
Filter design

• FIR filters

• Chebychev design

• linear phase filter design

• equalizer design

• filter magnitude specifications
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FIR filters

finite impulse response (FIR) filter:

y(t) =

n−1∑

τ=0

hτu(t − τ), t ∈ Z

• (sequence) u : Z → R is input signal

• (sequence) y : Z → R is output signal

• hi are called filter coefficients

• n is filter order or length
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filter frequency response: H : R → C

H(ω) = h0 + h1e
−iω + · · · + hn−1e

−i(n−1)ω

=
n−1∑

t=0

ht cos tω + i
n−1∑

t=0

ht sin tω

• (EE tradition uses j =
√
−1 instead of i)

• H is periodic and conjugate symmetric, so only need to know/specify
for 0 ≤ ω ≤ π

FIR filter design problem: choose h so it and H satisfy/optimize specs
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example: (lowpass) FIR filter, order n = 21

impulse response h:
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frequency response magnitude (i.e., |H(ω)|):
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frequency response phase (i.e., 6 H(ω)):
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Chebychev design

minimize max
ω∈[0,π]

|H(ω) − Hdes(ω)|

• h is optimization variable

• Hdes : R → C is (given) desired transfer function

• convex problem

• can add constraints, e.g., |hi| ≤ 1

sample (discretize) frequency:

minimize max
k=1,...,m

|H(ωk) − Hdes(ωk)|

• sample points 0 ≤ ω1 < · · · < ωm ≤ π are fixed (e.g., ωk = kπ/m)

• m ≫ n (common rule-of-thumb: m = 15n)

• yields approximation (relaxation) of problem above
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Chebychev design via SOCP:

minimize t
subject to

∥∥A(k)h − b(k)
∥∥ ≤ t, k = 1, . . . ,m

where

A(k) =

[
1 cosωk · · · cos(n−1)ωk

0 −sinωk · · · −sin(n−1)ωk

]

b(k) =

[
ℜHdes(ωk)
ℑHdes(ωk)

]

h =




h0
...

hn−1



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Linear phase filters

suppose

• n = 2N + 1 is odd

• impulse response is symmetric about midpoint:

ht = hn−1−t, t = 0, . . . , n − 1

then

H(ω) = h0 + h1e
−iω + · · · + hn−1e

−i(n−1)ω

= e−iNω (2h0 cosNω + 2h1 cos(N−1)ω + · · · + hN)

∆
= e−iNωH̃(ω)
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• term e−iNω represents N -sample delay

• H̃(ω) is real

• |H(ω)| = |H̃(ω)|

• called linear phase filter ( 6 H(ω) is linear except for jumps of ±π)
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Lowpass filter specifications

ω

δ1

1/δ1

δ2

ωp ωs π

idea:

• pass frequencies in passband [0, ωp]

• block frequencies in stopband [ωs, π]
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specifications:

• maximum passband ripple (±20 log10 δ1 in dB):

1/δ1 ≤ |H(ω)| ≤ δ1, 0 ≤ ω ≤ ωp

• minimum stopband attenuation (−20 log10 δ2 in dB):

|H(ω)| ≤ δ2, ωs ≤ ω ≤ π
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Linear phase lowpass filter design

• sample frequency

• can assume wlog H̃(0) > 0, so ripple spec is

1/δ1 ≤ H̃(ωk) ≤ δ1

design for maximum stopband attenuation:

minimize δ2

subject to 1/δ1 ≤ H̃(ωk) ≤ δ1, 0 ≤ ωk ≤ ωp

−δ2 ≤ H̃(ωk) ≤ δ2, ωs ≤ ωk ≤ π

Filter design 12



• passband ripple δ1 is given

• an LP in variables h, δ2

• known (and used) since 1960’s

• can add other constraints, e.g., |hi| ≤ α

variations and extensions:

• fix δ2, minimize δ1 (convex, but not LP)

• fix δ1 and δ2, minimize ωs (quasiconvex)

• fix δ1 and δ2, minimize order n (quasiconvex)
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example

• linear phase filter, n = 21

• passband [0, 0.12π]; stopband [0.24π, π]

• max ripple δ1 = 1.012 (±0.1dB)

• design for maximum stopband attenuation

impulse response h:
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frequency response magnitude (i.e., |H(ω)|):
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frequency response phase (i.e., 6 H(ω)):
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Equalizer design

G(ω)H(ω)

equalization: given

• G (unequalized frequency response)

• Gdes (desired frequency response)

design (FIR equalizer) H so that G̃
∆
= GH ≈ Gdes

• common choice: Gdes(ω) = e−iDω (delay)
i.e., equalization is deconvolution (up to delay)

• can add constraints on H, e.g., limits on |hi| or maxω |H(ω)|
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Chebychev equalizer design:

minimize max
ω∈[0,π]

∣∣∣G̃(ω) − Gdes(ω)
∣∣∣

convex; SOCP after sampling frequency
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time-domain equalization: optimize impulse response g̃ of equalized
system
e.g., with Gdes(ω) = e−iDω,

gdes(t) =

{
1 t = D
0 t 6= D

sample design:
minimize maxt6=D |g̃(t)|
subject to g̃(D) = 1

• an LP

• can use
∑

t6=D g̃(t)2 or
∑

t6=D |g̃(t)|
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extensions:

• can impose (convex) constraints

• can mix time- and frequency-domain specifications

• can equalize multiple systems, i.e., choose H so

G(k)H ≈ Gdes, k = 1, . . . , K

• can equalize multi-input multi-output systems
(i.e., G and H are matrices)

• extends to multidimensional systems, e.g., image processing
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Equalizer design example

unequalized system G is 10th order FIR:
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design 30th order FIR equalizer with G̃(ω) ≈ e−i10ω
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Chebychev equalizer design:

minimize max
ω

∣∣∣G̃(ω) − e−i10ω
∣∣∣

equalized system impulse response g̃
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equalized frequency response magnitude |G̃|
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time-domain equalizer design:

minimize max
t6=10

|g̃(t)|

equalized system impulse response g̃
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equalized frequency response magnitude |G̃|
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Filter magnitude specifications

transfer function magnitude spec has form

L(ω) ≤ |H(ω)| ≤ U(ω), ω ∈ [0, π]

where L, U : R → R+ are given

• lower bound is not convex in filter coefficients h

• arises in many applications, e.g., audio, spectrum shaping

• can change variables to solve via convex optimization
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Autocorrelation coefficients

autocorrelation coefficients associated with impulse response
h = (h0, . . . , hn−1) ∈ Rn are

rt =
∑

τ

hτhτ+t

(we take hk = 0 for k < 0 or k ≥ n)

• rt = r−t; rt = 0 for |t| ≥ n

• hence suffices to specify r = (r0, . . . , rn−1) ∈ Rn
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Fourier transform of autocorrelation coefficients is

R(ω) =
∑

τ

e−iωτrτ = r0 +
n−1∑

t=1

2rt cosωt = |H(ω)|2

• always have R(ω) ≥ 0 for all ω

• can express magnitude specification as

L(ω)2 ≤ R(ω) ≤ U(ω)2, ω ∈ [0, π]

. . . convex in r
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Spectral factorization

question: when is r ∈ Rn the autocorrelation coefficients of some h ∈ Rn?

answer: (spectral factorization theorem) if and only if R(ω) ≥ 0 for all ω

• spectral factorization condition is convex in r

• many algorithms for spectral factorization, i.e., finding an h s.t.
R(ω) = |H(ω)|2

magnitude design via autocorrelation coefficients:

• use r as variable (instead of h)

• add spectral factorization condition R(ω) ≥ 0 for all ω

• optimize over r

• use spectral factorization to recover h
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log-Chebychev magnitude design

choose h to minimize

max
ω

|20 log10 |H(ω)| − 20 log10 D(ω)|

• D is desired transfer function magnitude
(D(ω) > 0 for all ω)

• find minimax logarithmic (dB) fit

reformulate as

minimize t
subject to D(ω)2/t ≤ R(ω) ≤ tD(ω)2, 0 ≤ ω ≤ π

• convex in variables r, t

• constraint includes spectral factorization condition
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example: 1/f (pink noise) filter (i.e., D(ω) = 1/
√

ω), n = 50,
log-Chebychev design over 0.01π ≤ ω ≤ π
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optimal fit: ±0.5dB

Filter design 31


