
of processors used in the calculation). The PW method can also be used in future O(N) 
methods, where the FFT will be carried out on a small number of processors (or even on 
a single processor) over a fixed physical size (not the whole physical system).  Thus, 
when choosing future machines, the speed of FFT will continue to be a major factor for 
electronic structure calculations. However, one might not need a full FFT using all the 
computer processors.  
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