

Fire Protection Association

Fire Risk Assessment

John Revington

PRACTICAL APPLICATION

Identifying Fire Hazards and Managing Fire Precautions

History of Fire

Fires that have changed our lives

History of Fire

- Theatre Royal Exeter 1887
- Eastwood Mills Yorkshire 1956
- Hendersons Liverpool 1960
- Rose & Crown Saffron Waldron 1969
- Summerland Douglas 1973
- Woolworths Manchester 1979
- Bradford City Football Club 1985
- Kings Cross London 1987

Theatre Royal Exeter

- No fire alarm
- No means of escape
- Doors locked

Eastwood Mills 1956

- No fire alarm
- No means of escape

Hendersons - 1960

- Fire alarm did not work
- Delay in calling the fire brigade
- No evacuation procedures

Rose & Crown 1969

- Fire alarm did not work
- Doors left open
- No fire procedures

Sum merland - Douglas IOM

- Fire alarm not sounded
- Initial call had very little information
- Rapid fire spread
- Large numbers of people

W colworths - 1979

- Alarm not sounded
- Fire Brigade not called

Bradford City Football Club

- No means of escape
- Rapid Fire spread

Kings Cross

- Delay in raising the alarm
- No proper procedures

31 dead

W hat Next!

We must be aware of

FIRE

Legal Requirements

- Management of Health & Safety at Work Regulations 2003
- Construction Design & Management Regulations 2003

Fire Risk Assessment - Identify

- Sources of ignition
- Combustible materials
 - Used during construction work
 - Finishes, Furniture and furnishings
 - Parts of structure and fittings
 - Flammable liquids and gases
 - Structural features
- People at significant risk
 - Staff
 - People with disabilities
 - Members of the public
- Actions required to reduce identified hazards
- Control measures present

Hazards

- Maintenance of plant and equipment
- Storage and use of flammable materials
- Flammable liquids
- Work processes involving heat
- Hot work
- Electrical equipment
- Heating appliance
- Smoking
- Building maintenance work
- Waste

Means of Escape

- Travel distances
- Alternative routes
- Stairways
- Doors
- Inner rooms
- Checking and maintenance
- Lifts
- Surface finishes

Compartmentation

- Fire doors
- Glazing
- Sandwich panels
- Sealing around services
- Voids
- Ductwork
- External escape stairs

Fire Alarm and Detection Systems

- Types
 - Domestic (small workplaces only)
 - Conventional
 - Addressable
 - Analogue
- Detection
 - Smoke
 - Heat
 - Siting

- Call points
 - Siting
- Testing
- Maintenance
- BS 5839: Part 1
- Sleeping risks

Fire Fighting Equipment

- Extinguishers
 - Types
 - Colours
 - Numbers
 - Siting
 - BS EN 3 (construction)
 - BS 5306 Part 8 (installation, siting and servicing)
- Hose reels
- Fire blankets
- Automatic suppression systems

Emergency Escape Lighting

- Types
 - Single point
 - Central system
 - Maintained
 - Non-maintained
- Location
- Testing and Maintenance
- BS 5266: Part 1

Fire Safety Signs and Notices

- Types
 - Plain
 - Photoluminescent
- Standards
 - BS 5499: Part 1
- Siting

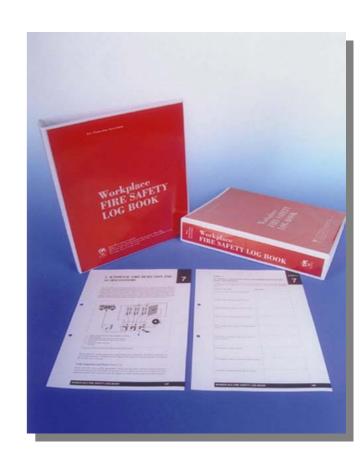
Evacuation Procedures

- Procedure on discovering a fire
- Procedure upon hearing the fire alarm
- Assembly points
- Management
 - Fire wardens / marshals

PPA

Staff Training

- Induction
- All staff
 - Evacuation procedure
 - Escape routes
 - Extinguishers
 - Machinery
 - Disabled
 - Hazards
- Fire Wardens
- Those working in areas of high risk
- Fire drills



Record Keeping

- Staff training
- Fire drills
- Maintenance and testing
 - Fire alarm
 - Extinguisher
 - Emergency lighting
 - etc

Housekeeping

- Stored materials
- Waste
 - Away from sources of ignition
- Escape routes

Protection from the Threat of Arson

- Security
- CCTV
- Illumination
- Waste
- Storage

Introduction to Fire Risk Assessment

Definitions

Risk Assessment

 The quantitative evaluations of the likelihood of undesired events and the harm or damage being caused, together with value judgements concerning the significance of the results.

Risk Management

 The identification, measurement and control of risks that threaten the assets and earnings of a business or other enterprise

Risk Control

 The prioritisation of risks and the introduction of measures that might be put in place to reduce, if not prevent, the harm from occurring.

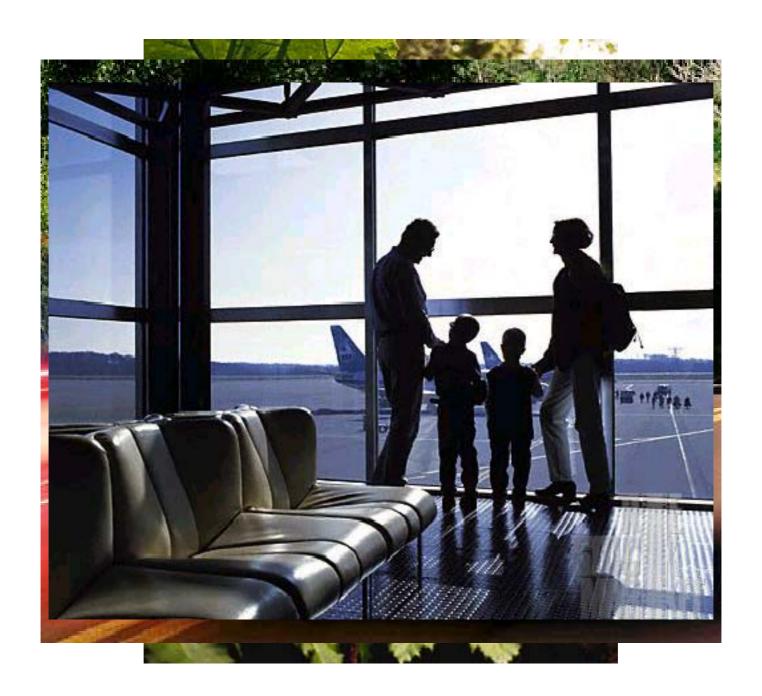
Definitions

Hazard

- Hazard is anything that can cause harm
- Look for hazards
- Don't forget your own experience.

Risk

- Risk is the chance (large or small) of harm actually being done
- look for the hazard then assess the risk.



W hat is Risk Assessment?

- Something we all do subconsciously
- May involve <u>value judgements</u> on the significance of the risks
- Risk assessment really only puts onto a formal structured basis something that we all do anyway.

Risk = f (frequency, consequences)

Examples from US Statistics

- Murdered in any year
 - -1:11,000
- Seriously injured in a car accident
 - -1:40
- Death caused by passive smoking
 - -1:30,000

Risk Assessment Methods

- Elementary method (Home Office method)
- The risk value matrix method
- An industrial method
- An algorithmic method
- Hazard operability study (HAZOP)
- Hazard analysis (HAZAN)
- Fault tree analysis
- HTM 86 Fire risk assessment in hospitals
- Risk Ranking and Hazard Indices

Elementary Method

- Step 1: Identify fire hazards
 - Combustible materials, Sources of ignition, Work processes
- Step 2: Identify location of people at significant risk
- Step 3: Evaluate the risks
 - Are existing fire safety measures adequate?
 - Control of ignition sources/sources of fuel
 - Fire detection/warning, Means of escape, Means of fighting fire, Maintenance and testing of fire precautions
 - Fire safety training
 - Carry out any improvements needed
- Step 4: Record findings and actions taken
 - Prepare a fire management plan
- Step 5: Keep risk assessments under review
 - Revise as and when necessary

Risk Value Matrix Method

- We define the probability that a fire event will occur as the *fire risk*, and the harm that would result from that event as the *fire hazard*.
 - Risk Value = Fire Hazard Value x Fire Risk Value

Risk Value Matrix Method Classification Tables

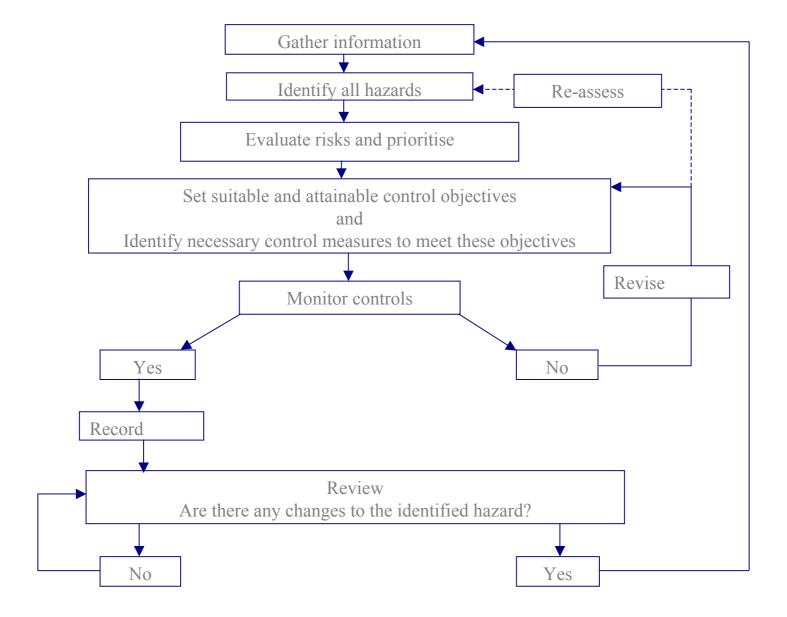
Fire Hazard		Fire Risk
Description	<u>Value</u>	Description
Negligible	1	Unlikely
Slight	2	Possible
Moderate	3	Quite Possible
Severe	4	Likely
Very Severe	5	Very Likely

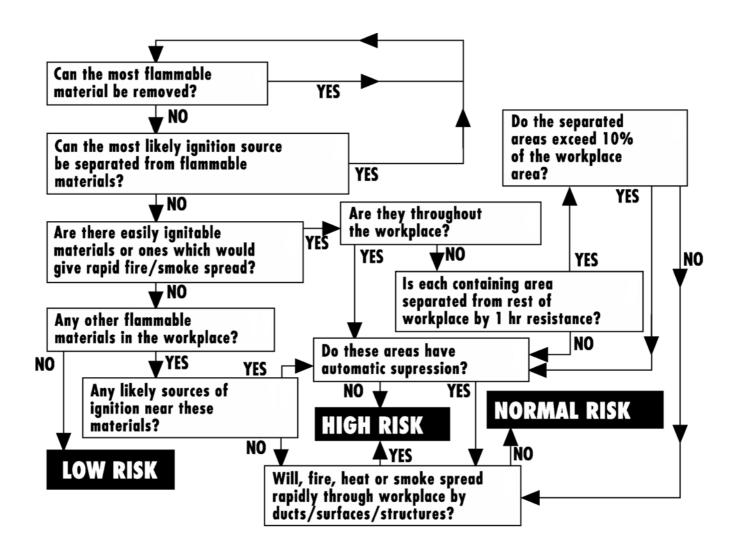
Risk Value Matrix

FIRE HAZARD VALUE

	5	4	3	2	1	
5	25	20	15	10	5	_
4	20	16	12	8	4	
3	15	12	9	6	3	_
2	10	8	6	4	2	
1	5	4	3	2	1	

RISK CATEGORY




FIRE RISK VALUE

Industrial Me thod

An Algorithmic Method

Hazard Operability Study (HAZOP)

- Preferred for use in nuclear, chemical, and petrochemical industries
- Applied to a line diagram of the apparatus, line by line
- Guide words are used to decide if a hazard exists or could exist if certain events happened
- Typical guide words are: "None" e.g. no flow: would that be hazardous? "More of" and "Less of"
- When hazards have been identified decisions are taken to eliminate them as far as possible

Hazard Analysis (HAZAN)

- Follows HAZOP study
- Hazards have to be assessed and decisions, taken about eliminating them
- In situations where little or no guidance is available HAZAN is applied.
- Accident risk is compared with a target or criterion in order to decide on a course of action.

Hazard Analysis (HAZAN)

- HAZAN has to answer three questions:
 - HOW OFTEN will the hazard occur?
 - WHAT will be the consequences to employees, the public and to the plant?
 - HOW do these compare to the target or criterion?

HTM 86 - Fire risk assessment in hospitals

- Specific method for hospitals
- Based on requirements of HTM 85
- Premises split into discrete units i.e.
 - Outpatients
 - Pharmacy
 - Physiotherapy
 - ITU

HTM 86 - Fire risk assessment in hospitals

 The assessment is carried out in 5 stages by considering the following:

Stage 1 Dependency of patients

Stage 2 Existing fire hazards

Stage 3 Existing fire precautions

Stage 4 Recording the assessment

Stage 5 What, if any compensations are

required

HTM 86 - Fire risk assessment in hospitals - Compensatory Factors

- The 'compensatory factor' matrix is complicated and allows for the compensation of a poor feature only by the identification of a "high standard" of certain other precautions.
- i.e. a high hazard identified in "Fires started by patients" can only be compensated for by a "high standard" of either "observation" or "alarm and detection systems".

HTM 86 Compensatory Factors

Inadequate Feature	Possible Compensatory Factors	Degree Of Compensation	
High hazard rooms (i.e. Boilerhouse)	AFD system Sprinklers	Total Total	
Alarm and detection system	Observation Staff Sprinklers	Total Total Total	
Single direction means of escape	Observation AFD system Travel distance Escape lighting Staffing levels Smoke control	Partial Total Partial Partial Total Total	
Travel distance	Observation AFD system Refuge provision Staffing levels Smoke control	Partial Total Partial Total Total	
Stairways	Height above ground	Total	
Elements of structure	Sprinklers	Total	
External envelope protection	Compartmentation Sprinklers	Total Total	
Height above ground	Stairways Refuge Compartmentation Access for Fire Brigade	Partial Partial Partial Partial	

Heat Release Rates from Fires

1kW

• 50 kW

• 1 MW

• 10 MW

• 100MW

= 1 bar electric fire

= Waste bin fire

= Armchair fire

= Room fire

= Large industrial fire

Design FireGrowth Rates

- Dwelling
- Office
- Shop
- Hotel reception
- Hotel bedroom
- Picture gallery
- Industrial storage
- Industrial plant room

- = Medium
- = Medium
- = Fast
- = Medium
- = Medium
- = Slow
- = Ultra fast
- = Ultra fast

Risk Ranking and Hazard Indices

Defined as the process of modelling and scoring hazard and exposure parameters to produce a rapid and simple assessment of relative risk.

Risk Ranking and Hazard Indices

- Values are assigned to selected variables based on statistical evidence, professional judgement and past experience
- Variables are representative of both positive and negative fire safety features
- Values are operated on by some combination of arithmetic functions to arrive at a single value
- The resulting figure is then compared to other similar assessments or to a standard to rank the fire risk

Summary

- Fire Risk Assessment is a requirement of the Fire Precautions (Workplace) Regulations 1997 (amended 1999).
- Risk assessment = evaluation of the likelihood of undesired events and the harm or damage being caused, together with value judgements concerning the significance of the results.
- Simple process in general varied tools available to assist.
- Not ruled by economics, the safety of people must always come first

