
Algirdas BAŠKYS

MICROCONTROLLERS

Vilnius “Technika” 2012

The Essential Renewal of
Undergraduates Study Programs

of VGTU Electronics Faculty

Project No
VP1-2.2-ŠMM-07-K-01-047

Algirdas BAŠKYS

MICROCONTROLLERS

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Vilnius “Technika” 2012

A Laboratory Manual

A. Baškys. Microcontrollers: A Laboratory Manual. Vilnius: Technika,
2012. 121 p. [3,93 author’s sheets, 2012 06 04].

The knowledge about the features and programming of 8 bit mid-range PIC mi-
crocontrollers are presented. The architecture, memories structure, ports and in-
struction set of PIC16F84A microcontroller are analyzed. The laboratory works
tasks dedicated to PIC16F84A microcontroller programming are given. The edi-
tion is dedicated to bachelor students studying Computer Engineering and Elec-
tronics Engineering study programmes. Science area: Technological sciences
(T000), science field: Electronics and Electrical Engineering (01T).

The publication has been recommended by the Study Committee of
VGTU Electronics Faculty.

Reviewed by:
Assoc. Prof Dr Gediminas Gražulevičius, VGTU Department of Computer
Engineering,
Dr Nerijus Paulauskas, VGTU Department of Computer Engineering

This publication has been produced with the financial assistance of Europe Social
Fund and VGTU (Project No VP1-2.2-ŠMM-07-K-01-047). The book is a part of
the project “The Essential Renewal of Undergraduates Study Programs of VGTU
Electronics Faculty”.

This is an educational methodology book, No 1339-S, issued by VGTU Press
TECHNIKA http://leidykla.vgtu.lt

Language editor Dalia Blažinskaitė
Typesetter Laura Petrauskienė

eISBN 978-609-457-156-5
doi:10.3846/1339-S

© Algirdas Baškys, 2012
© Vilnius Gediminas Technical University, 2012

3

Contents

1. The concept and classification of microcontrollers 4

2. The clasiffication and characteristic of 8-bit PIC microcontrollers . . 7

3. Microcontroller PIC16F84A . 9
3.1. Characteristics . 9
3.2. The architecture . 10
3.3. The program memory . 13
3.4. Data memory . 14
3.5. Input/Output ports . 21

4. Instruction set of 8-bit mid-range PIC microcontrollers 27

5. The integrated development environment MPLAB IDE 31

6. The PIC16F84A microcontroller development board 35

7. Laboratory works . 39
7.1. Laboratory 1. Introduction to PIC16F84A microcontroller

development board and software MPLAB IDE 39
7.2. Laboratory 2. Writing the data into the microcontroller ports . 45
7.3. Laboratory 3. Creating a program loops 52
7.4. Laboratory 4. Creating of subroutines and reading the data

from ports. . 62
7.5. Laboratory 5. Investigation of complementation, swap, rotation

and logic functions instructions 73
7.6. Laboratory 6. Investigation of arithmetic instructions 84
7.7. Laboratory 7. Creating and investigation of timer programs . . 97
7.8. Laboratory 8. Investigation of control of Liquid Crystal Display

LCD1601LC .108

4

1. the ConCept And ClAssifiCAtion
of MiCroControllers

A microcontroller (MC) contains the main computer compo-
nents: processor, program and data memories, input/output inter-
faces. Therefore, it can be named single-chip computer. The term
“Microcontroller” tells that this device is developed to control ob-
jects and processes. Because of this, the chip of MC contains vari-
ous additional components as timers, A/D and D/A converters, vol-
tage references, PWM generators, serial UART and USB interfaces
etc. Constant improvement of MC parameters and low price allows
penetrating the MCs into the various fields of human activity. We
can find the microcontrollers in most of the devices that control,
measure, calculate, or display information. As an example, the mo-
dern automobile can include up to 50 MCs. To interface with the
environment, the additional components as various logical voltage
level matching circuits, sensors, displays, connectors, switches,
LEDs and so on should be used with the MC. Such a system, which
includes MC or several MCs and additional components often, is
named Microcomputer. Microcomputer in contrast to personal
computer is very specialized developed for concrete purpose, e.g.
control automobile engine or brakes or the hard disk drive of per-
sonal computer. Since such microcomputers are embedded in other
machinery, usually they are called embedded systems or embedded
computers. The variety of the embedded computers is extremely
high, therefore, there are lot of laboratories and firms that develop
the embedded computers. The time comes when most of electronic
devices will be based on the MCs, i.e. the engineers that develop or
provide the service of electronics should have not only good knowl-
edge of electronics hardware design but good knowledge of creating
of MC programs, which usually are called firmware, as well.

5

MCs are classified by architecture, instruction set, MC ideol-
ogy and producer.

1. Classification of MCs by architecture. There are two MC ar-
chitectures Fon Neiman and Harvard. The MC developed using Fon
Neiman architecture has common memory for storage of data and
programs and, as a consequence, the common bus for transferring
of instructions addresses and data.

Harvard architecture differs from Fon Neiman architecture. It
has separate memory units for program and data storage and sepa-
rate busses for transferring of instructions addresses and data. Har-
vard architecture allows us to reach higher data transfer speed. The
single instruction can be executed during one machine cycle using
the MC based on the Harvard architecture. Most MC families are
created using Harvard architecture.

2. Classification of MCs by instruction set. The MCs are divided
into two groups by instruction set. There are MCs that belong to the
reduced instruction set computer (RISC) group and MC that belong
to the complex instruction set computer (CISC) group. Majority of
MC are based on the RISC ideology. CISC ideology is mostly used
in microprocessors.

3. Classification of MCs by ideology. According to ideology
MC are distributed into the families. The most popular families of
8-bit MCs are:

1. 8051 family (Intel ideology);
2. 68HC05 family (Motorola ideology);
3. AVR family (Atmel ideology);
4. PIC family (Microchip ideology).

8051 family. The MCs of this family are developed using Har-
vard architecture. They belong to RISC MCs. The 8051 family MCs
are manufactured by the such a firms as: Intel, Atmel, Dallas Semi-
conductor, Philips, Siemens, ISIS (Integrated Silicon Solutions).

6

68HC05 family. This MC family is known under the HC05,
HC08 and HC11 titles. The producer of these MCs is Motorola.
They are developed using Fon Neiman architecture. The MCs of
this family belong to CISC type.

AVR family. The MC of this family are developed using Har-
vard architecture. They belong to RISC type. The main advantage of
AVR MCs is high speed. These MCs are able to execute one instruc-
tion during one clock cycle. The producer of AVR MCs is Atmel.

PIC family. The MCs of this family belong to Harvard architec-
ture. They are RISC type. The producer of PIC MCs is Microchip.
This firm, which official was named Arizona Microchip Technol-
ogy, was found in 1988 years. The 8-bit PIC MCs are the most popu-
lar and have the biggest market among the 8-bit MCs.

7

2. the ClAsiffiCAtion And
ChArACteristiC of 8-Bit piC

MiCroControllers

The laboratory works of MCs course are dedicated to teach the
students creating of microcontroller programs using assembler. The
variety of MCs is wide, thus it is important to choose the suitable
family of MCs, which could be used as the basis for studies. Taking
advantage of our experience and experience of other universities [1],
the 8-bit Mid-range architecture family of PIC (Peripheral Interface
Controller) MCs developed and produced by Microchip company
[2] was chosen. It is one of the most popular and easy-to-use MC
families. Therefore, the MCs of this family are good for the studies.
They are characterized by rather simple but well developed archi-
tecture and a small but powerful instruction set. The family has a
wide range of representatives with various features and has a large
Internet based community.

The 8-bit MCs produced by Microchip are divided into three
groups:

1. Baseline 8-bit architecture PIC MCs. These MCs have 12 bit
33 instruction set, (384-3,5 K) x 12 bits program memory, 6-44 pins.
Operation speed is up to 5 MIPS (Millions Instruction Per Second).
Some MCs include ADCs and comparators for processing of the
analogue signals. Baseline 8-bit architecture includes PIC10FXXX,
PIC12FXXX, PIC16F5XX and PIC16C5X MCs.

2. Mid-Range 8-bit architecture PIC MCs. The representatives
of this MC group have 14 bits 35 instruction set, (896-14 K) x 14
bits program memory, 14-68 pins. Operation speed is up to 5 MIPS.
Many of MCs include ADCs and comparators. There are MC which
have I2C, SPI, USB and USART interfaces. This group includes
PIC16FXXX, PIC16CXXX and PIC16CRXXX MCs.

8

3. High Performance 8-bit architecture MCs. These MCs have
16 bits 77 instruction set, (8-128)K x 16 bits program memory, 18-
100 pins. Operation speed is up to 16 MIPS (Millions Instruction
Per Second). Most of MCs include ADCs, comparators, voltage re-
ferences, operational amplifiers for processing of the analogue sig-
nals. Some MC have DACs for output of analogue signal. Most of
them support I2C, SPI, USB and USART interface standards. This
category includes PIC18FXXX and PIC18FXXJXX MCs.

There are about 70 types of 8-bit mid-range PIC MCs. They can
be divided into three groups by type of the program memory: MCs
with Flash, MCs with ROM program memory and OPT (One-Time-
Programmable) MCs. The Instruction set of these MC has only 35
instructions. These MCs have 2–7 ports with number of input/out-
put pins in range from 12 to 53. Many of MC have 8–12 bit ADC.
Some of MCs have 1–2 voltage comparators. The maximal clock
frequency is 20 MHz, however, there are MC with clock frequency
up to 40 MHz. Some of MCs include internal clock resonator.

The 8-bit mid-range PIC MCs architecture, data memory,
ports, Reset organization, principles of timer/counter, instruction
set and assembly directives are analyzed in this course studding
MC PIC16F84A, which is one of the most popular devices of this
MC group.

9

3. MiCroController piC16f84A

3.1. Characteristics

The main characteristics of MC PIC16F84A are as follows:
- 18 pins PDIP case, designed for through hole mounting, mini

SOIC or SSOP case, which are designed for surface mounting.
Also the MC chips can be delivered;

- 2 input/output ports (A and B), which include 13 input/output
pins.

- 35 instruction set, the execution of most instructions takes one
machine cycle, which corresponds to 4 clock frequency peri-
ods.

- 1024 x 14 bit Flash program memory;
- 68 x 8 bit static RAM and 68 x 8 EEPROM data memories;
- 13 bit eight level hardware stack;
- 8 bit timer/counter with 8 bit programmable prescaler;
- 10 thousands writing/erasing cycles for the program memory;
- 10 millions of data writing/erasing cycles for the EEPROM data

memory;
- Program code protection feature;
- Watch dog;
- Power saving mode (SLEEP mode);
- Serial programming interface (In-Circuit Serial Program-

ming – ICSP) allows programming of the MC without remov-
ing the device form PCB.

10

3.2. the architecture

The block diagram of PIC16F84A MC is presented in Fig. 3.1.
MC is developed using Harvard architecture. We can see that it has
separate program memory and data memory. There are two data
memories. One of them is static RAM (SRAM), which consists of
file registers. There are two types of file register: Special Function
Registers (SFR) and General Purpose Registers (GPR). The file reg-

Program
Memory

1K x 14

Program
counter

EEDATA

8 Level Stack
 RAM

(File registers)

68 x 8
EEADR

Data
Memory

EEPROM

64 x 8

Address
Multiplexer

FSR register

STATUS register

Ports

TMRO

Instruction Register

Instruction
Decode and

Control

Clock

Power-up
Timer

Oscillator
Start-up

Timer

Power-on
Reset

Watchdog
Timer

MUX

ALU

W register

OSC2/CLKOUT
OSC1/CLKIN

MCLR VDD, VSS

RA4/
TOCKI

RA3:RAO

RB7:RB1

RBO/INT

Data Bus

Program
Bus

Direct Addressing

Indirect
Addressing

RAM
Address

8

14

13

5

8

7

7

8

Fig. 3.1. Block diagram of PIC16F84A microcontroller

9

fig. 3.1. Block diagram of PIC16F84A microcontroller

11

isters are the 8 bit memory cells that provide the link between the
MC hardware and software. The SFRs control the operating of MC
functional blocks, while GPR are used to store the values of variables
and constants. In this type of memory the number of writing/erasing
cycles for the SRAM memory is unlimited. It operates at the same
speed as ALU of MC. However, the data stored in the registers of
SRAM is lost if the power supply of MC is switched of. Therefore, the
EEPROM memory, which belongs to non-volatile electronic memo-
ry, must be used for storage of data as well. However, the EEPROM
memory is relatively slow and has limited number of writing/erasing
cycles. Because of this, it should be employed only to store the data
that must be saved when power supply of MC is switched off.

The width of data bus is 8 and program bus 14 bit (line). Pro-
gram counter generates the address of instruction in the program
memory, which has to be executed. The address bus is of 13-bit,
although PIC16F84A program memory volume is of 1024 x 14 bits,
it allows to address directly up to 8 K x 14 bit memory volume.

MC has 8 x 13 bit stack. The stack can store up to 8 program
memory addresses, which can be called return addresses that are
needed in the situations when the execution of subroutine or inter-
rupt program is over and the MC should continue the execution of
the main program again.

The purpose of Timer/Counter is to measure the time and to
calculate the events. It operates in Timer or Counter mode and cal-
culates the number of received pulses. The pulses can be transferred
from the clock of MC (Timer mode, frequency of pulses is equal to
1/4 of MC clock frequency) or trough I/O pin RA4/TOCK1 of MC
(Counter mode). Every pulse increases the contents of 8-bit TMR0
register by one. Additionally, the 8-bit prescaler can be used with
the Timer/Counter. The prescaler is programmable and can divide
the frequency of pulses by ratio 1:2, up to 1:256.

There are four PIC16F84A MC operating modes determined by
the type of resonator:

12

• LP – crystal resonator, clock frequency 32–200 KHz;
• XT– crystal resonator, clock frequency 0.455–4 MHz;
• HS – crystal resonator, clock frequency 8–10 MHz;
• RC – RC circuit is used as resonator.
The RC resonator option saves the cost while the LP crystal

option saves power. Configuration bits are used to select the various
options. Crystal or ceramic resonators are connected to MC through
OSC1/CLCIN and OSC2/CLCOUT pins. The external clock source
instead of internal MC oscillator can be used. The signal of the ex-
ternal clock has to be connected to OSC1/CLCIN pin.

Power-on Reset block generates reset impulse, when supply
voltage VDD reaches (1.2–1.7) V after it has been turned on. Power-
up timer holds PIC16F84A MC in the Reset mode for 72 ms after
the power is switched on. If during that time transition processes of
supply voltages are over and potential at MC terminals are in the
steady state, it is not necessary to use any external RC circuits to
increase the duration of the Reset mode. Because of this, this block
frequently allows withdraw external RC Reset circuits. In this case
it is enough to connect MCLR pin directly, or by resistor to VDD
(positive supply source pole).

Oscillator Start-up timer holds PIC16F84A in Reset mode till
clock frequency becomes steady.

PIC16F84A MC has Watchdog, which is intended to observe
the execution of the MC program. If the execution process fails, it
generates the Reset signal for the MC to set the data stored in the
SFR to initial values and to return the operating of MC to the begin-
ning of the program. Watchdog timer has its own RC resonator. The
Watchdog can be activated or not during the MC configuration.

PIC16F84A has 8-bit arithmetic-logic unit (ALU), which ex-
ecutes arithmetical and logic operations and controls MC operating.
Its status is represented by the STATUS register contents. Very im-
portant role in PIC16F84A MC performs register W. It is used for
data transfer to other registers.

13

Input/Output ports PortA and PortB include pins RA0-RA4
and RB0-RB7, which are designed to receive or send the digital
signals from (to) other devices.

3.3. the program memory

The program memory of PIC16F84A MC is represented in
Fig. 3.2.

3.3. the program memory

The program memory of PIC16F84A MC is represented in Fig. 3.2.

PC<12:0>

Stack Level1

Stack Level 8

CALL, RETURN
RETFIE, RETLW

RESET Vector

Peripherial Interrupt Vector

0000H

0004H

03FFH

1FFFH

U
se

r M
em

or
y

Sp
ac

e

Fig. 3.2. Program memory

The purpose of the program memory is to store the MC
program. There are located appropriate number of 14 bit Flesh
memory cells. The PIC16F84A MC has 1024 such a memory cells,
because of this the 1024 x14 bit words can be stored. The program
memory includes two special memory cells, which are located under

12

fig. 3.2. Program memory

14

The purpose of the program memory is to store the MC pro-
gram. There are located appropriate number of 14 bit Flesh memory
cells. The PIC16F84A MC has 1024 such a memory cells, because
of this the 1024 x14 bit words can be stored. The program memory
includes two special memory cells, which are located under the ad-
dresses 0000H (it is called Reset Vector) and 0004H (it is called
Interrupt Vector). The MC is developed in such a way that after the
Reset the microcontroller starts the execution of program from the
Reset Vector and after the interrupt event – from Interrupt Vector.

3.4. data memory

Static RAM (Fig. 3.3) is divided into two parts. In the first part
(the top part in Fig. 3.3) are stored Special Function Registers (SFR),
in the second one – General Purpose Registers (GPR) (the bottom
part in Fig. 3.3).

Static RAM has two memory banks: Bank 0 and Bank 1. The 12
addresses of every Bank are reserved for Special Function Registers,
remaining are left for General Purpose Registers. PIC16F84A has 68
General Purpose Registers and all of them are located in Bank 0 under
addresses 0Ch to 4Fh. If there is a call on General Purpose Registers,
which are in the 1-st Bank (addresses 8Ch-CFh), which physically does
not exist in PIC16F84A, this call is redirected to appropriate registers
in Bank 0. For example, if there is a call on 0Ch or 8Ch addresses, the
access is made to the same 0Ch register located in 0 Bank.

Special Function Registers perform important role in MC. They
are used to control MC operation and act as the bridge between MC
software and hardware. The information about Special Function
Registers is given in Tables 3.1 and 3.2. The detailed information
about some Special Function Registers is given bellow.

STATUS register is mostly used register. It includes the data
memory bank selection bit and the flag bits that reflect the status of

15

Arithmetical logical Unit (ALU). The purpose of STATUS register
bits is as follows:

RP0 (5th bit) – SRAM data memory bank selection bit. If this
bit is set to 0, the MC has access to contents of Bank 0, if it is set to
“1” – to Bank 1. After Reset this bit is set to 0, i.e. by default MC has
access to Bank 0.

PSA (3rd bit) – Prescaler Assignment bit. “1” – prescaler is
assigned to the Watchdog (WDT), “0” – Prescaler is assigned to
Timer/Counter (TMR0)TMR0.

PS0-PS2 (0-2 bits) – Prescaler Rate Select bits.

Indirect addr.

TMR0

PCL

STATUS

FSR

PORTA

PORTB

EEDATA

EEADR

PCLATH

INTCON

Indirect addr.

OPTION_REG

EECON1

EECON2

PCL

STATUS

FSR

TRISA

TRISB

PCLATH

INTCON

68
General Purpose

Registers
(SRAM)

These registers
physically do not

exist

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

80h

81h

82h

83h

84h

85h

86h

87h

88h

89h

8Ah

8Bh

8Ch

Register
address

Register
address

4Fh
50h

CFh
D0h

7Fh FFh
Bank 0 Bank 1

Fig. 3.3. SRAM data memory

15

fig. 3.3. SRAM data memory

16

T0 (4th bit) and PD (3rd bit) show us what event triggered the
Reset. The exact functions of T0 and PD are: T0 is WDT (Watchdog
timer) trigger bit. It is set to “1” if the power supply is switched on
or instructions CLRWDT, SLEEP where executed. This bit is set
to “0” when Watchdog timer register overflows. PD bit is set to “1”
when the power supply is switched or when the instruction CLR-
WDT is executed. PD bit is set to “0” if the instruction “SLEEP” is
executed. The exact functions of bits Z, DC and C that indicates the
status of ALU are:

Z – Zero bit indicates (It is set to “1”) whether the result during
the execution of arithmetic or logic instruction was zero. If Z bit
remains “0” – the result of execution of arithmetic or logic instruc-
tion is not zero.

DC indicates (It is set to “1”) whether the less significant nibble
of register overflows during the execution of arithmetic instruction
and a carry-out from the 4th low order bit of the result occurred.

C indicates (It is set to “1”) whether the register overflows dur-
ing the execution of arithmetic instruction and a carry-out from the
most significant bit of the result occurred.

Bits RP1 (6th bit) and IRP (7th bit) are not used in PIC16F84A
microcontroller.

OPTION_REG register. The purpose of register bits is as fol-
lows:

RBPU (7th bit) enables or disables Pull-up resistors between
port B output pins and supply Vss. If bit is set to “1” – PORTB pull-
ups are disabled, if it is set to “0” – PORTB pull-ups are enabled.

INTEDG (6th bit) – Interrupt Edge Select bit. “1” – Interrupt
on rising edge of RB0/INT pin, “0” – Interrupt on falling edge of
RB0/INT pin.

TOCS (5th bit) – Timer/Counter (TMR0) Clock Source Select
bit. “1” – Transition on RA4/T0CK1 pin, “0” – Internal instruction
cycle clock.

17

TOSE (4th bit) – Timer/Counter (TMR0) Source Edge Select
bit. “1” – Increment on high-to-low transition on RA4/T0CKI pin,
“0” – Increment on low-to-high transition on RA4/T0CKI pin.

PSA (3rd bit) – Prescaler Assignment bit. “1” – prescaler is as-
signed to the Watchdog (WDT), “0” – Prescaler is assigned to Tim-
er/Counter (TMR0)TMR0.

PS0-PS2 (0-2 bits) – Prescaler Rate Select bits.
intCon register. It contains enable bits for all interrupt

sources. Purpose of INTCON register bits:
GIE (7th bit) – Global Interrupt Enable bit. “1” – enables all in-

terrupts, “0” – disables all interrupts;
EEIE (6th bit) – Write to EEPROM data memory complete Inter-

rupt Enable bit. “1” – enables the writing complete interrupt, “0” –
disables the write complete interrupt;

T0IE (5th bit) – Timer/Counter register TMR0 Overflow Inter-
rupt Enable bit. “1” – enables the TMR0 interrupt, “0” – disables the
TMR0 interrupt;

INTE (4th bit) – RB0/INT Interrupt Enable bit. “1” – enables the
RB0/INT interrupt, “0” – disables the RB0/INT interrupt;

RBIE (3rd bit) – RB Port Change Interrupt Enable bit. “1” – ena-
bles the RB port change interrupt,“0” – disables the RB port change
interrupt.

T0IF (2nd bit) – Timer/Counter register TMR0 Overflow Inter-
rupt Flag bit. “1” – TMR0 has overflowed (must be cleared in soft-
ware), “0” – TMR0 did not overflow;

INTF (1st bit) – RB0/INT Interrupt Flag bit. “1” – The RB0/INT
interrupt occurred, “0” – The RB0/INT interrupt did not occur;

RBIF (0 bit) – RB Port Change Interrupt Flag bit. “1” – when
at least on the one of the RB7-RB4 pins the potential has changed
from the value that corresponds to “0” to value that corresponds to
“1” or vice versa (must be cleared in software), “0” – none of the
RB7-RB4 pins have changed state.

18

PCL register. The program counter (PC) specifies the address
of the instruction to fetch for execution. The 8 lowest bytes are
called the PCL register. This register is readable and writable. The
high byte is called the PCH register and is not directly readable or
writable. All updates to the PCH register go through the PCLATH
register.

INDF and SFR registers. Both of them are used for indirect
addressing. INDF physically does not exist. Accessing this register
actually means that user is accessing the virtual address which is
stored in the SFR register.

19

ta
bl

e
3.

1.
 S

pe
ci

al
 F

un
ct

io
n

R
eg

is
te

rs
 lo

ca
te

d
in

 B
an

k1

Bi
t n

um
be

r

0

Fo
r t

he
 in

di
re

ct
 a

dd
re

ss
in

g
us

in
g

FS
R

 re
gi

st
er

8-
bi

t R
ea

l-T
im

e
C

lo
ck

/C
ou

nt
er

8
lo

w
er

 b
its

 o
f P

ro
gr

am
 C

ou
nt

er

C

In
di

re
ct

 d
at

a
m

em
or

y
ad

dr
es

s p
oi

nt
er

R
A

0

R
B

0

U
ni

m
pl

em
en

te
d

lo
ca

tio
n

EE
PR

O
M

 D
at

a
R

eg
is

te
r

EE
PR

O
M

 A
dd

re
ss

 R
eg

is
te

r

W
rit

e
bu

ff
er

 fo
r u

pp
er

 5
 b

its
 o

f t
he

 P
C

R
BI

F

1 D R
A

1

R
B1

IN
TF

2 Z

R
A

2

R
B2

TO
IF

3 PD R
A

3

R
B3

R
BI

E

4 TO R4
/

TO
C

K
R

B
4

IN
TE

5 R
P0 -

R
B5 -

TO
IE

6 R
P1 -

R
B

6 -

EE
IE

7 IR
P -

R
B7 -

G
IE

N
am

e

IN
D

F

TM
RO

PC
L

ST
A

TU
S

FS
R

PO
RT

A

PO
RT

B

-

EE
D

A
TA

EE
A

D
R

PC
LA

TH

IN
TC

O
N

A
dd

re
ss

00
h

01
h

02
h

03
h

04
h

05
h

06
h

07
h

08
h

09
h

0A
h

0B
h

20

ta
bl

e
3.

2.
 S

pe
ci

al
 F

un
ct

io
n

R
eg

is
te

rs
 lo

ca
te

d
in

 B
an

k1
Bi

t n
um

be
r

0

Fo
r t

he
 in

di
re

ct
 a

dd
re

ss
in

g
us

in
g

FS
R

 re
gi

st
er

PS
0

8
lo

w
er

 b
its

 o
f P

ro
gr

am
 C

ou
nt

er

C

In
di

re
ct

 D
at

a
M

em
or

y
A

dd
re

ss
 P

oi
nt

er
 0

PO
RT

A
 D

at
a

D
ire

ct
io

n
R

eg
is

te
r

PO
RT

B
 D

at
a

D
ire

ct
io

n
R

eg
is

te
r

U
ni

m
pl

em
en

te
d

lo
ca

tio
n,

 re
ad

 a
s ‘

0’

R
D

EE
PR

O
M

 C
on

tro
l R

eg
is

te
r 2

 (n
ot

 a
 p

hy
sic

al
 re

gi
st

er
)

W
rit

e
bu

ff
er

 fo
r u

pp
er

 5
 b

its
 o

f t
he

 P
C

R
BI

F

1 PS
1

D
C

W
R

IN
TF

2 PS
2 Z

W
R

EN

TO
IF

3

PS
A

PD

W
R

ER
R

R
BI

E

4

TO
SE

TO EE
IF

IN
TE

5

TO
C

S

R
P0 - - -

TO
IE

6

IN
TE

D
G

R
P1 - - -

EE
IE

7

R
BP

U

IR
P - - -

G
IE

N
am

e

IN
D

F

O
PT

IO
N

PC
L

ST
A

TU
S

FS
R

TR
IS

A

TR
IS

B

-

EE
C

O
N

1

EE
C

O
N

2

PC
LA

TH

IN
TC

O
N

A
dd

re
ss

80
h

81
h

82
h

83
h

84
h

85
h

86
h

87
h

88
h

89
h

8A
h

8B
h

21

EEDATA register is used for storing data that will be stored to
or read from EEPROM memory cell.

EEADR register is used for storing the address of EEPROM mem-
ory cell, in which the data will be written or from which will be read.

EECON1 register is used to control the operating of EEPROM
data memory.

TRISA, TRISB registers are used to set the pins of ports A and
B as inputs or outputs. “1” – sets the appropriate pin to act as input
and “0” – sets the appropriate pin to act as output.

PORTA, PORTB registers are used to store data that are sent
to corresponding ports when appropriate port pins act as outputs or
to store the data that are red from ports when port pins operate as
inputs.

3.5. input/output ports

There are four different circuits that serve the port pins. The
circuit diagram that is used for the pins RA0–RA3 of port A is
shown in Fig. 3.4. It has three latches: data latch where is stored a
bit, which is sent to pin when it works as output; TRIS latch where
is stored bit, which sets pin to input or output mode; latch where is
stored the pin signal, when pin is set to input mode. When pin is set
as an output, the output voltage is formed using push-pull CMOS
transistor stage, which can supply up to 25mA current. When pin
is set to input mode, TRIS latch closes the push-pull stage CMOS
transistors, so pin operating as input is characterized by the high
impedance. The MC operates with the TTL voltage levels, i.e. the
“0” corresponds 0 to 0.8 V and “1” corresponds 2.4 to 5 V.

The Input/Output pin RA4/TOCK includes the additional func-
tion – it is used for the receiving of the external pulses when Timer/
Counter operates in the Counter mode. The block diagram of the cir-
cuit that serves the RA4 pin is given in the Fig. 3.5. It differs from the

22

circuit that is used for the pins RA0–RA3 by the fact that the Schmitt
trigger is employed for the pin signal reading. The transfer character-
istic of Schmitt trigger is characterized by the hysteresis, because of
this using of such circuit decreases the sensitivity to electromagnetic
disturbances. Additionally, this pin is served by CMOS transistor
with open drain in the output mode. Therefore, the increased volt-
age that corresponds to “1” can be provided by this pin. It can reach
8.5 V, however for this purpose an external resistor and external sup-
ply source have to be used. The increased voltage of “1” can be used,
where it’s not enough standard TTL signal, e.g. for supply of relay.

D

CK

Q

Q

D

CK

Q

Q

Data Latch

TRIS Latch

Data Bus

WR Port

WR
TRIS

RD TRIS

Q D

EN
RD Port

TTL
Input
Buffer

P

N

VSS

VDD

I/O pin

OR

AND

Fig. 3.4. Block diagram of RA0–RA3 pins

sensitivity to electromagnetic disturbances. Additionally, this pin is
served by CMOS transistor with open drain in the output mode.
Therefore, the increased voltage that corresponds to “1” can be
provided by this pin. It can reach 8.5 V, however for this purpose an
external resistor and external supply source have to be used. The
increased voltage of “1” can be used, where it’s not enough standard
TTL signal, e.g. for supply of relay.

20

fig. 3.4. Block diagram of RA0–RA3 pins

23

D

CK

Q

Q

D

CK

Q

Q

Dta Latch

TRIS Latch

Data
 Bus

WR
 Port

WR
TRIS

RD TRIS

Q D

EN
RD Port

Shmitt Trigger
Input Buffer

N

VSS

I/O pin

TMR0 Input

Fig. 3.5. Block diagram of RA4 pin

According the requirements to MC PIC16F84A, the external supply
source voltage should be not higher then 8.5 V.

The block diagrams of circuits that are used for port B pins are
given in the Figs. 3.6 and 3.7. The CMOS transistors that work as the

21

fig. 3.5. Block diagram of RA4 pin

According the requirements to MC PIC16F84A, the external
supply source voltage should be not higher then 8.5 V.

The block diagrams of circuits that are used for port B pins are
given in the Figs. 3.6 and 3.7. The CMOS transistors that work as
the Weak Pull-up resistors are connected between port B pins and
positive terminal VDD of supply. The resistance of the resistors is
approximately 20 kΩ. They can be employed in the situation when
pins operate in the input mode. The external resistor is unneces-
sary in such a case. Since CMOS transistors are characterized by
the high impedance, the connection of the Weak Pull-up resistors

24

increases the Electromagnetic disturbance resistance of the MC in-
puts. The RBPU bit of OPTION_REG register is used to activate
the Weak Pull-up resistors. To connect resistors the “0” should be
sent to RBPU bit. There is no possibility to connect Weak Pull-up
resistor separately to the one pin. The Weak Pull-up resistors are
disconnected automatically if pins are set to output mode.

D

C
K

Q

Q

D

CK

Q

Q

Data Latch

TRIS Latch

Data
Bus

WR
Port

WR
TRIS

RD TRIS

Q D

EN

TTL
Input
Buffer

P

I/O pin

RB0/INT

VDD

RBPU
Weak
Pull-up

RD Port

RD Port
Schmitt Trigger

Buffer

Fig. 3.6. Block diagram of RB0–RB3 pin

22

fig. 3.6. Block diagram of RB0–RB3 pin

25

D

C
K

Q

Q

D

CK

Q

Q

Data Latch

TRIS Latch

Data
 Bus

WR
 Port

WR
TRIS

RD TRIS

Q D

EN

TTL
Input
Buffer

P

I/O pin

VDD
RBPU

Weak
Pull-up

RD Port

RD Port

Q D

EN

From other
RB4–RB7 pins

Set
RBIF

 Latch

Fig. 3.7. Block diagram of RB4–RB7 pins

23

fig. 3.7. Block diagram of RB4–RB7 pins

Pin RB0/INT can be used for external interrupt. It responds
to the pulse edge. If “1” is sent to the 6th bit of the OPTION_REG
register, the interrupt is triggered by the rising edge, if “0” – by the

26

falling one. The Shmitt trigger is used for the reading of the inter-
rupt signal.

When pins operate as outputs, the output voltage is delivered to
the port B pins using the push-pull CMOS transistor stages. These
stages are the same as these used for the port A pins RA0-RA3
(Fig. 3.4).

The RB4-RB7 pins can be used as external interrupt inputs.
The interrupt is triggered by the potential change (by change from
“0” to “1” or vice versa). During the every MC machine cycle the
potential on the pin is compared with the potential that was before.
If the potential level has changed in the one of the pins, the interrupt
occurs. If all RB4-RB7 pins are used for interrupt, there is no pos-
sibility to estimate, which pin triggered the interrupt.

27

4. instruCtion set of 8-Bit Mid-rAnge
piC MiCroControllers

Instructions are the means that allow human (programmer) to
form the job for MC. They are as some language for the communica-
tion between the human and a MC. 8-bit mid-range PIC MCs includ-
ing MC PIC16F84A, have 35 instruction set, so it is assigned to the
RISC MC group. All instructions are grouped into three categories:

1. Byte-oriented instructions;
2. Bit-oriented instructions;
3. Literal and control instructions.
Every 8-bit mid-range PIC MC instruction is 14 bit word, divid-

ed into the operation code (OPCODE), which specifies instruction
type that shows what has to be done, and one or more operands. Op-
erand specifies the operation of the instruction. Letters that present
the name of the instruction are called mnemonic. The general form
of the instruction in assembler programs is as follows:

Instruction mnemonic operand A, operand B

It should be stressed that part of the instructions does not in-
clude operand B and there are some instructions that do not include
any operand. For example, in the Byte-oriented instructions oper-
and A presents data or address (name) of the register where the data
are stored, Operand B shows the place where the result after the
instruction execution has to be saved.

The lists of instructions are presented in the Tables 4.1, 4.2 and
4.3. The following designations are used in the instructions:

- for the byte-oriented instructions, “f’” represents a register
designator and “d” represents a destination designator. The register
designator specifies which register contents is to be used by the in-
struction.

28

The destination designator “d” specifies where the result of the ope-
ration is to be placed. If “d” is zero, the result is placed in the W register. If
“d” is one, the result is placed in the register specified in the instruction.

- for the bit-oriented instructions, “b” represents a bit field des-
ignator, which selects the number of the bit affected by the opera-
tion, while “f” represents the number of the register, in which the
bit is located.

- for the literal and control operations, “k” represents an eight
or eleven bit constant or literal value.

The formats of the instructions are presented in Fig. 4.1.
Byte-oriented instructions
 13 8 7 6 0

opCode d f
d – shows where the result is to be placed

7-bit register address
Bit-oriented instructions
 13 10 9 7 6 0

opCode b f

b – 3-bit bit address, 7-bit register address
Literal and Control instructions
 13 8 7 0

opCode k

k – 8 bit constant, under which the instruction is executed
CALL and GOTO instructions
 13 11 10 0

opCode k

k – 11 bit constant, which corresponds to the appropriate address in the program
memory.

fig. 4.1. The instruction formats

29

table 4.1. Byte-oriented instructions

Mnemonic,
Operands

Instruction description
Flag bits af-

fected
ADDWF f, d Add W and f C, DC, Z
ANDWF f, d AND W with f Z
CLRF f Clear f Z
CLRW – Clear W Z

COMF f, d Complement f contents Z
DECF f, d Decrement f Z
DECFSZ f, d Decrement f, skip if 0
INCF f, d Increment f Z
INCFSZ f, d Increment f, skip if 0
IORWF f, d Inclusive OR W with f Z
MOVF f, d Move f Z
MOVWF f Move W to f
NOP – No Operation
RLF f, d Rotate Left f through Carry C
RRF f, d Rotate Right f through Carry C
SUBWF f, d Subtract W from f C, DC, Z
SWAPF f, d Swap nibbles in f
XORWF f, d Exclusive OR W with Z

table 4.2. Bit-oriented instructions

Mnemonic,
Operands

Instruction description

BCF f, b Bit Clear f
BSF f, b Bit Set f
BTFSC f, b Bit Test f, Skip if Clear
BTFSS f, b Bit Test f, Skip if Set

30

table 4.3. Literal and Control instructions

Mnemonic,
Operands

Instruction description
Flag bits af-

fected
ADDLW k Add literal and W C, DC, Z
ANDLW k AND literal with W Z
CALL k Call subroutine
CLRWDT – Clear Watchdog Timer TO, PD
GOTO k Go to address
IORLW k Inclusive OR literal with W Z
MOVLW k Move literal to W
RETFIE – Return from interrupt
RETLW k Return with literal in W
RETURN – Return from Subroutine
SLEEP – Go into standby mode TO, PD
SUBLW k Subtract W from literal C, DC, Z
XORLW k Exclusive OR literal with W Z

All instructions are executed in one single instruction cycle,
unless a conditional test is true or the program counter is changed
as a result of an instruction. In these cases, the execution takes two
instruction cycles with the second cycle executed as an NOP. One
instruction cycle consists of four clock oscillator periods. Thus, for
an oscillator frequency of 4 MHz, the normal instruction execution
time is 1 μs. However, there are control instructions (CALL, GOTO,
RETFIE, RETLW and RETURN) that are executed during the 2
machine cycles. The conditional instructions DECFSZ, INCFSZ,
BTFSC and BTFSS are executed during the one machine cycle.
However, when the requirements of the conditions are met and the
instruction makes to skip the next instruction, the execution takes 2
machine cycles.

31

5. the integrAted developMent
environMent MplAB ide

The MPLAB IDE software, which is named Integrated Devel-
opment Environment, is developed for the creating, editing, adjust-
ing and machine code generation using Windows operating system.
MPLAB IDE software is developed by Microchip firm.

The MPLAB IDE is used for the following purposes:
- source code editing;
- project management;
- machine code generation (from assembly or “C”);
- MC simulation;
- MC emulation;
- MC programming.
The MPLAB IDE includes following tools:
Project Manager – used for the creating of projects and opera-

ting with the project files.
MPLAB Editor – dedicated for the creating and editing of pro-

gram texts and machine codes.
MPLAB SIM – developed for the simulation of the MC program

code execution and of I/O ports operation using computer.
MPLAB ICE – used for the program operating analysis in the

real time by the employment of the special hardware – emulator.
MPLAB Assembler – used for the translating of the MC pro-

gram (source file) to hex file, which is converted by the programmer
into the machine code and loaded into the MC program memory.

MPLINK Object Linker – dedicated for the creating of the MC
program from the several assembler programs or from the assem-
bler and C language programs.

MPLINK Object Librarian – is used for the creating and ad-
ministration of program libraries.

32

The use of MPLAB IDE software. The main product, which
has to be obtained using software MPLAB IDE is the hex file of cre-
ated program. To start work and reach this goal the following steps
must be done using window of MPLAB IDE software:

1. Selection of MC. The type of MC, which will be used for the
accomplishment of the project, is selected.

1.1. Choose Configure>Select Device.
1.2. Select the appropriate MC (in our situation PIC16F84A) in

the Device dialog line.
1.3. Press OK.
The type of the MC that was chosen should appear in the line

on the bottom of the window.
2. Setting of MC Configuration Bits. The appropriate MC con-

figuration, which meets the requirements of the project, is provided
for the selected MC.

2.1. Choose Configure>Configuration Bits.
2.2. The type of the resonator have to be entered up in the line

Oscillator: LP, XT, HS for the crystal or ceramic resonator with the
resonance frequency (32–200) kHz, (0.455–4) MHz, (8–10) MHz,
accordingly; RC – in the case when the RC network is used as reso-
nator.

2.3. The Watchdog Timer is switched on or switched of using
the line Watchdog Timer, by choosing On or Off, accordingly.

2.4. The Power up Timer, which keeps the MC in the Reset state
for the 72 ms, is switched on or switched of using the line Power up
Timer, by choosing On or Off, accordingly.

2.5. The Code Protection function is switched on or switched of
using the line Code Protect, by choosing On or Off, accordingly.

note. The MC Configuration Bits can be set using the MPASM
directive __CONFIG as well. This can be performed by entering of
the appropriate text, e.g.: __CONFIG _XT_OSC & _WDT_OFF &
_PWRTE_ON & _CP_OFF. This text shows that the MC is con-
figured following: resonator with the frequency in range 0.455 to

33

4 MHz is used, the Watchdog Timer and Code Protection function
are switched of and Power up Timer is switched on.

The only one MC Configuration Bits Setting method from the
described above should be chosen to avoid misunderstanding dur-
ing the MC configuration.

3. Entering of assembler program text. The Program text is en-
tered or loaded.

3.1. Create the new folder in the root of C disk. The files that are
required for creating of MC machine code will be saved in this folder.

3.2. Choose File>New. The Program text has to be entered or
loaded.

3.3. Choose File>Save As to save the program text. Enter the
file title and save it as the Assembly source file, i.e. with the exten-
sion .asm. This file has to be saved in the created folder (point 3.1).

4. Creating a project. The project contains fails, which are re-
quired for the creating of the MC machine code, which is loaded
into the MC program memory.

4.1. Choose Project>Project Wizard. Click Next to continue.
Verify that the MC, which was selected, is shown here. Click Next
to continue.

4.2. The Language Toolsuite window with the language tool-
suite contents and roots to the toolsuites location should appear. If
the root for the any toolsuite is not given, the appropriate line is
marked. The roots for the all toolsuites must be presented to con-
tinue the project creating process. As an example, the roots must be
as follows for the case when the software MPLAB IDE is located in
the folder Program Files of the C disk:

– MPASM Assembler: C:\Program Files\MPLAB IDE\
MCHIP_Tools\mpasmwin.exe ;

– MPLINK Object Linker: C:\Program Files\MPLAB IDE\
MCHIP_Tools\mplink.exe ;

– MPLIB Librarian: C:\Program Files\MPLAB IDE\MCHIP_
Tools\mplib.exe .

34

4.3. Click Next. After that, in the line Project Name of the win-
dow, which appeared, write the title of the project. In the line Project
Directory point to the folder, which was created before (point 3.1).
This can be done by clicking on the Browse. After that point to the
folder and click Next.

4.4. Mark the files that have to be included into the project and
click Add. The files can be removed by clicking on the Remove. It is
obligatory that the file with the assembler program text, which has
extension .asm, would be included into the project. Click Next.

4.5. The main information of the project should be presented in
the window Summary, which appears: type of MC; language tool-
suite; the title and root of the project file with the extension .mcp. If
the presented information is not correct, click Back and make ap-
propriate changes. If the information is correct, click Finish to finish
the creating of the project.

4.6. The project window should appear in the MPLAB IDE
window. The project title and files of the project should be displayed.
Click View>Project on the MLAB IDE menu to open the project.

4.7. Click Build All button, which is located in the right hand
side on the top of the MPLAB IDE window, to create the hex file.
The green ribbon, which shows the dynamics of file creation, should
appear for the short period on the screen. The red ribbon appears if
the errors are found. The Output window is opened automatically
after the process is over. The information about warnings and errors
is presented in this window. The hex file is not created if the errors
are found. The additional three files with the following extensions
are created during this process: .lst – program listing; – .err error
file; – .cod file, which is needed for debugging of the program, using
simulator or emulator. All these files can be opened and viewed by
clicking File/Open and choosing Look in catalog and after that by
clicking on the Files of type.

35

6. the piC16f84A MiCroController
developMent BoArd

The PIC16F84A microcontroller development board is de-
signed for the programming of microcontroller (for the loading of
the programs into the MC program memory), testing of program
operation, checking of program errors, investigation of MC ope-
ration with the external devices as LEDs, LCD display, keyboard.
Using the CON10 connector the work of the MC with other external
devices can be investigated.

The circuit diagram of the PIC16F84A microcontroller devel-
opment board is presented in Fig. 6.1. It includes MC PIC16F84A,
4MHz crystal resonator Q1, buffer 74HCT125, LEDs D4, D5, D10–
D22, LCD display LCD1601LC and keyboard M1–M3. It has the
supply connector K1, the connector DB9 for computer serial inter-
face RS232 and CON10 for connection of various external devices.
The switches J1 and J2 are used for switching of development board
operating modes. Additionally, the development board includes 5V
supply voltage stabilizer 7805 and Reset button R.

Programming mode. The program is transmitted from compu-
ter using RS232 serial interface (COM port). The voltage (13 V)
for the writing of MC program into the Flash program memory is
produced by the TL497 integrated circuit. The buffer 74HCT125
is used for interfacing between the COM port standard and MC
(TTL) standard digital signal voltage levels. The switch J1.1 is used
to switch the development board from programming mode to op-
erating mode and vice versa. This switch has to be in position ON
during the MC programming.

36

Fig. 6.1. Circuit diagram of the PIC16F84A microcontroller
development board

34

fig. 6.1. Circuit diagram of the PIC16F84A microcontroller development
board

37

Operating mode. The testing of the program operating is per-
formed in the operating mode of the development board. The switch
J1.1 has to be put to the position 1 to switch the development board
to the operating mode. The supply of TL497 integrated circuit is
disconnected in such a case and conducting of programming vol-
tage to the MC is stopped. The states of the MC port pins in the
MC operating mode can be observed using LEDs connected to the
pins. If the appropriate LED emits the light the voltage on pin cor-
responds to logical “1” voltage, if not – the logical “0” voltage is
indicated on the pin. The LEDs can be disconnected by switch J2.1.
The LCD indicator LCD1601LC is used to display numbers, letters
and various signs. The contrast of indicator can be adjusted using
potentiometer R15.

The buttons M1–M3 act as keyboard. The voltage of logical “0”
is conducted to MC pins RA0 and RA1 if the buttons are not pushed
down. If they are pushed the voltage of logical “1” is conducted to
these pins. The keyboard buttons can be disconnected using switch
J2.2.

The external 9V power supply has to be used for the PIC16F84A
microcontroller development board. The diode D1 is used for the de-
velopment board protection in the situation when the polarity of the
supply voltage is changed.

The PIC16F84A microcontroller development board is used
for the accomplishment of laboratories presented in this laboratory
works methodology.

references

1. Baskys, A. The Course of Microcontrollers Oriented to Practical
Skills. Solid state phenomena, 2010, vol. 165, p. 410–413.

2. PICmicro mid-range MCU family reference manual, 2005. http://
www.microchip.com.

38

3. MPLAB IDE user’s guide, 2006. http://ww1.microchip.com/
downloads/en/DeviceDoc/51519B.pdf.

4. Valdes-Perez, F. E.; Pallas-Areny, R. Microcontrollers: Funda-
mentals and Applications with PIC, 2009.

5. Katzen, S. The Quintessential PIC microcontroller, 2005.
6. Sanchez, J.; Canton, M. Microcontroller programming, 2007.

39

7. lABorAtory works

7.1. laboratory 1

introduction to piC16f84A microcontroller development
board and software MplAB ide

1. Aim
To study the PIC16F84A microcontroller development board

and software MPLAB IDE.

2. task
Learn to create a project, enter program text, translate it to the

hex file and program MC (write the program into the MC program
memory). Investigate the operating of the MC with the loaded pro-
gram, learn to read and erase the MC program.

3. proceeding
1. Learn the purpose of PIC16F84A MC development board

connectors, switches, buttons and LEDs (Chapter 6).
2. Learn the purpose and structure of MPLAB IDE software

(Chapter 5).
3. Create the new folder in the root of C disk.
4. Open the MPLAB IDE software. Using File>New open

MPLAB Editor window and enter MC program text given in
the Fig. 7.1. It is the low frequency pulse generator program,
which allows generating the pulse signals in all B port pins.
The material about the entering of program text is presented
in the MPLAB Editor Help and is given in [3].

5. Choose File>Save As to save the program text. Enter the file title
generator and save it as the Assembly source file, i.e. as generator.
asm. This file has to be saved in the created folder (point 3).

40

Fig. 7.1. The text of the low frequency pulse generator
assembler program

38

fig. 7.1. The text of the low frequency pulse generator assembler program

41

6. Create a project using the information given in the Chapter
5. Load the file generator.asm in it. Save the project in the
created folder.

7. Create the hex file generator.hex and files generator.lst,
generator.err and generator.cod. according the information
presented in point 4.7 of Chapter 5.

Note. If there in the program text are errors, the hex file will be not
created. The errors are indicated in the Output window, in the lines
with the note Error. When errors are checked, the creating process
of the hex file must be repeated.

8. Acquaint with the information given in Output window. Using
File>Open, in the field Look In choose your directory, and by the
choosing All Files in the field Files of Type, review the created
files. Save the content of the hex file for the laboratory report.

9. Connect the PIC16F84A MC development board (Chapter
6) to the COM port of personal computer and switch on the
power supply of the board. The red LED indicates that the
power supply is on.

10. Switch the development board to the programming mode by
setting the switch J1.1 to the state “On”.

11. Open the software NT PIC PROGRAMMER. Mark the
appropriate COM port number in the Communications port
field. Choose the MV16C84 in the field Mode. Read and
analyze the contents of MC program and data (EEPROM)
memories and contents of MC configuration bits. The fact of
the exchange of data between the computer and development
board is indicated by the blinking of green color LED, which
is located on the board next to the COM port connector.

12. Erase the MC program memory contents using Erase field.
Make sure that the code is erased. The Read field must be
used for this purpose. The number 3fff must be in all program
memory cells if the content of the memory is erased properly.

42

13. Switch the development board to the operating mode (toggle
switch J1.1 to the state 1). Watch the diodes, connected to the
A and B ports. All LEDs connected to the MC ports should not
emit the light.

14. Load the hex file of the MC program. Push the field Load for
this purpose, choose your directory and the file generator.
HEX in it. Mark the file and push field Open. Examine the
program code contents in the window of the software NT PIC
PROGRAMMER.

15. Switch the development board to the programming mode
(toggle switch J1.1 to the state ON). Write the program code
into the MC program memory using field Write.

16. Switch the development board to the operating mode (toggle
switch to the state 1). Watch the LEDs connected to the port B.
Make sure that the low frequency pulse signals are generated
in the port B pins (LEDs are blinking). Draw voltage transient
diagrams of all B port pins (not less than 3 periods). Assume
that LED emitting light shows voltage corresponding to “1”
(5 V) and not emitting light – “0” (0 V). There is no need to put
time terms in the time axis of the voltage transient diagrams.

17. Switch the development board to the programming mode
and doing the same operations as in the point 12 of the task
erase the MC program. Switch the development board to the
operating mode and make sure that the program is deleted, i.e.
the signals are not generated (the LEDs connected to the port
B do not emit the light).

18. Performing operations described in the points 14 and 15 of the
task, again write the program into the MC program memory
and make sure that it operates.

4. report content
1. The aim of the work.

43

2. The characterization of the MPLAB IDE software purpose
and structure.

3. The text and hex file of the MC program (points 4 and 8 of the
task).

4. The voltage transient diagrams of all B port pins (point 16 of
the task).

5. Conclusions.

5. Control questions
1. What is the purpose of the PIC16F84A microcontroller

development board?
2. What kind of the memory is used as the program memory in

the PIC16F84A microcontroller?
3. What is forced to do the microcontroller if the Reset button is

pushed down?
4. What indicates the LEDs connected to the MC ports?
5. What is the purpose of the crystal resonator connected to the

MC pins?
6. What are the voltage levels of the logical “0” and “1” of the

TTL signals and signals provided by the COM port of the
personal computer?

7. What is the purpose of the MPLAB IDE software?
8. What programs includes the MPLAB IDE software?
9. What is the purpose of the MPLAB SIM program?
10. What is the purpose of the MPLAB ICE program?
11. What is the purpose of the programmer?
12. What information is set during the MC configuration?
13. What additional files are build during the creation of the hex file?

44

references

1. Weber, R. PICee development system. Elektor Electronics, No 2,
2002, p. 14–18.

2. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

3. MPLAB IDE user’s guide, DS51519A, Microchip Technology
Inc., http://www.microchip.com, 2005. 240 p.

45

7.2. laboratory 2

writing the data into the microcontroller ports

1. Aim
Study the MC PIC16F84A ports, special purpose registers STA-

TUS, TRISA, TRISB, assembler directives ORG, LIST, INCLUDE,
CONFIG, END and instructions clrf, bsf, bcf, movlw, mowwf.

2. task
Configure MC, set the pins of ports for data input and output

and write data into the controller ports.

3. proceeding
1. Analyze the structure, circuit diagrams and properties of MC

PIC16F84A ports.
2. Open the MPLAB IDE software. Using File>New open

MPLAB Editor window intended for editing of MC programs.
In the beginning of the program type text, with title of the
program, author, type of MC and resonator frequency.

;Writing the data into the microcontroller
ports

;******************N. Surname*****************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz
;***

3. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC.

LIST p=16F84 ;Setting type of MC

46

#INCLUDE <p16F84a.inc> ;Calling the file,
 ;with the definitions of
 ;special purpose registers
_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF&
_ CP _ OFF; 	 	

Comment. More information about the MC configuration is given
in chapter 5, (2 point). Semicolon in program shows the beginning
of comments. The text to the right of the semicolon doesn’t influ-
ence the program operation.

4. Using assembler directive ORG set the beginning address of
the program.

ORG 0×000 ;setting the beginning
 ;address of the program

Comment. This directive points at the program beginning address.
Program memory address 0×000 (0000h) is called MC Reset Vec-
tor. After the Reset the MC starts to execute the program, which
begins from this address.

5. Clear the PORTA and PORTB registers using instruction clrf:

clrf PORTA ;clear PORTA register
clrf PORTB ;clear PORTB register

Comment. Instructions clrf that are presented in the strings written
above clears the contents of appropriate registers, i.e. write “0” into
all bits of PORTA and PORTB registers.

6. Using bit RPO (5th bit) of STATUS register and instruction
bsf set the work of MC for operating with the registers located
in Bank 1.

bsf STATUS, 5 ;move to Bank 1

47

Comment. By default “0” is stored in bit RPO of STATUS register,
i.e. the MC is set to work with the data memory registers that are
located in Bank 0. Instruction bsf (bit set file bit n) is used to set “1”
in the n-th digit of the register. In this case it configures MC to oper-
ate with the registers of Bank 1.

7. Set Port B pins for signal output using TRISB register:

movlw b’00000000’ ;write the binary digit
to

 ;W register
movwf TRISB ;move W register content
 ;to the TRISB register

Comment. Instruction movlw (move literal to W) is used to move
8 digit number to W (Working) register. Letter b shows that the
number is binary.

Instruction movwf (move W to f) moves content of W register to
the register f (in our case to the register TRISB).

The register TRISB is used for the port B configuration, i.e.
to set the pins of port as inputs or outputs. To configure the pin for
input, it is necessary to set the corresponding bit of TRISB register
(to write “1”). To configure the pin for output, it is necessary to clear
the corresponding bit of TRISB register (to write “0”).

The register TRISA is used in the same way for configuration
of port A pins.

8. Using bit RPO (5th bit) of STATUS register and instruction
bcf set the work of MC for operating with the registers located
in Bank 0:

bcf STATUS, 5 ;move to Bank 0

Instruction bcf (bit clear file bit n) is used to set “0” in n-th
bit of the register. In this case it configures MC to operate with the
registers located in the Bank 0.

48

9. Write the following fragment of program:

movlw b’11111111’ ;write the binary digit
to

 ;W register
movwf PORTB ;move content of W regis-

ter
 ;to the register PORTB

Comment. The instructions used above set all PORTB register bits,
i.e. write “1”. Since all port B pins are configured as outputs, the
potentials, which corresponds to “1” potential of TTL standard will
appear on all port B pins. The instructions used in the analyzed pro-
gram fragment are the same as these discussed in point 7.

10. Indicate the end of the program using directive END:

END ;end of the program

11. By choosing File>Save As save the program as assembly
source file. Before that entitle it.

12. Using Project>Open, open project that was created during
1 laboratory work. Mark assembler file saved in Source files
folder and remove it by executing Remove. Then mark the
catalog Source Files and executing Add File, move to project
the assembler file of the created program.

13. Executing the actions presented in the 7 to 15 points of the 1st
laboratory work create the hex file and using MC PIC16F84A
development board load it into the MC.

14. Switch the development board to operating mode (see point
16 of 1 laboratory work) and make sure that program operates
properly, i.e. the “1” written in to the all PORTB register bits,
should be indicated by the emitting of light from the all LED’s
that are connected to the pins.

49

Comment. When power supply is connected to the MC, all pins of
ports A and B are set for input by the default (the impedance be-
tween pins and supply source is high), so LEDs connected to port A
pins should not emit the light.

15. Change program so that the MC pins RB0, RB2, RB4 and RB6
would be set for data input, and the pins RB1, RB3, RB5 and
RB7 – for data output. The voltage of “1” must be conducted
to RB1, RB3, RB5 and RB7 pins. Leave all A pins set to input.
Accomplish actions described in points 13 and 14 of this
laboratory work. By observing of LEDs connected to the pins
make sure that program works properly. Choose File>Save As
and save the text of the program for the laboratory report.

16. Modify the program in such a way that all port A and port B
pins would be set as outputs and to all pins the voltage, which
corresponds to “1” would be conducted. Execute the actions 13
and 14 of this laboratory work. Make sure that program works
properly by observing the state of LEDs connected to the pins.

17. By executing of actions similar to these presented in point
16 of this laboratory work make that the voltage, which
corresponds to “1” would be conducted to pins of port A RA1
and RA2 and to the pins of port B RB0, RB2, RB4 and RB6.
The voltage that corresponds to “0” must be conducted to all
remaining pins. Using MC PIC16F84A development board
load the program into the MC. Save the text of the program
for the laboratory report.

18. Set the port A pins RA0 and RA1 for data input. The remaining
pins leave in the state as it was made in the point 17 of this
laboratory work. Load the program into the MC. Pushing the
buttons M1-M3 of MC PIC16F84A development board, find
out which logic level voltage is connected to the pin when
button is pressed and not pressed and which button commutates
which terminal voltage.

50

4. report content
1. The aim of the work.
2. The block diagram of circuit used for pin RA0 control and its

analysis.
3. The block diagram of circuit used for pin RB0 control and its

analysis.
4. The description of purpose of MC PIC16F84A registers

STATUS, TRISA and TRISB, assembler directives ORG,
LIST, INCLUDE, CONFIG, END and instructions clrf, bsf,
bcf, movlw and movwf.

5. The texts and comments of the programs that were saved
during the execution of tasks given in points 15 and 17.

6. Conclusions.

5. Control questions
1. What is the purpose of MC ports?
2. How many ports has MC PIC16F84A?
3. How many bits (pins) includes port B?
4. What is the difference of the circuit that is used for control

of pin RA4 in comparison with these that are employed for
control of remaining pins of port A?

5. What is the difference of the circuits that are used for control
of pins RB4–RB7 in comparison with these that are employed
for control of remaining pins of port B?

6. What is the purpose of assembler directives ORG and END?
7. What is the purpose of RPO bit of STATUS register?
8. How many banks includes the SRAM data memory of MC

PIC16F84A?
9. Clarify the meaning and purpose of instruction clrf.
10. What shows the semicolon in the program text string?
11. Clarify the meaning and purpose of instructions bsf and bcf.
12. Clarify the meaning and purpose of instructions movlw and

movwf.

51

13. To the what mode (as inputs or outputs) a set all port A and
port B pins by default after the MC supply is switched on?

14. What is the purpose of TRISA and TRISB registers?
15. In to the what two groups the SRAM data memory registers of

MC PIC16F84A are partitioned?

references

1. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

2. PIC16F84 tutorial, http://home.planet.nl/~midde639/tutorial.pdf,
2005. 58 p.

52

7.3. laboratory 3

Creating a program loops

1. Aim
To study instructions goto, nop, decfsz, assembler directive

EQU and the program loop creating principles.

2. task
Create the MC PIC16F84A programs of high and low frequency

pulse signal generators, test and investigate them.

3. proceeding

A. high frequency pulse signal generator program

1. Open the MPLAB IDE software. Using File>New open
MPLAB Editor window intended for editing of MC programs.
In the beginning of the program type text, with title of the
program, author, type of MC and resonator frequency.

; High frequency pulse signal generator
;******************N. Surname*****************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz
;***

2. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC.

LIST p=16F84 ;Setting type of MC
#INCLUDE <p16F84a.inc> ;Calling the file,

53

 ;with the definitions of
 ;special purpose registers
_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF&
_ CP _ OFF;

3. Using assembler directive ORG set the beginning address of
the program.

ORG 0×000 ;setting the beginning
 ;address of the program

4. Clear the PORTA and PORTB registers using instruction clrf.

clrf PORTA ;clean PORTA register
clrf PORTB ;clean PORTB register

5. Using bit RPO (5th bit) of STATUS register and instruction
bsf set the work of MC for operating with the registers located
in Bank 1:

bsf STATUS, 5 ;move to Bank 1

6. Set all port A and port B pins for signal output, set the work of
MC for operating with the registers located in Bank 0 and set
all bits of PORTA and PORTB registers to “1”:

movlw b‘00000000‘ ;write the binary digit to
 ;W register
movwf TRISB ;move the content of W
 ;register into TRISB
 ;register
movlw b‘00000‘ ;write the binary digit to
 ;W register

54

movwf TRISA ;move the content of W
 ;register into TRISB
 ;register
bcf STATUS, 5 ;move to Bank 0
movlw b‘11111‘ ;write the binary digit to
 ;W register
movwf PORTA ;move the content of
 ;register W into register
 ;PORTA
Start movlw b‘11111111‘ ;write the binary digit to
 ;W register
movwf PORTB; ;move the content of
 ;register W into register
 ;PORTB
Comment. The word Start acts as a label which marks the appropri-
ate string, which shows where to move the execution of a program.

7. Write “0” into all bits of PORTB register

movlw b‘00000000‘ ;enter the binary number written
 ;in commas into register W
movwf PORTB ;move content of W register
 ;to the register PORTB

8. Using instruction goto (go to address) move the execution of
the program to the line marked by the label Start.

goto Start ;go to the string with the label
 ;Start
Comment. A closed loop, which is executed permanently, is made
using instruction goto. It includes the segment of a program between
the beginning of the cycle (between the string marked by label Start)
and the instruction goto Start, which forces to get back to the string
marked by label Start. Any informative short word can be used as a

55

mark (it must not coincide with the instruction or assembler direc-
tive). Since “1” and “0” are being written alternately into the bits of
the PORTB, the pulse signal with the same phase is generated in the
all pins of port B. The period of the pulse signals is determined by
the instruction execution duration. The MCs of 8 bit PIC Mid-range
family including MC PIC16F84A perform one instruction (except
the control instructions call, goto, retfi, retlw, return) during the one
Machine Cycle (MC), which lasts 4 periods of the Clock Generator
signal. Since the frequency of the Clock Generator in development
board, which is used for the laboratories is 4 MHz, the duration of
MC is 1 µs. The duration of control instructions is equal to twoMC.
The loop analyzed above includes 5 instructions. One of them is
control instruction (goto) so the period of generated signal is 6 µs
and the frequency is approximately 0.17 MHz. It is impossible to
observe the blinking of LEDs at such a high frequency of pulse
signal. However, the presence of pulse signal can be indicated by
lower light intensity emitted by LEDs as compared to the case when
voltage of “1” is conducted constantly to port pins.

9. Indicate the end of the program using directive END.

END ;end of the program

10. By choosing File>Save As save the program as assembly
source file. Before that entitle it.

11. Using Project>Open, open project that was created during
1 laboratory work. Mark assembler file saved in Source files
folder and remove it by executing Remove. Then mark the
catalog Source Files and executing Add File, move to project
the assembler file of the created program.

12. Executing the actions presented in the 7 to 15 points of the 1st
laboratory work create the hex file and using MC PIC16F84A
development board load it into the MC.

56

13. Switch the development board to operating mode (see point
16 of 1 laboratory work) and make sure that program operates
properly, i.e. the intensity of the light produced by the LEDs
that are connected to the pins of port A is higher than intensity
of light generated by the LEDs connected to the pins of port B.

14. Using instruction nop (no operation), which is employed for
the introduction of the delay that is equal to 1 MC, increase
the signal period duration (the duration of MC is 1 μs in the
development board used for the laboratories). Introduce ten
identical strings with the instruction nop just before the string
goto Start:

nop ;introduce a delay of 1µs
.
.
.
nop ;introduce a delay of 1µs

Comment. The introduction of the instructions written above allows
us to increase by 10 µs the duration of the state, during which the
voltage that corresponds to “0” is conducted to the port B pins. The
duration of the state, at which the voltage that corresponds to “1” is
conducted, remains the same. Remark: if the period duration should
be increased significantly, i.e. if it would be necessary to generate
low frequency pulse signal, the very high number of strings with the
instruction nop should be introduced. However, this is not acceptable
because of limited volume of the program memory. This fact is the
reason why another solutions should be used in such a case.

15. Create the hex file of a program and load the code into MC.
16. Switch the development board to operating mode and make

sure that the intensity of the light produced by the LEDs that
are connected to the port B pins is lower than this one obtained
before the introduction of strings with the nop instructions.

57

17. Save the text of the program for report of the laboratory
work.

B. low frequency pulse signal generator program

18. Using an Assembler directive EQU define the names for
registers, in which the values of variables of the delay loops
will be stored. In order to do that enter the fragment of a
program just after the line, which is used for the configuration
of MC:

;********************Variables*******************

Var1 EQU 0Ch ;gives name Var1 to 0Ch
Var2 EQU 0Dh ;gives name Var2 to 0Dh

;***
Comment. Using an assembler directive EQU, which is used for
setting of constants, is convenient to name the registers. It lets us
to use instead of an address of the register the name, which has the
informative name related to the variable purpose and can be easy
remembered. Any free data memory general purpose register can
be used to store a variable.

19. Enter the strings of a program just under every string, which
contains the instruction movwf PORTB. Under the first string
with instruction movwf PORTB enter:

Cycle1 decfsz Var1,1 ;subtracts 1 from variable
 ;Var1 and when it becomes
 ;equal to 0 skips the next
 ;instruction goto Cycle1
goto Cycle1
 ;skips to the string with
 ;the label Cycle1

58

decfsz Var2,1
 ;subtracts 1 from variable
 ;Var2 and when it becomes
 ;equal to 0 skips the next
 ;instruction goto Cycle1
goto Cycle1 ;skips to the string with
 ;the label Cycle1

Under the second line with instruction movwf PORTB enter

Cycle2 decfsz Var1,1 ;subtracts 1 from variable
 ;Var1 and when it becomes
 ;equal to 0 skips the next
 ;instruction goto Cycle2
goto Cycle2 ;skips to the string with
 ;the label Cycle2
decfsz Var2,1 ;subtracts 1 from variable
 ;Var2 and when it becomes
 ;equal to 0 skips the next
 ;instruction goto Cycle2
goto Cycle2 ;skips to the string with
 ;the label Cycle2

Comment. Instruction decfsz (decrement f, skip if zero) subtracts
one from the variable f, the value of which is stored in the appropri-
ate data register, and when it becomes equal to 0, forces to skip the
next instruction (the next string) of the program.

The 8 strings of the program presented above create two double
loops, which are called the delay loops. They are used to increase
significantly the duration of the states, during the which the “0”
and “1” are stored in the PORTB register bits. Because of this, the
frequency of generated pulse signal in port B pins is reduced pro-
portionately.

59

A random number (its’ value depends on asymmetry of trigger
arms, which acts as SRAM memory bit cell) appears in the general
purpose registers after the supply of the MC is switched on. There-
fore, the numbers stored in registers 0Ch and 0Dh (the values of the
variables Var1 and Var2) and, as a consequence, the duration of the
first delay cycle in the delay loops is unknown. Since the first cycle
ends when the content of the register decreases till 00, the duration
of the following cycles is determined. At the beginning, when the
digit 1 is subtracted from 00 the result is hexadecimal number FF
(decimal 255). Because of this, instructions decfsz Kint1,1 and decf-
sz Kint2,1 in all cycles except the first one are repeated 256 times.
During each cycle 1 is subtracted from the variable and the result is
moved to the variable register. When the value of the variable reach-
es 00, instruction decfsz forces to skip the next instruction (instruc-
tion goto). Since the duration of MC is 1 µs and two instructions are
executed during one cycle and one of them is control instruction
goto, the duration of the execution of the top loop is 3 µs x 256 =
768 µs. The total duration of double delay loop execution (768 µs x
256) + 768 µs = 197 376 µs. When the skipping condition is being
performed the duration of an instruction decfsz increases by 1 µs,
so the total duration of a double delay loop is 197 376 µs + 256 µs =
197 632 µs ≈ 0,2 s. During this period the voltage that corresponds
to “1” is conducted to the port B pins. After that the voltage, which
corresponds to “0” is provided for the same duration. Because of
this, the period of the generated pulse signal using discussed double
delay loops is 0,4 s, i.e. the frequency of the signal is 2,5 Hz.

20. Delete the rows, which contain the nop instructions.
21. Change the title of the program (the top line of the program)

to the following: “Low frequency pulse signal generator”.
22. Create the hex file of a program and load the code into MC.
23. Switch the development board to operating mode and make

sure that program works (LEDs that are connected to the

60

port A pins emit the light constantly and the LEDs that are
connected to port B pins blink with the 2,5 Hz frequency).

24. Modify the program in such a way that the signals in the pins
RB0, RB2, RB4 and RB6 would be inverted in respect of the
signals in the RB1, RB3, RB5 and RB7 pins. Load the code
into MC, observe the blinking of LEDs and make sure that the
program works, i.e. when one group of LEDs emits the light
the another – does not emits and vice versa.

25. Modify the program, which was created in section 24 in such
a way that low frequency pulse signals would be generated
in the all port A and port B pins. The signals generated in
pins of every port must be synchronous, however, the signals
generated in port A pins must be in opposite phase as compared
to the signals generated in the port B pins. Load the code of the
modified program into MC, observe the blinking of LEDs and
make sure that the program works (LEDs that are connected
to the port A pins emit the light during one half of the period
and LEDs connected to the port B pins emit the light during
the another half of the period).

26. Modify the program, which was made in section 25, using the
nop instruction (execution duration of this instruction is 1 µs)
in such a way that the period of generated pulse signal would
increase 4 times (the frequency would be approximately 1 Hz).
Load the code into MC, observe the blinking of LEDs and make
sure that the frequency of blinking has decreased up to 1 Hz.
Save the text of the program for report of the laboratory work

4. report content
1. The aim of the work.
2. Purpose of instructions goto, nop, decfsz and the directive EQU.
3. The texts and comments of the programs that were saved

during the execution of tasks given in points 17 and 26.
4. Conclusions.

61

5. Control questions
1. What is the purpose of the directive EQU?
2. In what registers, of which MC memory, the variables of a

program are stored?
3. What numbers appear in the general purpose registers after

the power supply of MC is turned on?
4. What is the purpose of the instruction goto?
5. Explain how the program cycle is created.
6. What is the relation between the clock signal period and

Machine Cycle?
7. How many Machine Cycles are needed for the execution of

control instructions?
8. What is the purpose of the instruction nop?
9. What is the purpose of the instruction decfsz?
10. How to calculate the program loop duration?
11. Explain the principle of pulse signal generation using MC.

references

1. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

2. PIC16F84 tutorial, http://home.planet.nl/~midde639/tutorial.pdf,
2005. 58 p.

62

7.4. laboratory 4

Creating of subroutines and reading the data from ports

1. Aim
To study instructions call, return, btfsc, btfss, subroutine creat-

ing principles and methods of data reading from MC ports.

2. task
To create, test and investigate the pulse signal generator pro-

grams for the MC PIC16F84A based on the subroutines, which in-
clude the possibility of pulse signal parameters control by the port
input signals.

3. proceeding
1. Analyze the following 10 ms delay loop subroutine:

:**************** 10 ms delay subroutine **************
tenms
 movlw d’13’ ;writes the number into
 ;W register
movwf Var4 ;moves the content of W
 ;register into Var4
 ;register
Cycle decfsz Var3,1 ;subtracts 1 from variable
 ;Var3 and when it becomes
 ;equal to 0 skips the next
 ;instruction
goto Cycle ;skips to the string with
 ;the label Cycle
decfsz Var4,1 ;subtracts 1 from variable
 ;Var4 and when it becomes

63

;equal to 0 skips the next
;instruction

goto Cycle ;skips to the string with
;the label Cycle

return ;return to main program
;***

Comment. The subroutine must be entitled (the analyzed subrou-
tine is entitled tenms). Instruction call (Call Subroutine) is used in
the main program to call up the subroutine (eg. call tenms). When
execution of the main program reaches the instruction call, the
execution of appropriate subroutine is started. Instruction Return
(Return from Subroutine) must be written at the end of a subrou-
tine. It returns back to continue the execution of the main program.
The execution of the main program is continued starting from in-
struction, which follows the call instruction. It is convenient to use
the subroutine when the same program fragment is repeated sev-
eral times. The program becomes shorter and clear and program
memory space is saved if this fragment is presented as subroutine.
However, the employment of subroutine increases the duration of
program execution, because the two additional instructions call and
return must be included. The subroutine text usually is placed at the
end of the program text, just before the assembler directive END.
The program can include lot of subroutines.

The upper cycle of the subroutine includes 256 repetitions. The
duration of 1 cycle is equal to 3 Machine Cycles (MC), because
the duration of the decfsz instruction execution is equal to 1 MC
(except the case when skiping is being performed). The execution
of instruction goto takes 2 MC. The number of repetitions of the
lower cycle is defined by the number loaded into Var4 register. In
the analyzed subroutine the number 13 is loaded. The 1MC=μs, be-
cause of this, the total time of the analyzed delay loop execution
is (3 µs x 256 x 13) + (3 µs x 13) = 10 023 µs. We should also add

64

the execution duration of instructions movlw and movwf (1 µs + 1
µs), time for calling up the subroutine (execution of instruction call)
(2 µs) and time for returning to the main program, i.e., execution of
instruction return (2 µs). Consequently, the total time of execution
of the analyzed delay loop is 10 043 µs ≈ 10 ms.

It is convenient to use this subroutine for the creating of long
duration delay loops with defined duration. For example, a delay
loop with the duration of 1 s could be made by involving this sub-
routine into a cycle with the 100 repetitions. Using such a principle
the delay loops with the various execution durations can be created.
These delay loops can be employed for the realization of the pulse
signal generators with the given pulse signal frequency and pulse
duty cycle.

2. Open the MPLAB IDE software. Using File>New open
MPLAB Editor window intended for editing of MC programs.
In the beginning of the program type text, with title of the
program, author, type of MC and resonator frequency.

;Low frequency signal generator program
;based on the subroutine
;******************N. Surname*****************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz
;***

3. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC.

LIST p=16F84 ;Setting type of MC
#INCLUDE <p16F84a.inc> ;Calling the file,
 ;with the definitions of
 ;special purpose registers

65

_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF&
_ CP _ OFF;

4. Define the names for registers (introduce variables):

;*****************Variables***********************

Var1 EQU 0Ch ;gives name Var1 to 0Ch
Var2 EQU 0Dh ;gives name Var2 to 0Dh
Var3 EQU 0Eh ;gives name Var3 to 0Ch
Var4 EQU 0Fh ;gives name Var4 to 0Dh

;***

5. Using assembler directive ORG set the beginning address of
the program.

ORG 0×000 ;shows the initial address
 ;of the program

6. Clear the PORTA and PORTB registers:

clrf PORTA ;clean PORTA register
clrf PORTB ;clean PORTB register

7. Set the work of MC for operating with the registers located in
Bank 1:

bsf STATUS, 5 ;move to Bank 1

66

8. Set all port A and port B pins for signal output, set the work of
MC for operating with the registers located in Bank 0, clear all
bits of PORTA register and set all bits of register PORTB:

movlw b‘00000000‘ ;write the binary digit to
 ;W register
movwf TRISB ;move the content of W
 ;register into TRISB
 ;register
movlw b‘00000‘ ;write the binary digit to
 ;W register
movwf TRISA ;move the content of W
 ;register into TRISB
 ;register
bcf STATUS, 5 ;move to Bank 0
Start movlw b‘00000‘ ;write the binary digit to
 ;W register
movwf PORTA ;move the content of
 ;register W into register
 ;PORTA
movlw b‘11111111‘ ;write the binary digit to
 ;W register
movwf PORTB; ;move the content of
 ;register W into register ;PORTB

9. Enter the fragment of low frequency pulse signal generator
program:

 movlw d‘50‘ ;writes the binary digit
 ;into W register
 movwf Var1 ;moves the content of W
 ;register into Var1 register
Cycle1 call tenms ;calls subroutine tenms
 decfsz Var1,1 ;subtracts 1 from variable

67

 ;Var1 and when it becomes
 ;equal to 0 skips to
 ;instruction goto Cycle1
 goto Cycle1 ;goes to the string of a
 ;program, which is marked
 ;Cycle1
 movlw b‘00000000‘ ;writes the binary digit
 ;to W register
 movwf PORTB ;moves the content of W
 ;register into register PORTB
 movlw b‘11111‘ ;writes the binary digit
 ;into W register
 movwf PORTA ;moves the content of
 ;register W into register
 ;PORTA
 movlw d‘50‘ ;writes the decimal digit
 ;into W register
 movwf Var2 ;moves the content of W
 ;register into register Var2
Cycle2 call tenms ;calls subroutine tenms
 decfsz Var2,1 ;subtracts 1 from variable
 ;Var2 and when it becomes
 ;equal to zero skips
 ;instruction goto Cycle2
 goto Cycle2 ;goes to the string of a
 ;program, which is marked
 ;Cycle2
 goto Start ;goes to the string of a
 ;program, which is marked
 ;Start

Comment. The program fragment presented above differs from the
analogous fragment of low frequency generator program analyzed

68

in the laboratory 3 by the fact that subroutine tenms (it is presented
in the first section of this laboratory) has been employed in the delay
loops Cycle1 and Cycle2 and the values of variables Var1 and Var2
have been defined also. It lets us obtain desired duration of delay
loops, i.e. desired pulse signal frequency and duty cycle. Variables
Var1 and Var2 have values of 50 (the execution duration of each de-
lay loop is 10 ms � 50 = 500 ms) in this fragment of a program, so MC
will generate pulse signal with the frequency 1 Hz and duty cycle
is 0.5. Actually, frequency and duty cycle will be slightly different
because each of the cycles adds an additional delay and execution
duration of subroutine tenms differs a little bit from 10 ms.

10. Enter the subroutine tenms (it is presented in the point 1) after
the string goto Start on the bottom of the program fragment
given in the point 9.

11. Indicate the end of the program using directive END.

END ;end of the program

12. Save the program as assembly source file. Before that entitle
it. Open the project that was created during the 1 laboratory
work. Remove assembler file saved in it, then mark the catalog
Source Files and executing Add File, move to project the
assembler file of the created program.

13. Executing the actions presented in the 7 to 15 points of the 1st
laboratory work create the hex file and using MC PIC16F84A
development board load it into the MC.

14. Switch the development board to operating mode (see point
16 of 1 laboratory work) and make sure that program operates
properly, i.e. LEDs are blinking, the frequency of signals is
close to 1 Hz, the duty cycle – 0.5 and signals generated in the
port A pins are inverse to these generated in the port B pins.

15. Modify the program in such a way that the duty cycle of signals
would remain 0.5, but frequency would be: 5 Hz, 0,5 Hz.

69

16. Load the programs into the MC and test them.
17. Modify the program so that the frequency of the signal would

be 0,5 Hz and the duty cycle of the “1” voltage in the port B
would be 0,2.

18. Load the program into the MC and test it.
19. Save the program for report of the laboratory work.
20. Modify the program in such a way that the frequency of the

signal would be 1 Hz, duty cycle 0.5 and the signals generated
in the pins RB0, RB2, RB4, RB6 would be inverted in respect
to the signals generated in the pins RB1, RB3, RB5, RB7.

21. Using the register TRISA and appropriate instructions set all
port A pins for signal input.

22. In the text of the main program bellow every string with the
instruction call tenms enter the following fragment:

btfsc PORTA,0 ;reads the input signal in the pin
 ;RA0, if there is “1” ;the next
 ;instruction is executed, if “0” –
 ;the next instruction is skipped
call tenms ;calls the subroutine tenms

Comment. Instruction btfsc is used to read the data of the appropri-
ate register bit. In order to do that, the register (e.g. PORTA) and bit
(e.g. 0) must be indicated in the operands of the instruction.

If the “1” is read, the next instruction of the program is ex-
ecuted, i.e. the program is executed in the same way as if it would
be executed if this instruction would be not included into the pro-
gram. The instruction btfsc cause to skip the next instruction if
the “0” was read. The use of the instruction btfss (bit test f, skip if
set) is the same as btfsc instruction. The only difference is that the
next instruction of the program is executed if “0” is read, and it is
skipped if “1” is read. The buttons M2 and M3 on the development
board switches the voltage in the pins RA0 and RA1, respectively.

70

When the button is pressed the voltage that corresponds to “1” is
conducted, if it is not pressed, the voltage of “0” is provided. Button
M1 switches summarily the voltage of both these pins.

The instructions btfsc, btfss are used to link the MC with the
keyboard or other device whose data have to be processed and indi-
cated or used it in order to control other devices. The MC PIC16F84A
is not able to read analogue signals because it doesn’t include the
ADC.

Instruction call tenms is included twice in the delay loops, there-
fore, the duration of delay loop execution can be elongate twice, i.e.
the frequency can be twice lower. How many times the subroutine
tenms will be executed in the delay loop depends on the fact what
logical level will be read in the RA0 pin by the instruction btfsc: if
“0” – one of the program strings with the instruction call tenms will
be skipped and frequency of the generated signal will be higher, if
not – the subroutine tenms will be executed twice, i.e. the signal fre-
quency will be twice lower. Since the voltage level on the pin RA0 is
controlled by the button M3, pushing of this button will change the
frequency of the pulse signal generated by the MC.

23. Load the program into the MC. Make sure that it works, i.e. 1 Hz
frequency pulse signals with the 0.5 duty cycle are generated in
the port B pins and the signals generated in the pins RB0, RB2,
RB4, RB6 are inverted in respect of the signals generated in the
pins RB1, RB3, RB5, RB7. When the button M3 is pressed the
LED connected to the pin RA0 should light and the frequency
of generated pulse signal should decrease twice.

24. Modify the program by entering of the instruction btfss instead
of instruction btfsc. Make sure that the pressing of a button M2
make inverse impact to frequency change, i.e. when the button
is pressed the signal frequency increases from 0.5 to 1 Hz.

25. Using instruction btfsc, modify the program in such a way
that when the button M3 is not pressed, the signals generated
in the pins RB0, RB2, RB4, RB6 would be inverted in respect

71

of the signals generated in the pins RB1, RB3, RB5, RB7. The
frequency of the signal must be 2 Hz, the duty cycle – 0.5.
When the button is pressed the duty cycle of the “1” of the
generated signals in the outputs RB0, RB2, RB4, RB6 should
decrease up to 0,1, but frequency must remain the same.

26. Load the program into the MC and by the observing the
flashing of the LEDs and pressing the button M3 make sure
that it works properly.

27. Using instruction btfss modify the program in such a way,
that when the button M2 in not pressed, the same phase 1 Hz
frequency pulse signals would be generated in the all port B
pins. However, when this button is pressed the frequency must
remain the same but signals generated in the pins RB0, RB2,
RB4, RB6 must be inverted in respect of the signals generated
in the pins RB1, RB3, RB5, RB7.

28. Load the program into the MC and by the observing the
flashing of the LEDs and pressing the button M2 make sure
that it works properly.

29. Modify the program so that additionally the signal frequency
could be changed by pressing of M3 button from 1 Hz (when
the button M3 is not pressed) to 0.5 Hz (when the button M3
is pressed).

30. Load program to MC and make sure that it works by observing
the flashing of the LEDs and pressing the buttons M2 and M3.
Button M3 should change the frequency while button M2
should change the phase of the generated signals.

31. Save the program for the report of the laboratory. Name the
program following: “Low frequency pulse generator with
variable phase and frequency”.

4. report content
1. The aim of the work.
2. Analysis of instructions call, return, btfsc and btfss.

72

3. The texts and comments of the programs that were created
during the execution of tasks given in points 19 and 31.

4. Conclusions.

5. Control questions
1. Explain the purpose of instruction call.
2. Explain the purpose of instruction return.
3. When is it useful to use the subroutines? What advantages

provide the using of the subroutine?
4. Explain how to create the subroutine.
5. What is the purpose of instructions btfsc and btfss?
6. What registers are used in order to configure the pins of the

ports for signal input and output?
7. Is it possible to read the analog signals using the MC

PIC16F84A?
8. Comment the fragment of the MC program, which allows

changing the frequency of the generated pulse signals by
pressing a button.

9. Comment the fragment of the MC program which allows
changing the phase of the generated signals by pressing a
button.

references

1. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

2. PIC16F84 tutorial, http://home.planet.nl/~midde639/tutorial.pdf,
2005. 58 p.

73

7.5. laboratory 5

investigation of complementation, swap, rotation and logic
functions instructions

1. Aim
To study complementation, swap, rotation instructions comf,

swapf, rlf, rrf and logic function instructions andwf, andlw, iorwf,
iorlw, xorwf, xorlw.

2. task
Create MC PIC16F84A programs of high and low frequency

pulse signal generators with complementation, swap, rotation and
logic function instructions, test and investigate them.

3. proceeding
1. Open the MPLAB IDE software. Using File>New open

MPLAB Editor window intended for editing of MC programs.
In the beginning of the program type text, with title of the
program, author, type of MC and resonator frequency.

;********Low frequency pulse signal generator******
;******************N. Surname**********************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz
;**

2. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC.

LIST p=16F84 ;Setting type of MC
#INCLUDE <p16F84a.inc> ;Calling the file,

74

 ;with the definitions of
;special purpose
;registers

_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF&
_ CP _ OFF;

3. Define names of registers:

;*****************Variables***********************

Var1 EQU 0Dh ;give name Var1 to 0Dh
Var2 EQU 0Eh ;give name Var2 to 0Eh

;***

4. Using assembler directive ORG set the beginning address of
the program.

ORG 0×000 ;setting the beginning
 ;address of the program

5. Clear the PORTA and PORTB registers using instruction clrf.

clrf PORTA ;clear PORTA register
clrf PORTB ;clear PORTB register

6. Using bit RPO (5th bit) of STATUS register and instruction
bsf set the work of MC for operating with the registers located
in Bank 1:

bsf STATUS, 5 ;move to Bank 1

75

7. Set all port B pins for signal output, set the work of MC for
operating with the registers located in Bank 0 and upload
binary number 11100000 to the PORTB register:

 movlw b‘00000000‘ ;write a binary number to w
 ;register
 movwf TRISB ;move the contents of w
 ;register into TRISB
 ;register
 bcf STATUS, 5 ;move to Bank 0
Start movlw b‘11100000‘ ;write a binary
 ;number to w register
 movwf PORTB ;move the contents of w
 ;register into PORTB
 ;register

8. Enter the fragment of a program which calls the delay loop

call Delay ;call the subroutine Delay

9. Using instruction comf (complement f), invert PORTB register
content:

comf PORTB,1 ;invert PORTB register content

Comment. The instruction comf inverts f register content, i.e. it
change “0” to “1” and “1” to “0”. In this case the binary number
11100000 in the PORTB register is changed to 00011111. If 1 is writ-
ten in the operand after comma, the result of the execution of this
instruction is written into the f register (in this case into the PORTB
register), if 0 – the result is written into the W register.

76

10. Call the delay loop subroutine and call back the program
operation to the line marked by the Start label:

call Delay ;call the subroutine Delay
goto Start ;go to the string of the program

;marked by the label Start

11. Enter the subroutine of delay loop Delay

;***************Subroutine*******************
Delay
Cycle decfsz Var1,1 ;subtract 1 from variable
 ;Var1 and when it is

 ;equal to 0, skip
 ;instruction goto Cycle

 goto Cycle ;go to the string
 ;marked by label Cycle

 decfsz Var2,1 ;subtract 1 from variable
 ;Var2 and when it is
 ;equal to 0, skip
 ;instruction goto Cycle
 goto Cycle ;go to the string

 ;marked by label Cycle
 return ;return to the main program
;**

12. Indicate the end of the program using directive END.

END ;the end of the program

13. By choosing File>Save As save the program as assembly
source file. Before that entitle it. Using Project>Open, open
project that was created during 1 laboratory work. Mark

77

assembler file saved in Source files folder and remove it by
executing Remove. Then mark the catalog Source Files and
executing Add File move to project the assembler file of the
created program. Executing the actions presented in the 7 to 15
points of the 1st laboratory work create the hex file and using
MC PIC16F84A development board load it into the MC.

14. Switch the development board to the operating mode (see
point 16 of 1st laboratory work) and make sure the program
operates properly, i.e. in all pins of PORTB pulse signals with
approximately 2,5 Hz frequency are generated. Signals in pins
RB0, RB1, RB2, RB3, RB4 must be inverted as compared to
the signals in pins RB5, RB6, RB7.

15. Change the instruction comf by the instruction swapf in the
main program.

Comment. Instruction swapf (swap nibbles in f) changes the con-
tents of the higher nibble of register f with the contents of lower nib-
ble, i.e. the contents of the four higher bits is moved to the four lower
bits and vice versa. In this case the binary number 11100000, which
is stored in PORTB register, changes to 00001110. If 1 is written in
the operand after comma, the result of the execution of this instruc-
tion is saved in f register, i.e. to PORTB register, if 0 – the result is
saved in W register.

16. Create the hex file of the program and upload it into the MC.
Make sure that the program operates properly, i.e. in all pins
of PORTB, except pins RB0 and RB4, pulse signals with
approximately 2,5 Hz frequency are generated. The signals
generated in the pins RB5, RB6 and RB7 must be inverted
to the signals in pins RB1, RB2 and RB3. The pins RB0 and
RB4 must provide DC voltage, which corresponds to “0”, i.e.
close to 0 V (LEDs should not emit the light).

17. Study the instructions of logic functions andwf, andlw, iorwf,
iorlw, xorwf, xorlw using truth table of the logic operations
(Table 7.1).

78

table 7.1. The truth table of the logic operations

Combination of
numbers

The result of logic operation
AND IOR XOR

00 0 0 0
01 0 1 1
10 0 1 1
11 1 1 0

18. Investigate instruction andwf (AND W with f), which executes
logic operation AND. Change the string with the instruction
swapf in the main program with these two strings:

movlw b‘00111111‘ ;write a binary number to w
 ;register
andwf PORTB,1 ;execute logic operation AND

;between contents of w register
;and PORTB register

Comment. Instruction andwf executes logic operation AND be-
tween numbers of corresponding bits of the registers W and f (in
this case PORTB). Register W contains binary number 00111111
and PORTB register – 11100000. The result of the logic operation,
according to the table 7.1, must be 00100000. If 1 is written in the
operand after comma, the result of the execution of this instruction
is written into the f register, if 0 – the result is written into the W
register.

19. Create the hex file of the program and upload it into the MC.
Make sure that the program operates properly, i.e. port B
pins RB0, RB1, RB2, RB3, RB4 provide DC voltages that
correspond to logical “0”, pin RB5 – voltage that corresponds
to logical “1”, and the pulse signals of approximately 2,5 Hz
with the same phase are generated in pins RB6, RB7.

79

20. Investigate instruction andlw (AND literal with W). Change
the instructions in the main program, which were presented in
point 18, by instructions:

andlw b’10000000’ ;execute logic operation AND
 ;between given number and the
 ;contents of W register
movwf PORTB ;move the contents of W register
 ;to the register PORTB

Comment. Instruction andlw executes logic operation AND be-
tween corresponding bits of given number and binary number
stored in the register W. In this case the given number is 10000000
and the register W contains binary number 11100000. The result of
the logic operation, according to the table 7.1 has to be 10000000
and it is stored in the W register.

21. Create the hex file of the program and upload it into the MC.
Make sure that the program operates properly, i.e. port B
pins RB0, RB1, RB2, RB3, RB4 provide DC voltages that
correspond to logical “0”, pin RB7 – voltage that corresponds
to logical “1”, and the pulse signals of approximately 2,5 Hz
with the same phase are generated in pins RB6, RB7.

22. In the same manner investigate instructions iorwf (inclusive
OR W with f), iorlw (inclusive OR literal with W), xorwf
(exclusive OR W with f), xorlw (exlusive OR literal with W),
which execute logic operations IOR and XOR (7.1 table).
Create the hex files and upload the programs into the MC
PIC16F84A. Make sure that the programs operate properly
according to the truth table of the logic operations. Save the
xorlw instruction investigation program text for the laboratory
report. Entitle the program as “Low frequency pulse signal
generator based on the xorlw instruction”.

80

23. Change a fragment of the main program, which begins with
instruction labeled Start and ends with goto Start by the
following fragment based on the instruction rlf (rotate left f
through carry):

Start movlw b‘00000001‘ ;write a binary number into
;w register

movwf PORTB ;move the content of w
 ;register to register PORTB
call Delay ;call subroutine Delay
rlf PORTB,1 ;rotate the content
 ;of PORTB register to the

;left
call Delay
rlf PORTB,1
call Delay
rlf PORTB,1
call Delay
rlf PORTB,1
call Delay
rlf PORTB,1
call Delay
rlf PORTB,1
call Delay
rlf PORTB,1
call Delay
goto Start ;go to the string marked
 ;by the label Start

Comment. rlf instruction performs the rotation of the register con-
tents to the left, i.e. shifts the binary number of the register one bit
to the left including the flag bit C, which is stored in the STATUS
register. If 1 is written in the operand after comma, the result of the

81

execution of this instruction is stored in the f register, if 0 – in the W
register. The rotation to the left instruction is performed 7 times in
the given fragment of the MC program and the result is stored in the
f register (in PORTB register). During the execution of the first rota-
tion instruction the binary number in PORTB 00000001 is changed
to 00000010. The execution of the next rotation instruction changes
the contents of register to 00000100 and so on. During execution
of all rlf instructions the “1” is moved from the least significant bit
(LSB) to the most significant bit (MSB). Shifting binary number to
the left multiplies the number by 2. Using this instruction it is possi-
ble to achieve 2n multiplication, where n is the number of executions
of rlf instruction.

24. Create the hex file of the program and upload it into the MC.
Make sure that the program operates properly, i.e. pulse signals
are generated in port B pins, however only one pin at a time
has logical “1” voltage. Moreover, the voltage of logical “1”
is moving through all the pins of PORTB from RB0 to RB7.

25. Modify the program changing all rlf instructions by rrf (rotate
right f through carry) instructions. Additionally, change the
string marked by label Start as follows:

Start movlw b‘10000000’ ;write a binary number
 ;to w register

Comment. rrf instruction is analogous to the rlf instruction. The
only difference is that it performs the rotation of the register con-
tents to the right, i.e. shifts the binary number of the register one bit
to the right including the flag bit C, which is stored in a special pur-
pose register STATUS. If 1 is written in the operand after comma,
the result of the execution of this instruction is sent to the f register,
if 0 – to the W register. The rrf instruction is performed 7 times in
the given fragment of the program and the result is sent to the f reg-
ister (to the PORTB register). Therefore, during the first execution

82

of the instruction rrf the binary number 10000000, which is stored
in PORTB, is changed to 01000000. During the next execution of rrf
instruction it changes to 00100000 and so on. After the rrf instruc-
tion is executed 7 times, the “1” is shifted from most significant bit
(MSB) to the least significant bit (LSB). Shifting binary number to
the right means division of number by 2. Using this instruction it is
possible to divide the number by 2n, where n is the number of execu-
tions of rrf instruction.

26. Create the hex file of the program and upload it into the MC.
Make sure that the program operates properly, i.e. pulse
signals are generated in all port B pins and only voltage of one
pin at a time corresponds to logical “1” voltage. Moreover,
the voltage of logical “1” is moving through all the pins of
PORTB from RB7 to RB0.

27. Save the text of the program for the report of the laboratory
work. Entitle the program “Low frequency pulse generator
based on the rrf instruction”.

4. report content
1. The aim of the work.
2. Analysis of instructions comf, swapf, rlf, rrf, andwf, andlw,

iorwf, iorlw, xorwf and xorlw.
3. The truth table of the logic operations.
4. The texts and comments of the programs that were created

during the execution of tasks given in points 22 and 27.
5. Conclusions.

5. Control questions
1. Explain the purpose of comf instruction.
2. What number would we get after the inversion of the number

11110000?
3. Explain the purpose of swapf instruction.

83

4. What number would we get after execution logical operation
AND between binary numbers 11110000 and 10000000?

5. Explain the purpose of rlf and rrf instructions.
6. Explain the purpose of andwf, andlw, iorwf, iorlw, xorwf and

xorlw instructions.
7. What number would we get after the execution of logical

operation IOR between two binary numbers 11000111 and
10000100?

8. What number would we get after execution of logical operation
XOR between two binary numbers 11010000 and 00010001?

references

1. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

2. PIC16F84 tutorial, http://home.planet.nl/~midde639/tutorial.pdf,
2005. 58 p.

84

7.6. laboratory 6

investigation of arithmetic instructions

1. Aim
To study arithmetic instructions addlw, sublw, addwf, subwf

and usage of binary and hexadecimal numbers in MC.

2. general knowledge
Physically data are stored in MC in two-state memory cells, i.e.

in a form of binary numbers. Therefore, MC performs operations
with binary numbers and a single data unit is a bit. Other popular
data unit is a nibble, which consists of four bits. Because nibble
(physically it is presented in the MC memories by four bit memory
cells) stores 24=16 different states and usually memory cells (regis-
ters) include 2, 4, or 8 nibbles, theretofore, it is convenient to present
numbers during the writing MC programs in a hexadecimal form.
This enables us to display numbers in a compact form. For exam-
ple, to display data, stored in nibbles in binary number system one
needs to use a 4 digit number, while in hexadecimal number system
it is enough to use just 1 digit number, e.g. the binary number 1010
in a hexadecimal number is denoted by letter A, which represents
the decimal number 10. Because byte (8 bit register) consists of two
nibbles, to display data stored in it, it is enough to use two digit
hexadecimal numbers. E.g. number (byte) 11111111 stored in MC ś
data memory register, in hexadecimal number system is represented
by a number FF, which is equal to 255 in a decimal number system
(necessary to remember, that first number in the scale of notation
that is used in the digital systems is not 1, but 0).

In spite of the fact that number depiction in binary scale of
notation is not so compact, often it is more informative than these
one presented in a hexadecimal form, because it directly shows the
states of bit cells of the memory register. As an example, to set “0”

85

voltage levels in PORTB pins RB0, RB2, RB4, RB6 and voltage “1”
in the remaining pins, the binary number 10101010 must be written
as operand of the appropriate instruction. The binary number rep-
resents clearly what voltage levels are in which pins. On the other
hand, using hexadecimal scale of notation, the hexadecimal number
AA as instruction operand should be used in such a case. However,
it does not directly represent that information.

Binary and hexadecimal number system equivalence is pre-
sented in the table 7.2.

table 7.2. Decimal number equivalence

Decimal number Binary number Hexadecimal number
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Binary, octal, decimal and hexadecimal numbers are used for
writing of MCs programs. Numbers must be written between quotes,

86

and appropriate letter or symbol combination must be written before
it. Binary numbers are indicated by the letter b, e.g. b´10101010 ,́ for
octal – letter o, e.g. o´52 .́ To indicate hexadecimal numbers, letter h
or symbols combination 0x, (zero and x) is used, e.g. h’9F´ or 0x9f.
For decimal number letter d is used, e.g. d´17 .́ The capital letters
can be used for numbers indication as well.

To determine eight segment binary number b7b6b5b4 b3 b2 b1 b0

value in decimal form the formula db = b72
7
 + b62

6 + b52
5 + b42

4 + b32
3

+ b22
2 +b12

1 +b02
0 is used. As an example, binary number 10101010 val-

ue in decimal number system is D10101010 = 1x27
 + 0x26 + 1x25 + 0x24

+ 1x23
 + + 0x22 + 1x21 + 0x20 = 128 + 0 + 32 + 0 + 8 + 0 + 2 + 0 = 170.

The value of hexadecimal number X1X0 in decimal scale of notation
can be calculated using formula dX = X1161

 + X0160. E.g. hexadecimal
number AA value in decimal number system DAA = Ax161

 + Ax160.
Hexadecimal number A corresponds to decimal number 10 (table 7.2),
therefore DAA = 10x161

 + 10x160 = 160 + 10 = 170. We see that binary
number 10101010 corresponds to hexadecimal number AA. This can
be found using data presented in the Table 7.2, where it can be seen
that hexadecimal number A corresponds the binary nibble 1010. Since
AA is two digit hexadecimal number, it is obvious that it contains two
nibbles where every digit corresponds to one nibble. Consequently,
two digit hexadecimal number AA corresponds to eight digit binary
number 10101010 in the binary system. Similarly it can be found that
hexadecimal number C9 corresponds to binary number 11001001. The
value of this number in decimal system equals to 201.

3. task
To create, test and investigate the MC PIC16F84A programs

dedicated to adding and subtracting of numbers.

4. proceeding
1. Open the MPLAB IDE software. Using File>New open

MPLAB Editor window intended for editing of MC programs.

87

Type the text with title of the program, author, type of MC and
resonator frequency in the beginning of the program:

;**********Program for adding of numbers***********
;******************N. Surname**********************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz
;**

2. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC.

LIST p=16F84 ;Setting type of MC
#INCLUDE <p16F84a.inc> ;Calling the file,
 ;with the definitions of
 ;special purpose registers
_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF& _ CP _ OFF;

3. Define the names for registers:

;*****************Variables***********************

Var1 EQU 0Eh ;give name Var1 to 0Ch

;***

4. Using assembler directive ORG set the beginning address of
the program:

ORG 0×000 ;shows the initial address
 ;of the program

88

5. Clear the PORTA and PORTB registers using instruction clrf:

clrf PORTA ;clear PORTA register
clrf PORTB ;clear PORTB register

6. Using bit RPO (5th bit) of STATUS register and instruction
bsf set the operation of MC for operating with the registers
located in Bank 1:

bsf STATUS, 5 ;move to Bank 1

7. Set all port B pins and RA2 – RA4 pins of port A for signal
output. Set port A pins RA0, RA1for signal input and switch
MC for operating with the registers located in to Bank 0:

movlw b‘00000000‘ ;write a binary number to w
;register

movwf TRISB ;move the contents of w
 ;register to TRISB register
movlw b‘00011‘ ;write a binary number to w

;register
movwf TRISA ;move the contents of w
 ;register to TRISA register

bcf STATUS, 5 ;move to Bank 0

8. Enter fragment of the program with the addition instruction
addlw, (add literal and W):

Start movlw b 0́0001100́ ;write binary number into
;the register w

89

addlw b 1́1100001́ ;add given number to the
;register w contents

movwf PORTB ;move register w contents
;to the register PORTB
 ;(sum of the numbers is
;transferred to port B)

goto Start ;go to the string, which is
;marked by the label Start

9. Indicate the end of the program using directive END.

END ;the end of the program

Comment. The program fragment presented above adds given
number l with the content of the W register using instruction ad-
dlw. The result is sent to the W register and then is stored in the
register PORTB.

10. Save the program as assembly source file by choosing
File>Save. Before that entitle it. Open the project that was
created during 1 laboratory work by using Project>Open.
Mark assembler file saved in the source files folder and remove
it by executing Remove. Then mark the catalog Source Files
and executing Add File, move to project the assembler file of
the created program. Executing the actions presented in the
7 to 15 points of the 1st laboratory work create the hex file
and using MC PIC16F84A development board load it into the
MC.

11. Switch the development board to the operating mode (see
point 16 of 1st laboratory work) and observing the LEDs
connected to the port B pins, make sure that the program
operates properly, i.e. the obtained sum of binary numbers is
correct.

90

12. Make the addition of the several other numbers, also entering
them in decimal and hexadecimal numbering systems.

13. Change instruction addlw by the subtraction instruction sublw
(subtract W from literal) in the previously created program.
The sublw instruction subtracts contents of the W register from
the given number l and saves the result in the W register.

14. Perform the subtraction operations with several other numbers,
when l is bigger than the number loaded into the W register,
i.e. when the result number is positive. Load the programs into
MC memory and, by the help of LEDs connected to the port B
pins assure that obtained subtraction results are correct.

15. Subtract binary number 00000101 (number stored in the W
register) from the binary number 00000010 (number l), i.e.
investigate the case when the subtraction result is negative.
Load the program into MCs memory and assure that the result
of subtraction is 11111101.

Comment. The addition operation with the negative number is used
in the MCs instead of subtraction, i.e. result = l + (– W). Negative
W value is calculated using the equation – W = (W ⊕ 0xFF) + 1,
where ⊕ sign indicates logical exclusive OR (“sum in modulus 2”)
operation with values that are in the brackets (because number 0xFF
in binary system coincides with the number 11111111, this opera-
tion performs the inversion of W register content). Whole expres-
sion for calculation of subtraction is as follows: result = l + (w ⊕
0xff) + 1. The subtraction result obtained in the case, which was
presented in the point 15 of this laboratory work: result = 00000010
+ (00000101 ⊕ 11111111) + 00000001 = 00000010 + 11111010 +
00000001 = 11111101.

The sign of subtraction result is indicated by the Z, DC and C
flag bits located in the STATUS register. If the subtraction result is
positive, flag bits obtain the values C = 1, Z = 0, if result is zero Z =
1, if result is negative C = 0, Z = 0.

91

16. Make subtraction operations with several numbers, when l is
smaller than the number loaded into the W register, i.e. when
the result is negative. Load the programs into MC memory
and by the help of LEDs connected to the port B pins, using
equation presented in the point 15, assure that obtained
subtraction results are correct.

17. Save the program for the report of the laboratory work.
18. Modify the number addition program in such a way that not

just result, but also the numbers that are added up could be
displayed by the LEDs when the keyboard buttons are pushed
down. Make the following changes of the program for this
purpose:

a) The program fragment, which defines the names for regis-
ters, modify as follows:

Num1 EQU 0Ch ;give name Num1 to 0Ch
Num2 EQU 0Dh ;give name Num2 to 0Dh
Var1 EQU 0Eh ;give name Var1 to 0Eh

b) The part of the program, which begins with the label Start
and ends with the instruction goto Start, replace with the following
program fragment:

Start movlw b 0́0010001́ ;set value of variable Num2
movwf Num2
movlw b 0́1100010́ ;set value of variable Num1
movwf Num1
movf Num1,0 ;move content of the Num1
 ;into the W register
movwf PORTB ;move content of the Num1

;into the register PORTB
btfss PORTA,0 ;read the signal of pin RA0
 ;and if the result is 1

92

;skip the next instruction
call Subrout1 ;call subroutine Subrout1
btfss PORTA,1 ;read the signal of pin RA1
 ;and if the result is 1

skip the next instruction
call Subrout2 ;call subroutine Subrout2
call Delay ;call subroutine Delay
goto Start ;go to the string marked by

;the label Start

c) Enter the subroutine:
;*****************Subroutine1*********************
Subrout1
movf Num2,0 ;move the Num2 value into the W

;register
movwf PORTB ;move the Num2 value into the

;register PORTB
return ;return to the main program
;**

d) Enter the subroutine with the addition instruction addwf
(Add W and f):
;******************Subroutine2*********************
Subrout2
movf Num2,0 ;move the Num2 value into the W

;register
addwf Num1,0 ;add Num1 and Num2 and save the

;result in W register
movwf PORTB ;move the contents of W register

;into the register PORTB
return ;return to the main program
;**

93

e) Enter the delay loop subroutine:

;*****************Subroutine3*********************
Delay
Cycle decfsz Var1,1 ;subtracts 1 from variable
 ;Var1 and when it becomes
 ;equal to 0 skip the next
 ;instruction goto Cycle
goto Cycle ;go to the string with
the ;label Cycle
return ;return to the main program
;**

Comment. The modified program adds two binary numbers, which
are set as Num1 and Num2. Addition is performed using the sub-
routine Subrout2. The instruction addwf is used for this purpose.
It adds contents of the registers W and f (if in the operand after the
comma is written 1, then this instructions result is loaded into the
register f, if 0 – into the register W). The numbers that are added
and addition result one by one are loaded into the register PORTB,
so they can be shown in the binary counting system by the help of
LEDs, which are connected to the PORTB. Visible is that number,
which remains much longer in the register PORTB as compared to
the two others. The delay loop subroutine Delay is used for this pur-
pose. The number that should be displayed by the LEDs connected
to the port B is chosen by pressing the buttons of the development
board keyboard. The voltage of pins RA0 and RA1 are changed
from “0” to “1” by pressing of buttons. The button M1 commutates
the voltage of both pins RA0 and RA1 and M2 commutates voltage
of pin RA1. The MC executing instruction btfsss (bit test f skip if
set) checks the state of RA0 and RA1 pins and if 1 is detected the
next instruction is skipped. If the button M2 is pressed, the subrou-
tine subrout2 is skipped and delay loop is executed after the subrou-

94

tine subrout1, therefore the LEDs display the number Num2. Both
subroutines subrout1 and subrout2 are skipped if the button M1
is pressed. Therefore, the delay loop is executed after instruction,
which loads the contents of register Num1 into the PORTB register,
i.e. LEDs show the number saved in the register Num1. If the buttons
are not pressed, LEDs display the sum of the numbers. This happens
because the delay loop is executed after the subroutine subrout2,
which performs the addition of numbers.

19. Create the hex file of the program and load it into the MC.
Make sure that the program operates properly, i.e. the entered
numbers and the result of addition are right. The number saved
in the register Num1 must be displayed if the button M1 is
pressed. If the button M2 is pressed, the number stored in the
register Num2 should be shown. The sum of Num1 and Num2
must be displayed if the buttons are not pressed.

20. By changing values of variables Num1 and Num2 in the created
program perform several adding operations with equal to each
other numbers, i.e. 00001111, 01010101 and etc. Verify that
the sum is twice bigger than initial numbers, i.e. the same as
initial number just rotated to the left by one digit.

21. Perform the number adding operations with several other
numbers entering the numbers in binary, decimal and
hexadecimal number systems.

22. Substitute instruction addlw by subtraction instruction subwf
(subtract W from f) in subroutine Subrout2.

Comment. Instruction subwf subtracts content of the W register
from the f register. If in the operand after the comma is written 1,
then this instructions result is loaded into the register f, if 0 – into
the register W.

23. Subtract number 01010101 (Num2) from the twice higher
number 10101010 (Num1). Load the program into the MC
and verify that attained result is the same as smaller number
(as number loaded in Num2). This fact shows that division

95

of binary number by two coincides with the rotating of this
number to the right by one bit.

24. Make subtraction operations with various numbers, selecting
them in such are way that the result would be negative and
positive. Enter numbers every time in different number
system: binary, decimal and hexadecimal. Load the programs
into the MC and verify that entered numbers and the results
are correct.

25. Save the text of the program for the report of the laboratory
work. Entitle it “Improved number addition program”.

5. report content
1. The aim of the work.
2. Analyses of the MV16F84A instructions addlw, sublw, addwf

and subwf.
3. Table of the binary and hexadecimal numbers equivalence.
4. The texts and comments of the programs that were saved

during the execution of tasks given in points 17 and 25.
5. Conclusions.

6. Control questions
1. Explain the purpose of instructions addlw and addwf.
2. What is the nibble?
3. Explain the purpose of instructions sublw and subwf.
4. How are binary, octal, decimal and hexadecimal numbers

noted in the text of the MC program?
5. Write the formula for the calculation of the number in the

decimal counting system from the number presented in the
octal system.

6. In what scale of notation the data are presented on the MC
pins?

7. Explain how subtraction of two numbers is calculated in
MC?

96

8. Write the formula for calculation decimal number from two
segment hexadecimal number.

9. How will change the value of the binary number if it is rotated
to the left by 3 digits?

references

1. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

2. PIC16F84 tutorial, http://home.planet.nl/~midde639/tutorial.pdf,
2005. 58 p.

97

7.7. laboratory 7

Creating and investigation of timer programs

1. Aim
To study instructions decf, incf and creating principles of timer

programs.

2. task
To create and analyze the timer programs for MC PIC16F84A

when time is displayed in binary scale of notation by the LEDs con-
nected to MC ports.

3. proceeding
1. Open the MPLAB IDE software. Using File>New open

MPLAB Editor window intended for editing of MC programs.
Type text with title of the program, author, type of MC and
resonator frequency:

;******************* Stopwatch********************
;******************N. Surname*********************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz
;***

2. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC:

LIST p=16F84 ;Setting type of MC
#INCLUDE <p16F84a.inc> ;Calling the file,
 ;with the definitions of

 ;special purpose registers

98

_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF&
_ CP _ OFF;

3. Define the names for registers (introduce variables):

;*****************Variables***********************

Var1 EQU 0Ch ;gives name Var1 to 0Ch
Var2 EQU 0Dh ;gives name Var2 to 0Dh
Var3 EQU 0Eh ;gives name Var3 to 0Eh
Var4 EQU 0Fh ;gives name Var4 to 0Fh
Var5 EQU 10h ;gives name Var5 to 10h

;***

4. Using assembler directive ORG set the beginning address of
the program.

ORG 0×000 ;shows the initial address
 ;of the program

5. Clear the PORTA and PORTB registers:

clrf PORTA ;clear PORTA register
clrf PORTB ;clear PORTB register

6. Set the work of MC for operating with the registers located in
Bank 1:

bsf STATUS, 5 ;move to Bank 1

99

7. Set B and A ports pins configuration via TRISB and TRISA
registers:

movlw b‘00000000‘ ;write the binary number into
 ;W register
movwf TRISB ;move the content of W regis-

ter ;into TRISB register (set
all ;port B terminals for data
;output)

movlw b‘00001‘ ;write the binary digit to
 ;W register
mowf TRISA ;move register W content to

;TRISA register (set port A
;output terminal RA0 for data
;input and terminals RA1, RA2,
;RA3, RA4 – for data output)

bcf STATUS, 5 ;move to Bank 0

8. Enter following fragment of the program:

Start call Timeunit ;call subroutine Timeunit
 incf PORTB,1 ;increment PORTB register
 ;content by 1
 goto Start ;go to the program string
 ;marked by label Start

Comment. The program fragment of the program given above
presents cycle, the execution duration of which and, as a conse-
quence, the duration of stopwatch time unit is determined by the
subroutine Timeunit. Instruction incf (Increment f) increments reg-
ister f content (in this case PORTB) by 1. If in the operand after the
comma is written 1, then the result is loaded into the register f, if
0 – into the register W. For example, if execution duration of sub-

100

routine Timeunit is 1 second, then content of the register PORTB is
incremented by one every second. Before the execution of the cycle,
the content of the register PORTB is cleared, therefore, in the be-
ginning the binary number 00000000 is stored in register PORTB.
During the 255 cycles the contents of PORTB register reaches the
number 11111111 and in the next cycle overflows, i.e. the counting
again begins from the number 00000000. Content of the register
PORTB, which represents time, is shown by the LEDs connected
to port B pins.

The subroutine Timeunit is called before the instruction incf
PORTB,1 because firstly time interval equal to time unit should
elapse and just then the time should be displayed by the LEDs con-
nected to port B.

9. Enter subroutine Timeunit:

;*****************Timeunit subroutine*************
Timeunit

movlw d’5’ ;write the binary digit into
 ;W register

movwf Var3 ;move register W content
 ;to Var3

Cycle1 decfsz Var1,1;substract 1 from variable Var1
;and if result is 0 skip the
;next (goto Cycle1)instruction

goto Cycle1 ;go to the string marked by
;the label Cycle1

btfsc PORTA,0;read the signal from terminal
;RA0 and if the result is 0
;skip next instruction

call Stop ;call subroutine Stop
decfsz Var2,1;substract 1 from variable

;Var2 and if result is 0
skip ;the next instruction

101

goto Cycle1 ;go to the string marked
;by the label Cycle1

Decfsz Var3,1 ;subtract 1 from variable
;Var3 and if result is 0 ;skip
the next instruction

goto Cycle1 ;go to the string marked
 ;by the label Cycle1

return ;return to the main program
;**

Comment. The subroutine Timeunit includes triple delay loop. The
execution time of this delay loop is approximately 3x10–6 s x 256 x
256 x 5 ≈ 1 s. Method of precise calculation of delay loop execution
duration is described in the laboratory 4. The instruction btfsc in the
subroutine checks the voltage of the terminal RA0. If 0 is read the
instruction btfsc forces to skip the next instruction of the program,
if 1 – the next instruction is executed. Since button M3 controls
RA0 terminal voltage, the time calculation can be stopped and fixed.
While the button is not pushed down the voltage that corresponds
to “0” (voltage close to 0 V) is conducted to the RA0 terminal of
the port A. Because of this, the instruction call Stop is skipped. If
the button M3 is pushed down, the voltage that corresponds to “1”
(voltage close to 5 V) is conducted to the terminal and, as a conse-
quence, after the instruction btfsc PORTA,0 the instruction call Stop
is executed, i.e. the subroutine Stop is called. The microcontroller
starts to execute timeless cycle in the Stop subroutine, because of
this, the change of the PORTB register content is stopped and LEDs
connected to the port B display the time that was at the moment
when the button was pushed down.

Instructions btfsc and call Stop are included in the second cycle
of the Timeunit subroutine. This guarantees the stopping of the time
count with the acceptable delay on the one hand and, on the other
hand, the execution of the instruction btfs influences the duration of

102

subroutine Timeunit performance marginally in such a case. As an
example, if these instructions would be inserted in the first cycle,
the time count stopping would be performed with the minimal de-
lay, however, the execution Timeunit subroutine would be lengthen
twice, i.e. the time count unit would increase up to 2 seconds.

10. Enter the Stop subroutine:

;*****************Stop subroutine*************
Stop
Start1 movlw b’01110’ ;write the binary number

;into W register
movwf PORTA ;move the content of W ;reg-

ister to PORTA register
Cycle2 decfsz Var4,1 ;subtract 1 from variable

;Var4 and if the result is 0
;skip next instruction

goto Cycle2 ;go to the string marked by
;label Cycle2

decfsz Var5,1 ;subtract 1 from variable
Var5 and if the result is 0
;skip next instruction

goto Cycle2 ;go to the string marked by
;label Cycle2

movlw b’00000’ ;write the binary digit ;into
W register

movwf PORTA ;move the content of W ;reg-
ister to PORTA register

Cycle 3 decfsz Var4,1 ;subtract 1 from variable
;Var4 and if the result is 0
;skip next instruction

goto Cycle3 ;go to the string marked by
;label Cycle3

103

decfsz Var5,1 ;substract 1 from variable
;Var5 and if the result is 0
;skip next instruction

goto Cycle3 ;go to the string marked by
;label Cycle3

goto Start1 ;go to the string marked by
;label Start1

return ;return to the
 ;main program

;**

Comment. Subroutine Stop practically is the same low frequency
pulse generator program, which was analyzed in the Laboratory
3. The subroutine is executed if briefly the M3 button is pushed
down. The subroutine presents the timeless cycle and generates low
frequency pulse signal in the terminals RA1–RA3. Blinking LEDs
connected to these terminals show that the time count has been
stopped and the time is fixed. To start the count of the time from the
beginning again (to leave the timeless cycle of the subroutine Stop),
the Reset must be done for the microcontroller (the Reset button on
the microcontroller development board must be pushed down).

11. Indicate the end of the program using directive END:

END ;end of the program

12. Save the program as assembly source file. Before that entitle
it. Open the project that was created during 1 laboratory work.
Remove assembler file saved in it, then mark the catalog
Source Files and executing Add File, move to project the
assembler file of the created program.

13. Executing the actions presented in the 7 to 15 points of the 1st
laboratory work create the hex file of the program and using
MC PIC16F84A development board load it into the MC.

104

14. Switch the development board to the operating mode (see point
16 of 1 laboratory work) and observing the LEDs connected
to the B port assure that the stopwatch program is working
properly, i. e. content of the register PORTB increases by one
every second and after overflow of the register time count
starts again from zero.

Push down the button M3 during the stopwatch operation and
assure that time stopping feature is working, i.e. the count of the
time is stopped without delay and the LEDs connected to the termi-
nals RA1–RA3 start to blink.

15. Push down the Reset button and assure that after release of
this button time is calculated from the beginning (from the
00000000) again and that the number 00000001 at the port B
appears approximately after the one second after the button
was released.

16. Change program in such a way that the time unit would be:
0,2s; 2s. Create the hex file and load the program into the MC.
Assure that the program works correctly.

17. Save the stopwatch program with the 0,2s time unit for the
laboratory report.

18. Move the instructions btfsc PORTA,0 and call Stop in the
subroutine Timeunit just before the string with the instruction
return (time unit, i.e. subroutine Timeunit execution duration,
has to be 2s). Load the program into the MC and assure that
it is necessary not only to press button M3 but it is needed
to keep it pressed for awhile as well to stop the time count.
Explain why significant response delay occurs after these
changes.

19. Counterchange the instruction call Timeunit, which is marked
by the label Start with the subsequent instruction incf PORTB,1
(the label Start must be in line with the instruction incf
PORTB,1). Load the program into the MC and, by pressing
the Reset button, assure that number 00000001 in the port B

105

occurs immediately after the button release, as to correctly
calculate the time, necessary that it should occur just after
the delay equal to time unit. Explain why this modification
produces such response change.

20. Change the created program fragment, which begins with the
string marked by the label Start and ends with the instruction
goto Start by the following countdown timer fragment:

movlw d’15’ ;write the decimal digit into
;W register
;(set the initial time of ;count-
down timer)

movwf PORTB ;move the content of the W ;reg-
ister into the register PORTA

Start call Timeunit ;call subroutine Timeunit
decf PORTB,1 ;subtract 1 from the content

;of the register PORTB
btfss STATUS,2 ;check the content of ;regis-

ter STATUS Z bit (2 ;bit) skip
the next ;instruction if 1 is
found

goto Start ;go to the string marked by
;the label Start

call Stop ;call subroutine Stop

Comment. The number loaded into the register PORTB is de-
creased every second by one using the instruction decf (Decrement
f) in this program fragment. The execution time of cycle and, as a
consequence, the countdown timer time unit is set by the subrou-
tine Timeunit. When the content of the register PORTB becomes
zero, the 1 is loaded into the Z bit (2nd bit) of the STATUS register,
therefore, instruction btfss STATUS,2 forces to skip the instruction
goto Start. Because of this, the execution of program cycle is over

106

and subroutine Stop is called. Since the subroutine Stop presents the
endless program cycle the time count is stopped. The Reset button
must be pushed down to exit this cycle and again start to count the
time by the countdown timer.

21. Set the value of variable Var3 in the subroutine Timeunit equal
to 5 (make the time unit equal to 1s).

22. Load the created stopwatch program into MC and assure that it
works properly, i.e. after release of the button Reset, the binary
number 00001111 is shown and after that it is periodically
decreased by 1 until it reaches the result 0. This fact should
be indicated by blinking of LEDs connected to the terminals
RA1–RA3.

23. Set various countdown initial time values also in binary and
hexadecimal formats. Load the programs into the MC and
assure that they work correctly.

24. Improve (reduce) created program of countdown timer using
just appropriate one instruction instead of two instructions
decf PORTB,1 and btfss STATUS,2. Load the program into
the MC and assure that it works correctly. Name the program
“Countdown timer” and save it for the laboratory report.

25. Change the program in such a way that after the countdown
timer reaches zero value, the time count would not be stopped
but would continue time countdown. The duration of the time
unit should be 0,2s. Load the program and test it.

4. report content
1. The aim of the work.
2. Analysis of instructions decf and incf.
3. Description of the STATUS register Z flag bit purpose.
4. The texts and comments of the programs that were created

during the performance of tasks given in points 17 and 24.
5. Conclusions.

107

5. Control questions
1. Explain the purpose of instructions decf and incf.
2. How many MC clock signal periods are needed to execute the

instruction decfsz?
3. What is the purpose of the Z flag bit?
4. What determines the stability of the time unit?
5. How many machine cycles take execution of btfss

instruction?
6. Which one instruction can be used instead of two instructions

decf and btfss?
7. What is the purpose of the subroutine Timeunit?
8. Comment the structure of the subroutine Timeunit.
9. What is the purpose of the subroutine Stop?
10. Comment the structure of the subroutine Stop.

references

1. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005. 86 p.

2. PIC16F84 tutorial, http://home.planet.nl/~midde639/tutorial.pdf,
2005. 58 p.

108

7.8. laboratory 8

investigation of control of liquid Crystal display lCd1601lC

1. Aim
To study the Liquid Crystal Display (LCD) LCD1601LC con-

trol using microcontroller.

2. task
To create, test and investigate the MC PIC16F84A programs for

control of LCD1601LC display.

3. proceeding
1. Analyze the parameters of liquid crystal display LCD1601LC,

purpose of terminals, memories, their purpose and control
instructions.

2. Open the MPLAB IDE software. Using File>New open
MPLAB Editor window intended for editing of MC programs.
In the beginning of the program type text, with title of the
program, author name, type of MC and resonator frequency.

;***************Control of LCD display*************

;******************N. Surname*********************
;Microcontroller PIC16F84A
;Crystal resonator frequency 4 MHz

;***

3. Using assembler directives LIST, INCLUDE and _CONFIG
set the type of MC, call the file with the definitions of special
purpose registers and configure the MC:

LIST p=16F84 ;Setting type of MC
#INCLUDE <p16F84a.inc> ;Calling the file,

109

 ;with the definitions of
 ;special purpose registers

_ _ CONFIG _ XT _ OSC& ;MC configuration
_ WDT _ OFF& _ PWRTE _ OFF&
_ CP _ OFF;

4. Define the names for registers (introduce variables):

;*****************Variables***********************

Var0 EQU 0Ch ;gives name Var1 to 0Ch
Var1 EQU 0Ch ;gives name Var1 to 0Dh
Var2 EQU 0Dh ;gives name Var2 to 0Eh
Var3 EQU 0Eh ;gives name Var3 to 0Fh
Var4 EQU 0Fh ;gives name Var4 to 10h
Var5 EQU 10h ;gives name Var5 to 11h
Var6 EQU 0Ch ;gives name Var1 to 12Ch

;***

5. Introduce the constants:

;******************* Constants********************

E EQU 2 ;the value 2 is assignet to constant E
 ;(LCD display pin E is controlled
 ;by RA2 pin)

RS EQU 3 ;the value 3 is assignet to constant RS
 ;(LCD display pin RS is controlled
 ;by RA3 pin)

;**

110

6. Using assembler directive ORG set the beginning address of
the program.

ORG 0×000 ;shows the initial address
 ;of the program

7. Clear the following registers:

clrf PORTA ;clear PORTA register
clrf PORTB ;clear PORTB register

clrf Var1 ;clear Var1 register
clrf Var3 ;clear Var3 register
clrf Var5 ;clear Var5 register

8. Set the work of MC for operating with the registers located in
Bank 1:

bsf STATUS, 5 ;move to Bank 1

9. Set all port A and port B pins for signal output via TRISB
and TRISA registers. Clear the RBPU bit (7th bit) of the
OPTION_REG:

movlw b‘00000000‘ ;write the binary digit to
 ;W register
movwf TRISB ;move the content of W ;regis-

ter into TRISB register
movlw b‘00000‘ ;write the binary digit to
 ;W register
movwf TRISA ;move the content of W ;regis-

ter into TRISA ;register

bcf OPTION _ REG,7 ;connect the pull up

111

 ;resistors to B port pins
bcf STATUS, 5 ;move to Bank 0

10. Enter the LCD display initiation program:

;************LCD initiation******************
call Delay200ms ;wait for end of
 ;transition processes
movlw b’00110000’ ;write the binary digit to
 ;W register
call Instruction ;call subroutine, which
 ;executes instruction for
 ;LCD display controller
call Delay5ms ;call 5ms delay subroutine

movlw b’00110000’
call Instruction
call Delay5ms

movlw b’00110000’
call Instruction
call Delay5ms

movlw b’00111000’ ;communication with the MC
 ;using 8 data/instructions
 ;lines
call Instruction
call Delay5ms
movlw b’00001000’ ;turn off the display
call Instruction
call Delay5ms

movlw b’00000001’ ;clear display

112

call Instruction
call Delay5ms

movlw b’00000100’
call Instruction
call Delay5ms

movlw b’00001100’ ;turn on the display, cursor
call Instruction; and turn off cursor’s blinking
call Delay5ms

Comment. The fragment of the program presented above is created
according the recommendations of LCD1601LC display manufac-
turer. The set of instructions is executed to initiate the operation
of the display. The display controller is much slower as compared
to the MC, because of this the 5ms delay loops are inserted in the
MC program between the instructions that are sent to display. The
last instructions presented in the program set the configuration of
display, i. e. turn on the display and set the status of cursor.

11. Create the program fragment, which sends the symbols to
LCD display:

;********** Loading of symbols***************

movlw b’00000001’ ;clear display
call Instruction
call Delay5ms

movlw b’10000100’ ;indicates display DDRAM
 ;memory address
 ;for sending of symbol code
call Instruction ;call subroutine
 ;Instruction

113

call Delay100mks

movlw ’A’ ;indicates the code of
 ;the letter A symbol that is send
 ;to display
call Data ;calls subroutine, which loads
 ;data of symbol into display
call Delay100mks

goto $;endless cycle, which involves
 ;just this instruction

Comment. The first instruction of the program fragment presented
above clears the display (deletes the symbols in all display segments)
and the second one shows address of DDRAM register, where the
symbol code will be sent. Symbol place on the display is determined
by its code place in the display DDRAM memory. In this case the
symbol should be loaded into 0000100 (in decimal notation 04) ad-
dress, so the symbol will be shown in 5 segment of display (see
description of the display in the sources [1, 2] given in the refer-
ence list). After the instruction, which determines the segment of
the display where the symbol will be placed, the symbol code must
be sent. The assembler of PIC MC allows working with ASCII sym-
bols, so instead of the code the symbol can be written as the operand
of the instruction. In the analyzed fragment the symbol of letter A
is given. Symbols and their codes for the LCD1601LC display are
given in the data sheets of the display [1, 2].

Instruction goto $ presents endless loop, which involves just
this instruction. This instruction is used to stop the program in the
right place.

Some delay between the instructions that are sent to the dis-
play has to be introduced. This is necessary because the controller
of the display is slow. Therefore, between the instructions or data,

114

which are sent to the display, the delay loop subroutines have to be
executed. For example, it takes up to 1.6 ms to clear the display. The
time that is needed to load the instruction or data into the display
controller is 40 µs. The clock frequency of display controller is de-
termined by the internal RC network. Because of this the instruction
execution duration depends on the dispersion of R and C values, on
supply voltage and ambient temperature variations. Therefore, for
reliable control of the display the delays introduced by the MC must
be longer than these discussed above.

12. Enter instruction subroutine:
;************Instruction Subroutine **************

Instruction
bcf PORTA,RS ;switch the LCD to instruction
 ;receiving mode
movwf PORTB ;send the instruction to display
nop
nop
bsf PORTA,E ;write the instruction
nop
nop
nop
bcf PORTA,E ;ignore signals from MC
nop
nop
return

Comment. The MC executing this subroutine generates signals,
which force the display controller to execute the instruction. The set
of signals must be formed according to recommendations of display
manufacturer. At the beginning the “0” must be sent to the display
terminal RS, which shows that to the data/instructions terminals of
the display D0-D7, which are connected to port B of MC, instruc-

115

tion signals will be sent. After that the “1” (enable signal) must be
sent to display terminal E to enable the loading of instruction. After
the instruction loading is accomplished, the “0” must be sent to ter-
minal E, which forbids display to receive signals. Instructions nop
introduce the delays between the instructions.

13. Enter data (symbol, which must be indicated, code)
subroutine:

;*****************Data subroutine****************

Data
bsf PORTA,RS ;switch the display to data
 ;receiving mode
movwf PORTB ;send the data to display
nop
nop
bsf PORTA,E ;write the data
nop
nop
nop
bcf PORTA,E ;ignore signals from MC
nop
nop
return

Comment. The MC executing this subroutine generates the signals,
(the code of the symbol that has to be indicated), which are sent to
the display controller. The structure of this subroutine is the same
as this one used in the instruction subroutine. The difference is just
that instead of “0”, the “1” has to be sent to terminal RS, which
shows that the data signals will be sent to the data/instructions ter-
minals of the display.

14. Enter the following subroutines of delay loops:

116

;**********Subroutines of delay loops************

;******************100mks delay******************
Delay100mks
movlw d’33’
movwf Var0
cycle0 decfsz Var0,1
goto cycle0
return

;*********************5ms delay******************
Delay5ms
movlw d’7’
movwf Var2
cycle2 decfsz Var1,1
goto cycle2
decfsz Var2,1
goto cycle2
return

;******************200ms delay*******************
Delay200ms
Cycle3 decfsz Var1,1
goto cycle3
decfsz Var3,1
goto cycle3
return

;****************0.8-200ms delay******************
Delay1
movlw d’19’
movwf Var4

117

cycle4 decfsz Var1,1
goto cycle4
decfsz Var4,1
goto cycle4
return

;*****************0.2-50s delay*******************
Delay2
movlw d’5’
movwf Var6
cycle5 cfsz Var1,1
goto cycle5
decfsz Var5,1
goto cycle5
decfsz Var6,1
goto cycle5
return
;**

Comment. The subroutines, which present the delay loops with the
various delay duration, are needed to create and analyze LCD dis-
play control programs. The principles of the delay loops are dis-
cussed in the details in laboratories 3 and 4.

15. Indicate the end of the program using directive END:

END ;end of the program

16. Save the program as assembly source file. Before that entitle
it. Open the project that was created during 1 laboratory
work. Remove assembler file saved in it, move to project the
assembler file of the created program. Executing the actions
presented in the 7 to 15 points of the 1st laboratory work
create the hex file of the program and using MC PIC16F84A
development board load it into the MC.

118

17. Switch the development board to the operating mode (see
point 16 of 1 laboratory work) and make sure that created
LCD control program works, i.e. letter A is indicated in the
5th segment of LCD display. The contrast of the display can
be adjusted using the potentiometer, which is next to the
display.

18. Using created program load any symbol into 12th segment of
display. Load program into the MC and make sure that symbol
is indicated in chosen segment of display.

19. Making the changes in the initiation fragment of the program,
change the configuration of the display in such a way that the
cursor would be shown. Load the program into the MC and
make sure that the cursor appeared near the symbol.

20. Making the changes in the initiation fragment of the program,
change the configuration of the display in such a way that the
blinking cursor would be shown. Load the program into the
MC and make sure that the blinking cursor near the symbol is
shown.

21. Analyze instruction, which shifts symbol by one segment.
For this purpose, modify the program fragment presented in
the 11th point of this laboratory by entering the label Start
on the left of the first line. Additionally, remove instruction
goto $ and instead of this instruction enter following program
fragment:

call Delay2 ;call delay subroutine
movlw b’00011000’ ;shift symbol to the left
call Instruction
call Delay5ms
call Delay2
goto Start

119

22. Load the program into the MC and make sure that first of all
symbol appears in the chosen segment of the display, and after
that it is shifted by one segment to the left.

23. Modify the program fragment in such a way that symbol
would be shifted to the right. Load program into the MC and
make sure that it is working properly.

24. Using created program load any 6 symbols word into the
display. For this reason restore the program in such a way
that it would be the same as it is presented in the 11th point.
Enter the appropriate instructions that are needed to indicate 6
symbols word before the instruction goto$, like it is done with
letter A symbol. In the instruction, which indicates the address
of the first sign, change the address to 00.

Comment. Entering the code sequence of the symbols, which must
be indicated in the display, it is enough to indicate just first sym-
bol code address. Symbols, which are in 1–8 segments of display,
matches addresses 00-07, and in 9–16 segments – addresses 64-71
of the DDRAM memory registers. Therefore, to load 16 symbols
into the display it is not enough to indicate just first symbol code
address 00. It is necessary before ninth symbol to load instruction,
which indicates 64th DDRAM memory address. If DDRAM mem-
ory indicator was cleared before the loading of symbol code, symbol
code by default is loaded into DDRAM register 00.

25. Load program into the MC and make sure that it operates
properly, i.e. the word is indicted in the 1–6 segments of the
display.

26. Modify the program fragment, which sends the symbols
to LCD display (11th point of this laboratory), as follows:
change instruction goto$ by goto Start; enter the label Start
on the left of the first line; enter instructions that shift symbols
by one segment to the right above the instruction goto Start.
Enter instructions, which call delay loop subroutine Delay2
(instructions call Delay2) above and bellow the strings that

120

were entered in this point of the laboratory. Load the program
into the MC and make sure that it works properly, i.e. the 6
symbols word firstly is indicated in the 1–6 segments and later
is shifted to 2–7 segments and this shifting cycle is continually
repeated.

27. Change the program, which was created during the execution
of point 26 of the laboratory in such a way that after that when
the 6 symbols word was shifted to 2–7 segments, it would
be shifted to 3–8 and then again to 1–6 segments. Call the
subroutine Delay2 between the every shift to introduce the
shift delay. Load program into the MC and make sure that it
works. Save the program for laboratory work report.

28. Referring to information given in the point 24 of this laboratory
modify the program in such a way that that chosen symbols
would be indicated in all 16 segments of display. Load program
into MC and make sure that it works.

29. Using delay loop subroutine Delay2 modify the program
created in 28 point in such a way that between the displaying
of every symbol the delay would be introduced. Load program
into the MC and make sure that it works, i.e. symbols from
first till last appear in the segments of the display one by one
with defined delay.

30. Modify the program so that chosen words would appear in
the display one by one with defined delay. At one time just
one word on the display should be seen. Save the program for
laboratory work report.

4. report content
1. The aim of the work.
2. The purpose and parameters of liquid crystal display

LCD1601LC.
3. Functions of LCD1601LC display terminals and instructions

of display controller.

121

4. The texts and comments of the programs that were created
during the execution of tasks given in points 27 and 30.

5. Conclusions.

5. Control questions
1. How many symbols can be displayed on the LCD1601LC

display?
2. How many dots forms one symbol matrix?
3. What is the purpose of display terminals D0–D7?
4. In what memory are stored the data of symbols, which can be

displayed?
5. What is the purpose of display terminal R/W?
6. What is the purpose of instruction goto$?
7. How many bits of the memory are needed for the storage of

one LCD1601LC display symbol?

references

1. Dot matrix liquid crystal display controller/driver HD44780U
(LCD-II), Hitachi, http://www.jkmicro.com/documentation/pdf/
hd44780u.pdf, 2005, 60 p.

2. LCD graphical module LCD1601LC, http://acesystems.nl/Menu/
Electronica/Displays/LCD-displays/LCD1601LC.htm.

3. LCD simulator, http://www.geocities.com/dinceraydin/lcd/ in-
dex.html.

4. PIC16F84A data sheet, DS35007B, Microchip Technology Inc.,
http://www.microchip.com, 2005, 86 p.

	cover
	Contents
	1. The concept and classification of microcontrollers
	2. The clasiffication and characteristic of 8-bit PIC microcontrollers
	3. Microcontroller PIC16F84A
	3.1. Characteristics
	3.2. The architecture
	3.3. The program memory
	3.4. Data memory
	3.5. Input/Output ports

	4. Instruction set of 8-bit mid-range PIC microcontrollers
	5. The integrated development environmement MPLAB IDE
	6. The PIC16F84A microcontroller development board
	7. Laboratory works
	7.1. Laboratory 1
	Introduction to PIC16F84A microcontroller development board and software MPLAB IDE

	7.2. Laboratory 2
	Writing the data into the microcontroller ports

	7.3. Laboratory 3
	Creating a program loops

	7.4. Laboratory 4
	Creating of subroutines and reading the data from ports

	7.5. Laboratory 5
	Investigation of complementation, swap, rotation and logic functions instructions

	7.6. Laboratory 6
	Investigation of arithmetic instructions

	7.7. Laboratory 7
	Creating and investigation of timer programs

	7.8. Laboratory 8
	Investigation of control of Liquid Crystal Display LCD1601LC

