Mathematical Logic Part Two

Problem Set
Three due in the box up front.

First-Order Logic

The Universe of First-Order Logic

First-Order Logic

- In first-order logic, each variable refers to some object in a set called the domain of discourse.
- Some objects may have multiple names.
- Some objects may have no name at all.

Propositional vs. First-Order Logic

 Because propositional variables are either true or false, we can directly apply connectives to them.

$$p \rightarrow q$$
 $\neg p \leftrightarrow q \land r$

 Because first-order variables refer to arbitrary objects, it does not make sense to apply connectives to them.

$$Venus → Sun$$
 137 $\leftrightarrow \neg 42$

This is not C!

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:
 - NowOpen(USGovernment)
 - FinallyTalking(House, Senate)
- Predicates can take any number of arguments, but each predicate has a fixed number of arguments (called its arity)
- Applying a predicate to arguments produces a proposition, which is either true or false.

First-Order Sentences

• Sentences in first-order logic can be constructed from predicates applied to objects:

 $LikesToEat(V, M) \land Near(V, M) \rightarrow WillEat(V, M)$

 $Cute(t) \rightarrow Dikdik(t) \lor Kitty(t) \lor Puppy(t)$

$$x < 8 \rightarrow x < 137$$

The notation x < 8 is just a shorthand for something like LessThan(x, 8).

Binary predicates in math are often written like this, but symbols like < are not a part of first-order logic.

Equality

- First-order logic is equipped with a special predicate = that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as → and ¬ are.
- Examples:

MorningStar = EveningStar Voldemort = TomMarvoloRiddle

 Equality can only be applied to objects; to see if propositions are equal, use ↔. For notational simplicity, define **#** as

$$x \neq y \equiv \neg(x = y)$$

Expanding First-Order Logic

$$x < 8 \land y < 8 \rightarrow x + y < 16$$

Why is this allowed?

Functions

- First-order logic allows **functions** that return objects associated with other objects.
- Examples:

x + y LengthOf(path)MedianOf(x, y, z)

- As with predicates, functions can take in any number of arguments, but each function has a fixed arity.
- Functions evaluate to objects, not propositions.
- There is no syntactic way to distinguish functions and predicates; you'll have to look at how they're used.

How would we translate the statement

"For any natural number n, n is even iff n^2 is even"

into first-order logic?

Quantifiers

- The biggest change from propositional logic to first-order logic is the use of quantifiers.
- A quantifier is a statement that expresses that some property is true for some or all choices that could be made.
- Useful for statements like "for every action, there is an equal and opposite reaction."

"For any natural number n, n is even iff n^2 is even"

 $\forall n$. $(n \in \mathbb{N} \to (Even(n) \leftrightarrow Even(n^2)))$

 \forall is the universal quantifier and says "for any choice of n, the following is true."

The Universal Quantifier

- A statement of the form $\forall x$. ψ asserts that for **every** choice of x in our domain, ψ is true.
- Examples:

```
\forall v. (Puppy(v) \rightarrow Cute(v))

\forall n. (n \in \mathbb{N} \rightarrow (Even(n) \leftrightarrow \neg Odd(n)))

Tallest(x) \rightarrow \forall y. (x \neq y \rightarrow IsShorterThan(y, x))
```

Some muggles are intelligent.

 $\exists m. (Muggle(m) \land Intelligent(m))$

I is the existential quantifier and says "for some choice of m, the following is true."

The Existential Quantifier

- A statement of the form $\exists x. \psi$ asserts that for **some** choice of x in our domain, ψ is true.
- Examples:

```
\exists x. (Even(x) \land Prime(x))
\exists x. (TallerThan(x, me) \land LighterThan(x, me))
(\exists x. Appreciates(x, me)) \rightarrow Happy(me)
```

Operator Precedence (Again)

- When writing out a formula in first-order logic, the quantifiers ∀ and ∃ have precedence just below ¬.
- Thus

$$\forall x. \ P(x) \ \lor \ R(x) \rightarrow Q(x)$$

is interpreted as

$$((\forall x. P(x)) \lor R(x)) \rightarrow Q(x)$$

rather than

$$\forall x. ((P(x) \lor R(x)) \rightarrow Q(x))$$

Translating into First-Order Logic

A Bad Translation

All puppies are cute!

 $\forall x. (Puppy(x) \land Cute(x))$

This should work for <u>any</u> choice of x, including things that aren't puppies.

A Better Translation

All puppies are cute!

 $\forall x. (Puppy(x) \rightarrow Cute(x))$

This should work for <u>any</u> choice of x, including things that aren't puppies.

"Whenever P(x), then Q(x)"

translates as

$$\forall x. (P(x) \rightarrow Q(x))$$

Another Bad Translation

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

Another Bad Translation

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

What happens if

- The above statement is false, but
 x refers to a cute puppy?

A Better Translation

Some blobfish is cute.

 $\exists x. (Blobfish(x) \land Cute(x))$

What happens if

- 1. The above statement is false, but 2. x refers to a cute puppy?

"There is some P(x) where Q(x)"

translates as

 $\exists x. (P(x) \land Q(x))$

The Takeaway Point

- Be careful when translating statements into first-order logic!
- \forall is usually paired with \rightarrow .
 - Sometimes paired with \leftrightarrow .
- ∃ is usually paired with ∧.

Time-Out For Announcements

Friday Four Square!

Today at 4:15PM at Gates

Problem Set Four

- Problem Set Four released today.
 - Checkpoint due on Monday.
 - Rest of the assignment due Friday.
 - Explore functions, cardinality, diagonalization, and logic!

Your Questions

What material is covered on the midterm? Is it open-notes?

Hey Keith, how did you first get interested in math/computer science? Your enthusiasm is infectious but also somewhat curious.

Back to Logic!

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

For Comparison

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q)))
    For every person,
                       there is some person
                                               who isn't them
                                                                 that they love.
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p)))
 There is some person
                            who everyone
                                               who isn't them
```

loves.

Everyone Loves Someone Else

There is Someone Everyone Else Loves

Everyone Loves Someone Else **and** There is Someone Everyone Else Loves

The statement

 $\forall x. \exists y. P(x, y)$

means "For any choice of x, there is **some** choice of y (possibly dependent on x) where P(x, y) holds."

The statement

 $\exists y. \ \forall x. \ P(x, y)$

means "There is some choice of y where for any choice of x, P(x, y) holds."

Order matters when mixing existential and universal quantifiers!

Quantifying Over Sets

The notation

$$\forall x \in S. P(x)$$

means "for any element x of set S, P(x) holds."

 This is not technically a part of first-order logic; it is a shorthand for

$$\forall x. (x \in S \rightarrow P(x))$$

How might we encode this concept?

Answer:
$$\exists x \in S \land P(x)$$

Answer: $\exists x . (x \in S \land P(x)).$

Note the use of \land instead of \rightarrow here.

Quantifying Over Sets

The syntax

$$\forall x \in S. \phi$$

 $\exists x \in S. \phi$

is allowed for quantifying over sets.

- In CS103, please do not use variants of this syntax.
- Please don't do things like this:

$$\forall x \text{ with } P(x). \ Q(x)$$

 $\forall y \text{ such that } P(y) \land Q(y). R(y).$

Translating into First-Order Logic

- First-order logic has great expressive power and is often used to formally encode mathematical definitions.
- Let's go provide rigorous definitions for the terms we've been using so far.

Set Theory

"Two sets are equal iff they contain the same elements."

$$\forall S. (Set(S) \rightarrow \\ \forall T. (Set(T) \rightarrow \\ (S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T))$$

Many statements asserting a general claim is true are implicitly universally quantified.

Set Theory

"The union of two sets is the set containing all elements of both sets."

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow \forall x. (x \in S \cup T \leftrightarrow x \in S \lor x \in T))
)
```

"R is a reflexive relation over A."

 $\forall a \in A. \ aRa$

"R is a symmetric relation over A."

 $\forall a \in A. \ \forall b \in A. \ (aRb \rightarrow bRa)$

"R is an antisymmetric relation over A."

 $\forall a \in A. \ \forall b \in A. \ (aRb \land bRa \rightarrow a = b)$

"R is a transitive relation over A."

 $\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow aRc)$

Negating Quantifiers

- We spent much of Wednesday's lecture discussing how to negate propositional constructs.
- How do we negate quantifiers?

An Extremely Important Table

V _v	D	
$\forall x$.		(X)

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is	this	true?	When	is	this	false?
						

For any choice of x , $P(x)$	For some choice of x , $\neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

An Extremely Important Table

$\forall x$.	(χ)
$\nabla \mathbf{V}$	
V / .	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	$\forall x. P(x)$

Negating First-Order Statements

Use the equivalences

$$\neg \forall x. \ \boldsymbol{\varphi} \equiv \exists x. \ \neg \boldsymbol{\varphi}$$
$$\neg \exists x. \ \boldsymbol{\varphi} \equiv \forall x. \ \neg \boldsymbol{\varphi}$$

to negate quantifiers.

- Mechanically:
 - Push the negation across the quantifier.
 - Change the quantifier from \forall to \exists or vice-versa.
- Use techniques from propositional logic to negate connectives.

Analyzing Relations

"R is a binary relation over set A that is not reflexive"

 $\neg \forall a \in A$. aRa $\exists a \in A$. $\neg aRa$

"Some $a \in A$ is not related to itself by R."

Analyzing Relations

"R is a binary relation over A that is not antisymmetric"

$$\neg \forall x \in A. \ \forall y \in A. \ (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \neg \forall y \in A. \ (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \exists y \in A. \ \neg (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \exists y \in A. \ (xRy \land yRx \land \neg (x = y))$$
$$\exists x \in A. \ \exists y \in A. \ (xRy \land yRx \land x \neq y)$$

"Some $x \in A$ and $y \in A$ are related to one another by R, but are not equal"

Next Time

Formal Languages

What is the mathematical definition of a problem?

Finite Automata

 What does a mathematical model of a computer look like?