Amazon Rekognition

Developer Guide

amazon
webservices™

Amazon Rekognition Developer Guide

Amazon Rekognition: Developer Guide
Copyright © 2017 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Rekognition Developer Guide

Table of Contents

What Is Amazon ReKOgNITioN?couiiniiiiii et ettt et e et e e e e e e e eenae 1
Are You a First-Time Amazon Rekognition USEI?cuuiiniiiiiiiiiieie et ettt e e eeeens 2

HOW Tt WOKKS ettt ettt et e e et et et et et s eaa s eaneenaeens 3
NON-StOrage APl OPErationsc.ouininiiiiii ettt ettt e et e s e e e e e e e e eaeaees 3
Detecting Labels and FACESc.ueuniiniiniiii ittt ettt ettt et et et et e e a e e aeaaeas 5
COMPANING FACES ettt et e ettt e e et e e s e e e e e s e e eataenns 9
Storage-Based APl OPErationsc..cuuiuniiniiiiii ettt ettt ettt e e e e et e e e e e e e e e e 12
Managing FAce COLLECtIONSiuiiiieii ettt ettt st et e e e ea s e e enes 12

SEOMING FACES ..niiiii ittt ettt ettt et et e e e e e et e a e eaaaens 13

SEANCNING FACES .ttt ee e et e et s e ea s e ta s eneta e easeneannan 14

(€11 a T (o] =T {1 O O P PP PP PPTPPPPN 17
STEP T: Set UP QN ACCOUNT L. uiiiiiiiii ettt et et e ettt et e e e ananenenenensnenensnenennes 17

SIGN UP FOT AWS Lottt et et et e et e et e et e et e et e e s et s et s eansanneenneanaannannnns 17

Create an TAM USEEouuiiiiiiiiiiii e e e e 18

e) =T o E PP PPt 18

Step 2: Set UP the AWS CLI ..onieiii it e et e e e e e e e e e e e e e e e e e e aaaananns 18

e) =T o E P PPt 19

Step 3: Getting Started Using the CoNSOLEcouiiuiiniiiii e 19
Exercise 1: Detect Objects and Scenes (CONSOLE)viuniiiriiiiiiiiiiiii e e e eaanes 20

Exercise 2: Analyze FAces (CONSOLE)iuuiiuniiiiiiiiiitii ettt et et e et e e e e e e e e eans 24

Exercise 3: COompare FAaces (CONSOLE) ..iuuiuniiniiiiiii i e et et e et e et e ae e ae e e e anaanns 27

Exercise 4: See Aggregated Metrics (CONSOLE)eeuiiniiiniiiniii ittt e e et e eaeeans 29

Step 4: Getting Started Using the APlt e e e eaenns 29
Using the AWS SDK or HTTP to Call Amazon Rekognition APl Operationscccceveiveieniennenes 30
Formatting the AWS CLI EXaMPLES ...cuuiuniniiiiiie ettt ettt et s e et e e e e e e ene 30

WOrKing WIth IMAgES ..cuuininiiii ettt et ettt et et s e e e e ea e e easeneeanas 30

EXercise T: Detect Labels (API)vueniniiiiiiiie ettt ettt e e e e eaeaeaeneaeaanens 31

| (o I A DI {=Tat gl = o=l (- ad) N 33

Exercise 3: COmMPAre FACES (API) ...cuiuiiiiiiiiiie et ee e e e e e e e e e e e e e e e e e eeanaaaana 34
Authentication and AcCeSS CONETIOLcuiuiiniiiii ettt et e et et e e et ea e e eaneaaeanes 38
AUTNENTICATION L.ovniiiiii i ettt et et e e e eaes 38
ACCESS CONEIOL coutiiiiiiiit ittt et ettt et b et et et e e eaa e ean e eaaeeanes 39
OVErVIEW Of MaNAginNg ACCESS ...uvvuneiuirieeiietietietie ettt e et eetneeuneaueetueetasetaeatnsatnsannsanseensesnsernsennsens 40
Amazon Rekognition Resources and Operationsccoveuviiviiiiiniiniiiei e 40
Understanding Resource OWNEISHIPcuiiuiiniiiiiiiie ettt ettt e e e e ens 40

Managing ACCESS TO RESOUICESueuiuininiiiiiii ettt ettt ettt et e e et e et et enseeneaeneans 41

Specifying Policy Elements: Actions, Effects, and Principalsccoeeiiiiiiiniiiiiiniiniineieeee, 42

Specifying Conditions iN @ POLICYuiiuiiiniiiiiiiein et e e e e e e s eanes 43

Using Identity-Based Policies (IAM POLICIES)viruiunieiniiieiieieeie et e et et et s ean s et s et e anneaieannes 43
Permissions Required to Use the Amazon Rekognition Consolecccceveiviiiiiiiiiiinienieniennenne. 44

AWS Managed (Predefined) Policies for Amazon Rekognitionccoeveviiiiiiiiiiiiiiniiiniiineennes 44

Customer Managed Policy EXamPLESc.oeuiiniiniiiiiii e 45

Amazon Rekognition APl Permissions REfErENCEcuuuiiuiiiiiiiiiiiii e e 46
ReCOgNIZING CELEDIILIES ..entneiniiii ettt ettt ettt e et et et et ea et eaeneneneennanns 48
Calling RECOgNIZECELEDITLIES ..euuenieiiiit ettt ettt et e et ene et eneenenenennanns 48
Recognizing Celebrities in @n IMageiiuiiiiiiii ettt et e e ens 50

= = To [BT =T PP PPN 50

Getting Celebrity INFOrMAtionc..iiiiiiiii et e et e e e e e e e e e eaaeeanes 52
=] = To [T =T PP PPN 52

[\ ToTe [T =Y To 10 Lo [PP P PP P PP 55
Detecting Moderation Labelscuuiiniiniiiiiie ettt e e e 56
=] = To [BT =T PP PPN 56

[\ (o] a1 £] ¢ 12 [« PP TPPTOTPRPRPIR 59
[\ (o] a1 fo] ¢ 1o [« PP PP 59

Amazon Rekognition Developer Guide

Using CloudWatch Metrics for ReEKOgNitionccouiiiniiiiiiiiiiii e 59
ACCESS REKOGNITION MELIICS ..iuiiniiiiiiit ittt e et e e e e e e e e e e ee e e etaaaaaans 60
Create N ALGIM oeee ettt et ettt et e et e et et e e eaaeeans 61
CloudWatch Metrics for REKOGNITIONcvuiueiiiiiiii e e e et e et e e eae et eaeanaes 62
CloudWatch Metrics for REKOGNItIONvuiieiiniiiiiii e 62
CloudWatch Dimension for REKOGNILIONvuiuiiiiiiiiiie e e e 63

o L aa]] (=TT PSPPSRIt 64
Example 1: Managing ColleCtionsccuiiuiiiiiiiie ettt e e e e e e e e s ee e e ae e e e ees 64
Creating, Listing, and Deleting Collections: Using the AWS CLIccouviiiiiiiiiiiiiiiiiieieeeeeane. 65
Creating, Listing, and Deleting Face Collections: Using the AWS SDK for Javaccceeuuieuniennee. 66
EXQMPLE 27 SEOMNG FACES ouiuiniiiiiiit ettt et e e et e e et et et s e et e e e e e e e e e e eaneanaens 68
Storing Faces: USiNg the AWS CLIcuuiuniiiiiieie et ettt et et e et et e e e e 68
Storing Faces: Using the AWS SDK fOr Javaccuiiuiiiiiiiiiii ettt 73
EXample 3: SEArching FACEScuniuiiiiiiiiie ettt ee e et e e et ete et et et et et et anaetaanaesnannns 75
Searching Faces: Using the AWS CLI ...c.uieiiiiiiiie et et ea e e e eeane 75
Searching Faces: Using the AWS SDK fOr Javacuiiiiiiiiiiiiicie et 77
Example 4: SUPPLYING IMAGE BYLES ...uiuniiniiiiiieiieiie et eeee et ettt et et et et eteeteeteenaeteaeaenneneesnannes 80
Supplying Images: Using the Local File System and Javacccceeuieimiiiiiiiiiiiiiiciieceece e, 80
Supplying Images: Using the Local File System and Pythonc..ccoooiiiiiiiiiiiiiiiieen, 82
Supplying Images: Using the Local File System and PHPc.ooouiiiiiiiiiiiiiiiiee e 82

Y o I () =T =T o [TP PP TP PPRPN 84
HTTP HEAAENS ...ttt ettt ettt ettt et et et et et e et e et e et e eb e eaeen e eeneeeneeaneenns 84
AV o] 3 3PP PR PP PRPRPIR 85
(@] 3] 0T | (=1 2= Lol <L PP PP PPPPPTOt 86

(@FT | =T o] 1T et o] O T PP P PP R UPT PPN 93

(DI doT@o] L =Tar o] E T PP PR OPP PP PPPPRN 96
DELELEFACES ... ettt ettt ettt ettt ettt ettt et et et et e e et et et et e eh e e een e e eans 99

D=3 =Tt o =T o 102
DELECELADELS ...eneieeee ettt et e et et e e et et e e e enns 108
DetectModerationLabelscc..iiuiiiii e e 115
GEtCelEbritYINTO . ovnieiii e et e et r e e e e e e e 119
INAEXFACES ..ttt ettt et et e et e et e et e et et b e et e ta e en e an e et e e e e eaeen e e eans 122
LISECOLLECTIONS ...ttt et et e e et et et et et e et e eaa e eaeebeena e 130
LISEFACES ...ttt ettt ettt ettt ettt ettt et e e et a e eaenaeas 133
RECOGNIZECELEDITTIES . vuiiiiiii ittt e e et e e e e e e e e e e e e e aaas 139
SEANCRFACES ...ttt ettt et ettt et et et et et e e e e eaaaas 145
SEANCNFACESBYIMAGE .uiiniiiiiiieieie ettt e eeeteee et e et e et e et ete et et et eaeeteeneeteeneereeseeneeneenns 150

(D) = I Y/ o 1= TP P PSPPI 155
FAVe =] [[PP PP P PPN 156
BRI ..ottt ettt et et et et e et ea et et e e eans 157
BOUNAINGBOX .. etiiiiiieiieiie ettt ee et e e e eieeteeteeteeteete et et et et et anatssssnssassnsanssnsnnesnennnens 158
(@] 12T T PP PPN 160

(@e]3 4] 0T 1T | - [TP P PP PPPPRRY 161
ComparedSoUrCelMAGEFACEcuuniiiiie ettt et et et e e et e e e eaa e eaaeeas 162
COMPArEFACESMAtCN L.vniiiiii et e e et e e et e et e et e et ete et et e eaaas 163

[3T} o] o E PP PP PPN 164

oY Te - 1T PPN 165
=T 0 0T o 166

= = 167
FACEDELAIL .. ettt et et et e e e eans 169
FACEMATCR ..o ettt e ea et e e eans 172
FACERECONM ...ttt ettt ettt et e et e et e et et e e et e e e een e eaeenns 173
(CT=Ta e [T TSP P TP PR PRSP 174
a0 F= Lo PP PPt 175

[aa e 1T TU T L Y PR 176

I] o =] T S PP P PP PR PR UUPRPPNN 177

(I o o 11 - [QOO PP PP PTUPPPI 178

Amazon Rekognition Developer Guide

MOAEratioNLAbeleuieiiii et e e e e e e 179
MOULROPEN ..ot et et e et et e e et et et e e e e et e et een e eeneeaneens 180
(TS = Yol o = RPN 181
o 1 PP PP PP 182
%10] 1Tt A T PR PTUSPTUUPTTPTPRt 183
1] 1 T PP PP 184
SUNGLASSES .vuetniiniiti ittt ettt ettt ettt et ettt et et atnetnaanesneenetnssssntsnetnsenssnesnetnsenesnssnesnsens 185
]2 11 £ O PP PP PP PPNN 186
[DTo Yol N3 =] o fll o 11 o] o VPP P PRSPPI 187
AWS GLOSSAIY .. eenetnettnetuetu et et et et et et et et e et e et e et e et e ea s et e et e eaa e eba e eb e th e ta e an e een e ea e et e eneeneaneans 189

Amazon Rekognition Developer Guide

What Is Amazon Rekognition?

Amazon Rekognition is a service that enables you to add image analysis to your applications. With
Rekognition, you can detect objects, scenes, and faces in images. You can also search and compare faces.
The Rekognition API enables you to quickly add sophisticated deep learning-based visual search and
image classification to your applications. Rekognition is built to analyze images at scale and integrates
seamlessly with Amazon S3, AWS Lambda, and other AWS services.

Common use cases for using Amazon Rekognition include the following:

« Searchable image library - Amazon Rekognition makes images searchable so you can discover objects
and scenes that appear within them. You can create an AWS Lambda function that automatically adds
newly detected image labels directly into an Amazon Elasticsearch Service search index when a new
image is uploaded into Amazon S3.

» Face-based user verification — Amazon Rekognition enables your applications to confirm user
identities by comparing their live image with a reference image.

« Sentiment and demographic analysis - Amazon Rekognition detects emotions such as happy, sad, or
surprise, and demographic information such as gender from facial images. Rekognition can analyze live
images, and send the emotion and demographic attributes to Amazon Redshift for periodic reporting
on trends such as in store locations and similar scenarios.

« Facial recognition — With Amazon Rekognition, you can search your image collection for similar faces
by storing faces, using the 1ndexFaces APl operation. You can then use the searchFaces operation
to return high-confidence matches. A face collection is an index of faces that you own and manage.
Identifying people based on their faces requires two major steps in Amazon Rekognition:

1. Index the faces.
2. Search the faces.

« Image Moderation — Amazon Rekognition can detect explicit and suggestive adult content in images.
Developers can use the returned metadata to filter inappropriate content based on their business
needs. Beyond flagging an image based on the presence of adult content, the API also returns a
hierarchical list of labels with confidence scores. These labels indicate specific categories of adult

Amazon Rekognition Developer Guide
Are You a First-Time Amazon Rekognition User?

content, thus allowing granular filtering and management of large volumes of user generated content
(UGCQ). For example, social and dating sites, photo sharing platforms, blogs and forums, apps for
children, e-commerce sites, entertainment and online advertising services.

Celebrity Recognition - Amazon Rekognition can recognize celebrities within supplied images.
Rekognition can recognize thousands of celebrities across a number of categories, such as politics,
sports, business, entertainment, and media.

Some of the benefits of using Amazon Rekognition include:

Integrate powerful image recognition into your apps — Amazon Rekognition removes the complexity
of building image recognition capabilities into your applications by making powerful and accurate
image analysis available with a simple API. You don't need computer vision or deep learning expertise
to take advantage of Rekognition’s reliable image analysis. With Rekognition’s API, you can easily and
quickly build image analysis into any web, mobile or connected device application.

Deep learning-based image analysis — Rekognition uses deep learning technology to accurately
analyze images, find and compare faces, and detect objects and scenes within your images.

Scalable image analysis — Amazon Rekognition enables you to analyze millions of images so you can
curate and organize massive amounts of visual data.

Integrate with other AWS services - Amazon Rekognition is designed to work seamlessly with other
AWS services like Amazon S3 and AWS Lambda. Rekognition’s API can be called directly from Lambda
in response to Amazon S3 events. Since Amazon S3 and Lambda scale automatically in response to
your application’s demand, you can build scalable, affordable, and reliable image analysis applications.
For example, each time a person arrives at your residence, your door camera can upload a photo of the
visitor to Amazon S3, triggering a Lambda function that uses Rekognition API operations to identify
your guest. You can run analysis directly on images stored in Amazon S3 without having to load or
move the data. Support for AWS Identity and Access Management (IAM) makes it easy to securely
control access to Rekognition APl operations. Using IAM, you can create and manage AWS users and
groups to grant the appropriate access to your developers and end users.

Low cost — With Amazon Rekognition, you only pay for the number of images you analyze and the face
metadata that you store. There are no minimum fees or upfront commitments. Get started for free,
and save more as you grow with Rekognition's tiered pricing model.

Are You a First-Time Amazon Rekognition User?

If you are a first-time user of Amazon Rekognition, we recommend that you read the following sections
in order:

1

. Amazon Rekognition: How It Works (p. 3) — This section introduces various Amazon Rekognition

components that you work with to create an end-to-end experience.

. Getting Started with Amazon Rekognition (p. 17) - In this section you set your account and test

the Amazon Rekognition API.

. Additional Amazon Rekognition Examples (p. 64) — This section provides additional examples

that you can use to explore Amazon Rekognition.

Amazon Rekognition Developer Guide
Non-Storage API Operations

Amazon Rekognition: How It Works

The computer vision API operations that Amazon Rekognition provides can be grouped in the following
categories:

« Non-storage APl operations — The API operations in this group do not persist any information on the
server. You provide input images, the API performs the analysis, and returns results, but nothing is
saved on the server. The API can be used for operations such as the following:

« Detect labels or faces in an image. A label refers to any of the following: objects (for example, flower,
tree, or table), events (for example, a wedding, graduation, or birthday party), or concepts (for
example, a landscape, evening, and nature). The input image you provide to these API operations
can be in JPEG or PNG image format.

» Compare faces in two images and return faces in the target image that match a face in the source
image.

« Detect celebrities in images.
 Analyse images for explicit or suggestive adult content.

« Storage-based API operations - Amazon Rekognition provides an APl operation that detects faces in
the input image and persists facial feature vectors in a database on the server. Amazon Rekognition
provides additional APl operations you can use to search the persisted face vectors for face matches.
None of the input image bytes are stored.

Topics
» Non-Storage API Operations (p. 3)
« Storage-Based API Operations: Storing Faces and Searching Face Matches (p. 12)

Non-Storage API Operations

Amazon Rekognition provides the following non-storage API operations:

» DetectLabels to detect labels. This includes objects (for example, a flower, tree, or table), events (for
example, a wedding, graduation, or debate), and concepts (for example, a landscape, adventure, or
musical).

e DetectFaces to detect faces.

Amazon Rekognition Developer Guide
Non-Storage API Operations

» CompareFaces to compare faces in images.

» DetectModerationLabels to detect explicit or suggestive adult content in images.
e RecognizeCelebrities to recognize celebrities in images.

o GetCelebrityInfo to get information about a celebrity.

These are referred to as non-storage API operations because when you make the operation call, Amazon
Rekognition does not persist any information discovered about the input image. Like all other Amazon
Rekognition API operations, no input image bytes are persisted by non-storage API operations.

The following example scenarios show where you might integrate non-storage API operations in your
application. These scenarios assume that you have a local repository of images.

Example 1: An application that finds images in your local repository that contain specific
labels

First, you detect labels using the Amazon Rekognition petectLabels operation in each of the images in
your repository and build a client-side index, as shown following:

Label ImagelD
tree image-1
flower image-1
mountain image-1
tulip image-2
flower image-2
apple image-3

Then, your application can search this index to find images in your local repository that contain a specific
label. For example, display images that contain a tree.

Each label that Amazon Rekognition detects has a confidence value associated. It indicates the level

of confidence that the input image contains that label. You can use this confidence value to optionally
perform additional client-side filtering on labels depending on your application requirements about

the level of confidence in the detection. For example, if you require precise labels, you might filter and
choose only the labels with higher confidence (such as 95% or higher). If your application doesn't require
higher confidence value, you might choose to filter labels with lower confidence value (closer to 50%).

Example 2: An application to display enhanced face images

First, you can detect faces in each of the images in your local repository using the Amazon Rekognition
DetectFaces operation and build a client-side index. For each face, the operation returns metadata
that includes a bounding box, facial landmarks (for example, the position of mouth and ear), and facial
attributes (for example, gender). You can store this metadata in a client-side local index, as shown
following:

ImagelD FaceID FaceMetaData

image-1 face-1 <boundingbox>, etc.
image-1 face-2 <boundingbox>, etc.
image-1 face-3 <boundingbox>, etc.

In this index, the primary key is a combination of both the 1mage1p and FaceID.

Then, you can use the information in the index to enhance the images when your application displays
them from your local repository. For example, you might add a bounding box around the face or
highlight facial features.

Amazon Rekognition Developer Guide
Detecting Labels and Faces

Related Topics
o Detecting Labels and Faces (p. 5)
« Comparing Faces (p. 9)

Detecting Labels and Faces

Amazon Rekognition provides non-storage API operations for detecting labels and faces in an image.
A label or a tag is an object, scene, or concept found in an image based on its contents. For example,
a photo of people on a tropical beach may contain labels such as Person, Water, Sand, Palm Tree, and
Swimwear (objects), Beach (scene), and Outdoors (concept).

These are referred to as the non-storage API operations because when you make the API call, Amazon
Rekognition does not persist the input image or any image data. The APl operations do the necessary
analysis and return the results. The sections in this topic describe these operations.

Topics
o Detecting Labels (p. 5)
« Detecting Faces (p. 6)

Detecting Labels

You can use the DetectLabels (p. 108) API operation to detect labels in an image. For each label,
Amazon Rekognition returns a name and a confidence value in the analysis. The following is an example
response of the petectLabels API call.

{
"Labels": [

{
"Confidence": 98.4629,
"Name": "beacon"

}I

{
"Confidence": 98.4629,
"Name": "building"

}I

{
"Confidence": 98.4629,
"Name": "lighthouse"

}I

{
"Confidence": 87.7924,
"Name": "rock"

}I

{
"Confidence": 68.1049,
"Name": "sea"

}

]
}

The response shows that the API detected five labels (that is, beacon, building, lighthouse, rock, and
sea). Each label has an associated level of confidence. For example, the detection algorithm is 98.4629%
confident that the image contains a building.

Amazon Rekognition Developer Guide
Detecting Labels and Faces

If the input image you provide contains a person, the petectLabels operation detects labels such as
person, clothing, suit, and selfie, as shown in the following example response:

{
"Labels": [
{
"Confidence": 99.2786,
"Name": "person"
}I
{
"Confidence": 90.6659,
"Name": "clothing"
}I
{
"Confidence": 90.6659,
"Name": "suit"
}I
{
"Confidence": 70.0364,
"Name": "selfie"
}
]
¥
Note
If you want facial features describing the faces in an image, use the pDetectFaces operation
instead.

Detecting Faces

Amazon Rekognition provides the DetectFaces (p. 102) operation that looks for key facial features
such as eyes, nose, and mouth to detect faces in an input image. The response returns the following
information for each detected face:

« Bounding box - Coordinates of the bounding box surrounding the face.
« Confidence - Level of confidence that the bounding box contains a face.

« Facial landmarks — An array of facial landmarks. For each landmark, such as the left eye, right eye, and
mouth, the response provides the x, y coordinates.

« Facial attributes - A set of facial attributes, including gender, or whether the face has a beard. For
each such attribute, the response provides a value. The value can be of different types such as a
Boolean (whether a person is wearing sunglasses), a string (whether the person is male or female), etc.
In addition, for most attributes the response also provides a confidence in the detected value for the
attribute.

» Quality — Describes the brightness and the sharpness of the face.
« Pose - Describes the rotation of the face inside the image.
« Emotions — A set of emotions with confidence in the analysis.

The following is an example response of a DetectFaces API call.

"FaceDetails":[
{

"BoundingBox": {
"Height":0.18000000715255737,
"Left":0.5555555820465088,
"Top":0.33666667342185974,
"Width":0.23999999463558197

Amazon Rekognition Developer Guide
Detecting Labels and Faces

Iy
"Confidence":100.0,
"Landmarks":[

{
"Type":"eyeLeft",
"X":0.6394737362861633,
"Y":0.40819624066352844
Iy
{
"Type":"eyeRight",
"X":0.7266660928726196,
"Y":0.41039225459098816
Iy
{
"Type":"nose",
"X":0.6912462115287781,
"Y":0.44240960478782654
Iy
{
"Type":"mouthLeft",
"X":0.6306198239326477,
"Y":0.46700039505958557
Iy
{
"Type":"mouthRight",
"X":0.7215608954429626,
"Y":0.47114261984825134
}

1,

"Pose":{
"Pitch":4.050806522369385,
"Roll":0.9950747489929199,
"Yaw":13.693790435791016

Iy

"Quality":{
"Brightness":37.60169982910156,
"Sharpness":80.0

}

"BoundingBox" :{
"Height":0.16555555164813995,
"Left":0.3096296191215515,
"Top":0.7066666483879089,
"Width":0.22074073553085327

Iy

"Confidence":99.99998474121094,
"Landmarks":[

{
"Type":"eyeLeft",
"X":0.3767718970775604,
"Y":0.7863991856575012
Iy
{
"Type":"eyeRight",
"X":0.4517287313938141,
"Y":0.7715709209442139
Iy
{
"Type":"nose",
"X":0.42001065611839294,
"Y":0.8192070126533508
Iy
{

"Type":"mouthLeft",
"X":0.3915625810623169,

Amazon Rekognition Developer Guide
Detecting Labels and Faces

"Y":0.8374140858650208

Iy
{
"Type":"mouthRight",
"X":0.46825936436653137,
"Y":0.823401689529419
}
1,
"Pose":{

"Pitch":-16.320178985595703,
"Roll":-15.097439765930176,
"Yaw":-5.771541118621826

Iy

"Quality":{
"Brightness":31.440860748291016,
"Sharpness":60.000003814697266

}

}
1,

"OrientationCorrection":"ROTATE_O"

Note the following:

« The pose data describes the rotation of the face detected. You can use the combination of the
BoundingBox and Pose data to draw the bounding box around faces that your application displays.

o The guality describes the brightness and the sharpness of the face. You might find this useful to
compare faces across images and find the best face.

« The petectFaces operation first detects orientation of the input image, before detecting facial
features. The orientationCorrection in the response returns the degrees of rotation detected
(counter-clockwise direction). Your application can use this value to correct the image orientation
when displaying the image.

« The preceding response shows all facial 1andmarks the service can detect, all facial attributes and
emotions. To get all of these in the response, you must specify the attributes parameter with value
ALL. By default, the petectFaces API returns only the following five facial 1andmarks, Pose, and
Quality.

"Landmarks": [

{
"Y": 0.41730427742004395,
"X": 0.36835095286369324,
"Type": "eyeLeft"

}l

{
"Y": 0.4281611740589142,
"X": 0.5960656404495239,
"Type": "eyeRight"

}l

{
"Y": 0.5349795818328857,
"X": 0.47817257046699524,
"Type": "nose"

}l

{
"Y": 0.5721957683563232,
"X": 0.352621465921402,
"Type": "mouthLeft"

Amazon Rekognition Developer Guide
Comparing Faces

+
{
"Y": 0.5792245864868164,
"X": 0.5936088562011719,
"Type": "mouthRight"
}
]

« The following illustration shows the relative location of the facial landmarks on the face returned by
the petectFaces API operation.

Comparing Faces

To compare a face in the source image with each face in the target image, use the
CompareFaces (p. 86) operation.

Note
If the source image contains more than one face, the service detects the largest face and uses it
for comparison.

To specify the minimum level of confidence in the match that you want returned in the response, use
similarityThreshold in the request. For more information, see CompareFaces (p. 86).

The API returns an array of face matches, source face information, image orientation, and an array of
unmatched faces. The following is an example response.

{

Amazon Rekognition Developer Guide
Comparing Faces

"FaceMatches": [{
"Face": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185

Iy
"Confidence": 99.98751068115234,
"Pose": {
"Yaw": -82.36799621582031,
"Roll": -62.13221740722656,
"Pitch": 0.8652129173278809
Iy
"Quality": {
"Sharpness": 99.99880981445312,
"Brightness": 54.49755096435547
Iy

"Landmarks": [{
"Y": 0.2996366024017334,
"X": 0.41685718297958374,
"Type": "eyeLeft"

Iy
{
"Y": 0.2658946216106415,
"X": 0.4414493441581726,
"Type": "eyeRight"
Iy
{
"Y": 0.3465650677680969,
"X": 0.48636093735694885,
"Type": "nose"
Iy
{
"Y": 0.30935320258140564,
"X": 0.6251809000968933,
"Type": "mouthLeft"
Iy
{
"Y": 0.26942989230155945,
"X": 0.6454493403434753,
"Type": "mouthRight"
}
]
Iy
"Similarity": 100.0
1
"SourceImageOrientationCorrection": "ROTATE_90",
"TargetImageOrientationCorrection": "ROTATE_90",

"UnmatchedFaces": [{
"BoundingBox": {
"Width": 0.4890109896659851,
"Top": 0.6566604375839233,
"Left": 0.10989011079072952,
"Height": 0.278298944234848

Iy
"Confidence": 99.99992370605469,
"Pose": {
"Yaw": 51.51519012451172,
"Roll": -110.32493591308594,
"Pitch": -2.322134017944336
Iy
"Quality": {
"Sharpness": 99.99671173095703,
"Brightness": 57.23163986206055
Iy

10

Amazon Rekognition Developer Guide
Comparing Faces

"Landmarks": [{
"Y": 0.8288310766220093,
"X": 0.3133862614631653,

"Type": "eyeLeft"

Iy

{
"Y": 0.7632885575294495,
"X": 0.28091415762901306,
"Type": "eyeRight"

Iy

{
"Y": 0.7417283654212952,
"X": 0.3631140887737274,
"Type": "nose"

Iy

{
"Y": 0.8081989884376526,
"X": 0.48565614223480225,
"Type": "mouthLeft"

Iy

{
"Y": 0.7548204660415649,
"X": 0.46090251207351685,
"Type": "mouthRight"

}

]
1
"SourceImageFace": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185
Iy
"Confidence": 99.98751068115234

In the response, note the following:

Face match information — The example shows that one face match was found in the target image.
For that face match, it provides a bounding box and a confidence value (the level of confidence that
Amazon Rekognition has that the bounding box contains a face). The similarity score of 99.99
indicates how similar the faces are. The face match information also includes an array of landmark
locations.

If multiple faces match, the faceMatches array includes all of the face matches.

Source face information — The response includes information about the face from the source image
that was used for comparison, including the bounding box and confidence value.

Image Orientation — The response includes information about the orientation of the source and target
images. Amazon Rekognition needs this to display the images and retrieve the correct location of the
matched face in the target image.

Unmatched face match information — The example shows one face that Amazon Rekognition found
in the target image that didn't match the face analysed in the source image. For that face, it provides
a bounding box and a confidence value, indicating the level of confidence that Amazon Rekognition
has that the bounding box contains a face. The face information also includes an array of landmark
locations.

If Amazon Rekognition finds mutiple faces that do not match, the unmatchedraces array includes all of
the faces that didn't match.

11

Amazon Rekognition Developer Guide
Storage-Based API Operations

Storage-Based API Operations: Storing Faces and
Searching Face Matches

Amazon Rekognition supports the IndexFaces (p. 122) operation, which you can use to detect faces in
an image and persist information about facial features detected in a database on the server. This is an
example of a storage-based API operation because the service persists information on the server.

To store facial information, you must first create a face collection in one of AWS Regions in your
account. You specify this face collection when you call the 1ndexFaces operation. After you create a
face collection and store facial feature information for all faces, you can search the collection for face
matches.

Note

The service does not persist actual image bytes. Instead, the underlying detection algorithm
first detects the faces in the input image, extracts facial features into a feature vector for each
face, and then stores it in the database. Amazon Rekognition uses these feature vectors when
performing face matches.

For example, you might create a face collection to store scanned badge images using the indexFaces
operation, which extracts faces and stores them as searchable image vectors. When an employee enters
the building, an image of the employee's face is captured and sent to the searchFacesByImage operation.
If the face match produces a sufficiently high similarity score (say 99%), you can authenticate the
employee.

Managing Face Collections

A collection is a container for persisting faces detected by the 1ndexrFaces API. You might choose to
create one container to store all faces or create multiple containers to store faces in groups as you
choose. Consider the following examples:

» You might create a collection to store scanned badge images using the 1ndexFaces operation, which
extracts faces and stores them as searchable image vectors. When an employee enters the building,
an image of their face is captured and sent to the searchFacesByImage operation. If the face match
produces a sufficiently high similarity score, the employee is immediately verified. As a developer of
identity verification system, you might use a 99% similarity score.

« You might create multiple collections, one per application user so that their uploaded faces are
grouped independently. In this scenario, when a user performs a search, the search is scoped to the
user's face collection (the search faces operations require a collection ID as input).

The face collection is the primary Amazon Rekognition resource, each face collection you create has a
unique Amazon Resource Name (ARN). You create each face collection in a specific AWS Region in your
account.

Amazon Rekognition provides the following operations for you to manage collections:

« CreateCollection (p. 93)
« DeleteCollection (p. 96)
« ListCollections (p. 130)

12

Amazon Rekognition Developer Guide
Storing Faces

For information about storing faces, see Storing Faces in a Face Collection: The IndexFaces
Operation (p. 13). For information about searching faces, see Searching Faces in a Face
Collection (p. 14).

Storing Faces in a Face Collection: The IndexFaces
Operation

After you create a face collection, you can store faces in it. Amazon Rekognition provides the 1ndexFaces
operation that can detect faces in the input image (JPEG or PNG) and adds them to the specified face
collection. For more information about collections, see Managing Face Collections (p. 12). After you
persist faces, you can search the face collection for face matches.

Important

Amazon Rekognition does not save the actual faces detected. Instead, the underlying detection
algorithm first detects the faces in the input image, extracts facial features for each face,

and then stores the feature information in a database. Then, Amazon Rekognition uses this
information in subsequent operations such as searching a face collection for matching faces.

For each face, the 1ndexFaces operation persists the following information:

« Multidimensional facial features — 1ndexFaces uses facial analysis to extract multidimensional
information about the facial features and stores the information in the face collection. You cannot
access this information directly. However, Amazon Rekognition uses this information when searching a
face collection for face matches.

« Metadata - The metadata for each face includes a bounding box, confidence level (that the bounding
box contains a face), IDs assigned by Amazon Rekognition (face ID and image ID), and an external
image ID (if you provided it) in the request. This information is returned to you in response to the
IndexFaces API call. For an example, see the face element in the following example response.

The service returns this metadata in response to the following API calls:

e ListFaces

« Search faces operations — The responses for searchFaces and searchFacesByImage return the
confidence in the match for each matching face, along with this metadata of the matched face.

In addition to the preceding information that the API persists in the face collection, the API also returns
face details that are not persisted in the collection (see the facepetail element in the following example
response).

Note
DetectFaces returns the same information, so you don't need to call both petectFaces and
IndexFaces for the same image.

"FaceRecords": [
{
"FaceDetail": {
"BoundingBox": {
"Width": 0.6154,
"Top": 0.2442,
"Left": 0.1765,
"Height": 0.4692

13

Amazon Rekognition Developer Guide
Searching Faces

Iy
"Landmarks": [
{
"Y": 0.41730427742004395,
"X": 0.36835095286369324,
"Type": "eyeLeft"
e
{
"Y": 0.4281611740589142,
"X": 0.5960656404495239,
"Type": "eyeRight"
e
{
"Y": 0.5349795818328857,
"X": 0.47817257046699524,
"Type": "nose"
e
{
"Y": 0.5721957683563232,
"X": 0.352621465921402,
"Type": "mouthLeft"
e
{
"Y": 0.5792245864868164,
"X": 0.5936088562011719,
"Type": "mouthRight"
}
1,
"Pose": {
"Yaw": 1.8526556491851807,
"Roll": 3.623055934906006,
"Pitch": -10.605680465698242
Iy
"Quality": {
"Sharpness": 130.0,
"Brightness": 49.129302978515625
Iy
"Confidence": 99.99968719482422
Iy
"Face": {
"BoundingBox": {
"Width": 0.6154,
"Top": 0.2442,
"Left": 0.1765,
"Height": 0.4692
Iy
"FaceId": "84delc86-5059-53f2-a432-34ebb704615d",
"Confidence": 99.9997,
"ImageId": "d38ebf91-1all-58fc-ba42-£f978b3£f32f60"
}
}
1,
"OrientationCorrection": "ROTATE_O"

Searching Faces in a Face Collection

After you create a face collection and store faces, you can search a face collection for face matches. For
more information about storing faces in a face collection, see Managing Face Collections (p. 12) and
Storing Faces in a Face Collection: The IndexFaces Operation (p. 13). With Amazon Rekognition, you
can do the following:

14

Amazon Rekognition Developer Guide
Searching Faces

« Search a face collection given an image (SearchFacesBylmage (p. 150)) - For a given input image
(.jpeg or .png), the operation first detects the face in the input image, and then searches the specified
face collection for similar faces.

Note
If the service detects multiple faces in the input image, it uses the largest face detected for
searching the face collection.

The operation returns an array of face matches found, and information about the input face (such
as the bounding box, along with the confidence value that indicates the level of confidence that the
bounding box contains a face).

"SearchedFaceBoundingBox": {
"Width": 0.6154,
"Top": 0.2442,
"Left": 0.1765,
"Height": 0.4692
}l
"SearchedFaceConfidence": 99.9997,
"FaceMatches": [list of face matches found]

« Search a face collection given a face ID (SearchFaces (p. 145)) — Given a face ID (each face stored
in the face collection has a face ID), searchFaces searches the specified face collection for similar faces.
The response doesn't include the face you are searching for, it includes only similar faces.

The operation returns an array of face matches found and the face ID you provided as input.

"SearchedFaceId": "7ecf8cl19-5274-5917-9¢c91-1db%9ae0449e2",
"FaceMatches": [list of face matches found]

For example, the searchFacesByImage APl performs a search using the largest face in the input image.
If you want to search for other faces in the input image, you might first index all faces using the
IndexFaces API. You get a face ID in response. You can then use searchFaces API to search for faces
using the face IDs.

By default, both of these operations return faces for which the algorithm detects similarity of greater
than 80%. The similarity indicates how closely the face matches with the input face. Optionally, you can
use FaceMatchThreshold to specify a different value. For each face match found, the response includes
similarity and face metadata as shown in the following example response:

"FaceMatches": [
{
"Similarity": 100.0,
"Face": {
"BoundingBox": {
"Width": 0.6154,
"Top": 0.2442,
"Left": 0.1765,
"Height": 0.4692
}!
"FaceId": "84delc86-5059-53f2-a432-34ebb704615d",

15

Amazon Rekognition Developer Guide
Searching Faces

"Confidence": 99.9997,
"ImageId": "d38ebf91-1all-58fc-ba42-£f978b3£f32f60"

}
Iy
{
"Similarity": 84.6859,
"Face": {
"BoundingBox": {
"Width": 0.2044,
"Top": 0.2254,
"Left": 0.4622,
"Height": 0.3119
Iy
"FaceId": "6£c892¢c7-5739-50da-a0d7-80cc92c0bas4",
"Confidence": 99.9981,
"ImageId": "5d913eaf-cf7f-5e09-8c8f-cblbdea8ebaa"
}
}

The compareFaces operation and the two search faces operations differ as follows:

+ The compareFaces operation compares a face in a source image with faces in the target image. The
scope of this comparison is limited to the faces detected in the target image. For more information,
see Comparing Faces (p. 9).

o SearchFaces and searchFacesByImage compare a face (identified either by a Face1d or an input
image) with all faces in a given face collection. Therefore, the scope of this search is much larger. Also,
because the facial feature information is persisted for faces already stored in the face collection, you
can search for matching faces multiple times.

16

Amazon Rekognition Developer Guide
Step 1: Set Up an Account

Getting Started with Amazon
Rekognition

This section provides topics to get you started using Amazon Rekognition. If you are new to Amazon
Rekognition, we recommend that you first review the concepts and terminology presented in Amazon
Rekognition: How It Works (p. 3).

Topics
o Step 1: Set Up an AWS Account and Create an Administrator User (p. 17)
« Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 18)
» Step 3: Getting Started Using the Amazon Rekognition Console (p. 19)
« Step 4: Getting Started Using the API (p. 29)

Step 1: Set Up an AWS Account and Create an
Administrator User

Before you use Amazon Rekognition for the first time, complete the following tasks:

1. Sign up for AWS (p. 17)
2. Create an IAM User (p. 18)

Sign up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
services in AWS, including Amazon Rekognition. You are charged only for the services that you use.

With Amazon Rekognition, you pay only for the resources you use. If you are a new AWS customer, you
can get started with Amazon Rekognition for free. For more information, see AWS Free Usage Tier.

If you already have an AWS account, skip to the next task. If you don't have an AWS account, perform the
steps in the following procedure to create one.

17

https://aws.amazon.com//free/

Amazon Rekognition Developer Guide
Create an IAM User

To create an AWS account

Open https://aws.amazon.com/, and then choose Create an AWS Account.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone

keypad.

Note your AWS account ID because you'll need it for the next task.

Create an |IAM User

Services in AWS, such as Amazon Rekognition, require that you provide credentials when you access
them so that the service can determine whether you have permissions to access the resources owned

by that service. The console requires your password. You can create access keys for your AWS account

to access the AWS CLI or API. However, we don't recommend that you access AWS using the credentials
for your AWS account. Instead, we recommend that you use AWS Identity and Access Management
(IAM). Create an IAM user, add the user to an IAM group with administrative permissions, and then grant
administrative permissions to the IAM user that you created. You can then access AWS using a special
URL and that IAM user's credentials.

If you signed up for AWS, but you haven't created an IAM user for yourself, you can create one using the
IAM console.

The Getting Started exercises in this guide assume that you have a user (adminuser) with administrator
privileges. Follow the procedure to create adminuser in your account.

To create an administrator user and sign in to the console

1. Create an administrator user called adminuser in your AWS account. For instructions, see Creating
Your First IAM User and Administrators Group in the IAM User Guide.

2. Auser can sign in to the AWS Management Console using a special URL. For more information, How
Users Sign In to Your Account in the IAM User Guide.

For more information about 1AM, see the following:

« ldentity and Access Management (IAM)
o Getting Started
» |AM User Guide

Next Step

Step 2: Set Up the AWS Command Line Interface (AWS CLI) (p. 18)

Step 2: Set Up the AWS Command Line Interface
(AWS CLI)

Follow the steps to download and configure the AWS Command Line Interface (AWS CLI).

18

https://aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Rekognition Developer Guide
Next Step

Important

You don't need the AWS CLI to perform the steps in the Getting Started exercise. However, some
of the exercises in this guide use the AWS CLI. You can skip this step and go to Step 4: Getting
Started Using the API (p. 29), and then set up the AWS CLI later when you need it.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:
« Getting Set Up with the AWS Command Line Interface
« Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile when
executing the AWS CLI commands. For more information about named profiles, see Named Profiles
in the AWS Command Line Interface User Guide.

[profile adminuser]

aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS regions, see Regions and Endpoints in the Amazon Web Services General
Reference.

3. \Verify the setup by entering the following help command at the command prompt:

aws help

Next Step

Step 4: Getting Started Using the API (p. 29)

Step 3: Getting Started Using the Amazon
Rekognition Console

This section shows you how to use a subset of Amazon Rekognition's capabilities such as object and
scene detection, facial analysis, and face comparison in a set of images. For more information, see
Amazon Rekognition: How It Works (p. 3). You can also use the Amazon Rekognition API or AWS CLI
to detect objects and scenes, faces, and compare and search faces. For more information, see Step 4:
Getting Started Using the API (p. 29).

This section also shows you how to see aggregated Amazon CloudWatch metrics for Rekognition by
using the Rekognition console.
Topics

» Exercise 1: Detect Objects and Scenes in an Image (Console) (p. 20)

« Exercise 2: Analyze Faces in an Image (Console) (p. 24)

 Exercise 3: Compare Faces in Images (Console) (p. 27)

« Exercise 4: See Aggregated Metrics (Console) (p. 29)

19

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

Amazon Rekognition

Deep Learning-Based image analysis

Try Demo

Exercise 1: Detect Objects and Scenes in an Image
(Console)

This section shows how, at a very high level, Amazon Rekognition's objects and scenes detection
capability works. When you specify an image as input, the service detects the objects and scenes in the
image and returns them along with a percent confidence score for each object and scene.

For example, Amazon Rekognition detects the following objects and scenes in the sample image:
skateboard, sport, person, auto, car and vehicle. To see all the confidence scores shown in this response,
choose Show more in the Labels | Confidence pane.

.
77

/
»1
ok

Amazon Rekognition also returns a confidence score for each object detected in the sample image, as
shown in the following sample response.

20

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

~ Labels | Confidence

Skateboard 99.2%
Sport 99.2%
e
People 99.2%
e
Person 99.2%
Human 99.2%
e
Parking 97.4%
]
Show more

» Request

» Response

You can also look at the request to the API and the response from the API as a reference.

Request

"contentString":{
"Attributes":[

"ALL"
1.
"Image":{
"S30bject™:{
"Bucket":"console-sample-images",
"Name" : "skateboard. jpg"
}
}
}
}
Response
{
"Labels":[
{
"Confidence":99.25359344482422,
"Name" : "Skateboard"
}I
{
"Confidence":99.25359344482422,
"Name" :"Sport"
}I
{

"Confidence":99.24723052978516,
"Name" :"People"

21

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

"Confidence":99.24723052978516,
"Name" :"Person"

"Confidence":99.23908233642578,
"Name" : "Human"

"Confidence":97.42484283447266,
"Name" : "Parking"

"Confidence":97.42484283447266,
"Name" :"Parking Lot"

"Confidence":91.53300476074219,
"Name" : "Automobile"

"Confidence":91.53300476074219,
"Name" : "Car"

"Confidence":91.53300476074219,
"Name" :"Vehicle"

"Confidence":76.85114288330078,
"Name":"Intersection"

"Confidence":76.85114288330078,
"Name" : "Road"

"Confidence":76.21503448486328,
"Name" : "Boardwalk"

"Confidence":76.21503448486328,
"Name":"Path"

"Confidence":76.21503448486328,
"Name" : "Pavement"

"Confidence":76.21503448486328,
"Name" :"Sidewalk"

"Confidence":76.21503448486328,
"Name" : "Walkway"

"Confidence":66.71541595458984,
"Name" :"Building"

"Confidence":62.04711151123047,
"Name" : "Coupe"

22

Amazon Rekognition Developer Guide
Exercise 1: Detect Objects and Scenes (Console)

"Confidence":62.04711151123047,
"Name":"Sports Car"

"Confidence":61.98909378051758,
"Name" : "City"

"Confidence":61.98909378051758,
"Name" : "Downtown"

"Confidence":61.98909378051758,
"Name" : "Urban"

"Confidence":60.978023529052734,
"Name" : "Neighborhood"

"Confidence":60.978023529052734,
"Name" : "Town"

"Confidence":59.22066116333008,
"Name":"Sedan"

"Confidence":56.48063278198242,
"Name":"Street"

"Confidence":54.235477447509766,
"Name" : "Housing"

"Confidence":53.85226058959961,
"Name" :"Metropolis"

"Confidence":52.001792907714844,
"Name":"Office Building"

"Confidence":51.325313568115234,
"Name" : "Suv"

"Confidence":51.26075744628906,
"Name" : "Apartment Building"

"Confidence":51.26075744628906,
"Name":"High Rise"

"Confidence":50.68067932128906,
"Name" :"Pedestrian"

"Confidence":50.59548568725586,
"Name":"Freeway"

"Confidence":50.568580627441406,
"Name" : "Bumper"

23

Amazon Rekognition Developer Guide
Exercise 2: Analyze Faces (Console)

For more information, see Amazon Rekognition: How It Works (p. 3).

Detect Objects and Scenes in an Image You Provide

You can upload an image that you own or provide the URL to an image as input in the Amazon
Rekognition console. Amazon Rekognition returns the object and scenes, confidence scores for each
object, and scene it detects in the image you provide.

Note
The image must be less than 5MB in size and must be of JPEG or PNG format.

To detect objects and scenes in an image you provide

1. Open the Amazon Rekognition console.
Choose Object and scene detection.
3. Do one of the following:
« Upload an image — Choose Upload, go to the location where you stored your image, and then
select the image.
e Use a URL - Type the URL in the text box, and then choose Go.
4. View the confidence score of each label detected in the Labels | Confidence pane.

Exercise 2: Analyze Faces in an Image (Console)

This section shows you how to use the Amazon Rekognition console to detect faces and analyze facial
attributes in an image. When you provide an image that contains a face as input, the service detects
the face in the image, analyzes the facial attributes of the face, and then returns a percent confidence
score for the face and the facial attributes detected in the image. For more information, see Amazon
Rekognition: How It Works (p. 3).

For example, if you choose the following sample image as input, Amazon Rekognition detects it as a face
and returns confidence scores for the face and the facial attributes detected.

24

Amazon Rekognition Developer Guide
Exercise 2: Analyze Faces (Console)

The following shows the sample response.

25

Amazon Rekognition Developer Guide
Exercise 2: Analyze Faces (Console)

v Results

looks like a face 99.8%
appears to be female 100%
age range 23 - 38 years old
smiling 99 4%
appears to be happy 93.2%
wearing eyeglasses 99.9%
wearing sunglasses 97.6%
eyes are open 96.2%
mouth is open 72.5%
does not have a mustache 771.6%
does not have a beard 97 1%
Show less

If there are multiple faces in the input image, Rekognition detects up to 15 faces in the image. Each face
detected is marked with a square. When you click the area marked with a square on a face, Rekognition
displays the confidence score of that face and its attributes detected in the Faces | Confidence pane.

Analyze Faces in an Image You Provide

You can upload your own image or provide the URL to the image in the Amazon Rekognition console.
Note
The image must be less than 5MB in size and must be of JPEG or PNG format.

To analyze a face in an image you provide

1. Open to the Amazon Rekognition console.
2. Choose Facial analysis.
3. Do one of the following:

26

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (Console)

« Upload an image — Choose Upload, go to the location where you stored your image, and then
select the image.

« Use a URL - Type the URL in the text box, and then choose Go.

4. View the confidence score of one the faces detected and its facial attributes in the Faces |
Confidence pane.

5. If there are multiple faces in the image, choose one of the other faces to see its attributes and
scores.

Exercise 3: Compare Faces in Images (Console)

This section shows you how to use the Amazon Rekognition console to compare faces within a set of
images with multiple faces in them. When you specify a Reference face (source) and a Comparison
faces (target) image, Rekognition compares the largest face in the source image (that is, the reference
face) with up to 15 faces detected in the target image (that is, the comparison faces), and then finds
how closely the face in the source matches the faces in the target image. The similarity score for each
comparison is displayed in the Results pane.

If the target image contains multiple faces, Rekognition matches the face in the source image with up to
15 faces detected in target image, and then assigns a similarity score to each match.

If the source image contains multiple faces, the service detects the largest face in the source image and
uses it to compare with each face detected in the target image.

For more information, see Comparing Faces (p. 9).
For example, with the sample image shown on the left as a source image and the sample image on the

right as a target image, Rekognition compares the face in the source image, matches it with each face in
the target image, displays a similarity score for each face it detects.

Reference face Comparison faces

The following shows the faces detected in the target image and the similarity score for each face.

27

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (Console)

~ Results

Similarity 0%

» Request

» Response

Compare Faces in an Image You Provide

You can upload your own source and target images for Rekognition to compare the faces in the images
or you can specify a URL for the location of the images.

Note
The image must be less than 5MB in size and must be of JPEG or PNG format.

To compare faces in your images

1. Open to the Amazon Rekognition console.
2. Choose Face comparison.
3. For your source image, do one of the following:

« Upload an image — Choose Upload on the left, go to the location where you stored your source
image, and then select the image.

« Use a URL - Type the URL of your source image in the text box, and then choose Go.
4. Foryour target image, do one of the following:

« Upload an image — Choose Upload on the right, go to the location where you stored your source
image, and then select the image.

28

Amazon Rekognition Developer Guide
Exercise 4: See Aggregated Metrics (Console)

Step

« Use a URL - Type the URL of your source image in the text box, and then choose Go.

5. Rekognition matches the largest face in your source image with up to 15 faces in the target image
and then displays the similarity score for each pair in the Results pane.

Exercise 4: See Aggregated Metrics (Console)

The Amazon Rekognition metrics pane shows activity graphs for an aggregate of individual Rekognition
metrics over a specified period of time. For example, the successfulRequestCount aggregated metric
shows the total number of successful requests to all Rekognition APl operations over the last seven days.

The following table lists the graphs displayed in the Rekognition metrics pane and the corresponding
Rekognition metric. For more information, see CloudWatch Metrics for Rekognition (p. 62).

Graph Aggregated Metric
Successful calls SuccessfulRequestCount
Client errors UserErrorCount

Server errors ServerErrorCount
Throttled ThrottledCount
Detected labels DetectedLabelCount
Detected faces DetectedFaceCount

Each graph shows aggregated metric data collected over a specified period of time. A total count of
aggregated metric data for the time period is also displayed. To see metrics for individual API calls,
choose the link beneath each graph.

To allow users access to the Rekognition metrics pane, ensure that the user has appropriate CloudWatch
and Rekognition permissions. For example, a user with AmazonRekognitionReadonlyAccess and
CloudWatchReadOnlyAccess managed policy permissions can see the metrics pane. If a user does not
have the required permissions, when the user opens the metrics pane, no graphs appear. For more
information, see Authentication and Access Control for Amazon Rekognition (p. 38).

For more information about monitoring Rekognition with CloudWatch see Monitoring (p. 59).
To see aggregated metrics (console)

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.
In the navigation pane, choose Metrics.

In the dropdown, select the period of time you want metrics for.

To update the graphs, choose the Refresh button.

AR O B

To see detailed CloudWatch metrics for a specific aggregated metric, choose See details on
CloudWatch beneath the metric graph.

4. Getting Started Using the API

In this section you use the Amazon Rekognition API operations to detect labels and faces in an image.
You also explore the CompareFaces (p. 86) APl operation. These are the non-storage APl operations
where Amazon Rekognition doesn't persist any information discovered by the operation. Amazon

29

https://console.aws.amazon.com/rekognition/

Amazon Rekognition Developer Guide
Using the AWS SDK or HTTP to Call
Amazon Rekognition API Operations

Rekognition only detects labels and faces, and it returns information in response. For more information,
see Amazon Rekognition: How It Works (p. 3). Like all other Amazon Rekognition APl operations, no input
image bytes are persisted by non-storage APl operations.

Using the AWS SDK or HTTP to Call Amazon
Rekognition API Operations

You can call Amazon Rekognition APl operations using either the AWS SDK or directly by using HTTP.
Unless you have a good reason not to, you should always use the AWS SDK. The Java examples in this
section use the AWS SDK. A Java project file is not provided, but you can use the AWS Toolkit for Eclipse
to develop AWS applications using Java.

The API Reference (p. 84) in this guide covers calling Amazon Rekognition operations using HTTP. For
Java reference information, see AWS SDK for Java.

The Amazon Rekognition service endpoints you can use are documented at AWS Regions and Endpoints.

When calling Amazon Rekognition with HTTP, use POST HTTP operations.

Formatting the AWS CLI Examples

The AWS CLI examples are formatted for the Linux operating system. To use the samples with Microsoft
Windows, you will need to change the JSON formatting of the --image parameter and change the line
breaks from backslashes (\) to carets(”). For more information about JSON formatting, see Specifying
Parameter Values for the AWS Command Line Interface. The following is an example AWS CLI command
formatted for Microsoft Windows.

aws rekognition detect-labels #
-—-image "{\"S30bject\":{\"Bucket\":\"photo-collection\",\"Name\":\"photo.jpg\"}}" ~
--region us-west-2

You can also provide a shorthand version of the JSON that works on both Microsoft Windows and Linux.

aws rekognition detect-labels --image "S30Object={Bucket=photo-collection,Name=photo.jpg}"
--region us-west-2

For more information, see Using Shorthand Syntax with the AWS Command Line Interface.

Working with Images

You need sample images (JPEG or PNG) that you can provide as input to Amazon Rekognition operations.

You pass image bytes to an Amazon Rekognition operation as part of the call or you reference an
existing S3 object. If you use HTTP and pass the image bytes as part of an Amazon Rekognition
operation, the image bytes must be a base64-encoded string. If you use the AWS SDK and pass image
bytes as part of the API operation call, the need to base64-encode the image bytes depends on the
language you use. For more information, see Example 4: Supplying Image Bytes to Amazon Rekognition
Operations (p. 80).

If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes as part of the call
is not supported. You must first upload the image to an Amazon S3 bucket and then call the operation
referencing the uploaded image.

To ensure the lowest possible latency, the region for the S3 bucket containing your images must match
the region you use for Amazon Rekognition API operations.

30

http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#rekognition_region
http://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html
http://docs.aws.amazon.com/cli/latest/userguide/shorthand-syntax.html

Amazon Rekognition Developer Guide
Exercise 1: Detect Labels (API)

Recommendations for Facial Recognition Input Images

Whilst Amazon Rekognition works across a variety of image conditions and sizes, we recommend the
following guidelines when choosing reference photos for facial recognition:

« Have a front-facing face.
« Have flat lighting on the face, as opposed to varying shades such as shadows.
« Have sufficient contrast with the background. A high-contrast monochrome background works well.

« Be sufficiently large. A face size of 200 pixels or above works well. We do not recommend face sizes
smaller than 50 pixels in either dimension.

« Be bright and sharp. You can use DetectFaces (p. 102) to determine the brightness and sharpness of a
face.

» Avoid occlusions such as head-bands or masks.

Topics
« Exercise 1: Detect Labels in an Image (API) (p. 31)
« Exercise 2: Detect Faces (API) (p. 33)
« Exercise 3: Compare Faces (API) (p. 34)

Exercise 1: Detect Labels in an Image (API)

In this exercise you use the DetectLabels (p. 108) API operation to detect objects, concepts, and scenes
in an image (JPEG or PNG) that you provide as input. You can provide the input image as an image byte
array (base64-encoded image bytes) or specify an S3 object. In this exercise you upload a JPEG image to
your Amazon S3 bucket and specify the object key name.

You can test the operation using the AWS CLI or programmatically using the AWS SDK for Java.

1. Upload an image (containing one or more objects, such as trees, houses, and boat etc.) to your S3
bucket. The exercise assumes a .jpg image. If you use .png, update the code accordingly.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

2. Use either the Java example code or the AWS CLI to test the petectLabels operation.

« Using the AWS CLI

Note

The command specifies the adminuser profile that you set up in Step 2: Set Up the AWS
Command Line Interface (AWS CLI) (p. 18). Then, the AWS CLI command uses the
credentials associated with the adminuser profile to sign and authenticate the request. If
you don't provide this profile, the default profile is assumed.

aws rekognition detect-labels \

--image '{"S30bject":{"Bucket":"bucketname","Name":"object.jpg"}}"' \
--region us-east-1 \

--profile adminuser

« Using the AWS SDK for Java.

import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.AmazonClientException;

31

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Exercise 1: Detect Labels (API)

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.DetectLabelsRequest;
import com.amazonaws.services.rekognition.model.DetectLabelsResult;
import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.services.rekognition.model.Label;

import com.amazonaws.services.rekognition.model.S30bject;

import java.util.List;

public class DetectLabelsExample {
public static void main(String[] args) throws Exception {

String photo = "photo.jpg";
String bucket = "S3bucket";

AWSCredentials credentials;
try {

credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch(Exception e) {

throw new AmazonClientException("Cannot load the credentials from the

credential profiles file. "
+ "Please make sure that your credentials file is at the correct "
+ "location (/Users/userid/.aws/credentials), and is in a valid format.",

e);
}
AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST 2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();
DetectLabelsRequest request = new DetectLabelsRequest()
.withImage(new Image()
.withS30bject(new S30bject()
.withName(photo).withBucket(bucket)))
.withMaxLabels(10)
.withMinConfidence(77F);
try {
DetectLabelsResult result = rekognitionClient.detectLabels(request);
List <Label> labels = result.getLabels();
System.out.println("Detected labels for " + photo);
for (Label label: labels) {
System.out.println(label.getName() + ": " +
label.getConfidence().toString());
}
} catch(AmazonRekognitionException e) {
e.printStackTrace();
}
}
}

You should get up to 10 labels with at least 75F confidence.

Next Exercise

32

Amazon Rekognition Developer Guide
Exercise 2: Detect Faces (API)

Exercise 2: Detect Faces (API) (p. 33)

Exercise 2: Detect Faces (API)

In this exercise you use the DetectFaces (p. 102) operation to detect faces in an image (JPEG or PNG)
that you provide as input. You can provide the input image as an image byte array (Base64-encoded
image bytes) or specify an S3 object. In this exercise, you upload an image (JPEG or PNG) to your S3
bucket and specify the object key name.

You can test the operation using the AWS CLI or programmatically using the AWS SDK for Java.

For more information, see Detecting Faces (p. 6).

1. Upload an image (containing one or more faces) to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

2. Either use the Java example code or the AWS CLI to test the petectFaces operation.

« Using the AWS CLI

aws rekognition detect-faces \

--image '{"S30bject":{"Bucket":"Bucketname", "Name":"s30bjectKey"}}' \
--attributes "ALL" \

--region us-east-1 \

--profile adminuser

« Using the AWS SDK for Java. This example displays the estimated age range for detected faces
and lists the JSON for all detected facial attributes.

import java.util.List;

import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.AmazonRekognition;

import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.AgeRange;

import com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.Attribute;

import com.amazonaws.services.rekognition.model.DetectFacesRequest;
import com.amazonaws.services.rekognition.model.DetectFacesResult;

import com.amazonaws.services.rekognition.model.FaceDetail;

import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.services.rekognition.model.S30bject;

import com.fasterxml.jackson.databind.ObjectMapper;

public class DetectFacesExample {

public static void main(String[] args) throws Exception {

String photo = "photo.jpg";
String bucket = "S3bucket";

AWSCredentials credentials;
try {

credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {

33

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

throw new AmazonClientException("Cannot load the credentials from the

credential profiles file. "
+ "Please make sure that your credentials file is at the correct "

e);

}

AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST 2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

DetectFacesRequest request = new DetectFacesRequest()
.withImage(new Image()
.withS30bject(new S30bject()
.withName(photo)
.withBucket(bucket)))
.withAttributes(Attribute.ALL);
// Replace Attribute.ALL with Attribute.DEFAULT to get default values.

try {
DetectFacesResult result = rekognitionClient.detectFaces(request);

List < FaceDetail > faceDetails = result.getFaceDetails();

for (FaceDetail face: faceDetails) {
if (request.getAttributes().contains("ALL")) {
AgeRange ageRange = face.getAgeRange();
System.out.println("The detected face is estimated to be between "
+ ageRange.getLow().toString() + " and " +
ageRange.getHigh().toString()
+ " years old.");
System.out.println("Here's the complete set of attributes:");
} else { // non-default attributes have null values.
System.out.println("Here's the default set of attributes:");

}

ObjectMapper objectMapper = new ObjectMapper();

}

} catch (AmazonRekognitionException e) {
e.printStackTrace();

}

+ "location (/Users/userid.aws/credentials), and is in a valid format.",

System.out.println(objectMapper.writerWithDefaultPrettyPrinter().writeValueAsString(f

ace));

Next Exercise

Exercise 3: Compare Faces (API) (p. 34)

Exercise 3: Compare Faces (API)

In this exercise you use the CompareFaces (p. 86) operation to compare a face in the source image
with each face detected in the target image.

If you provide a source image containing multiple faces, the service detects the largest face and uses it to

compare with each face detected in the target image.

34

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

In the response you get an array of face matches, source face information, source and target image
orientation, and an array of unmatched faces. For each matching face in the target image, the response
provides a similarity score (how similar the face is to the source face) and face metadata such as the
bounding box of the matching face and an array of facial landmarks. The array of unmatched faces
includes face metadata.

You can provide the source and target images as an image byte array (Base64-encoded image bytes) or
specify S3 objects. In the AWS CLI exercise, you upload two JPEG images to your Amazon S3 bucket and
specify the object key name. In the Java exercise, you load two files from the local file system and input
them as image byte arrays.

You can test the operation using the AWS CLI or programmatically using the AWS SDK for Java.

Upload two images (source.jpg and target.jpg) containing faces to your S3 bucket. The exercise
assume a .jpg image. If you use .png, update the AWS CLI command accordingly.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

Either use the Java example code or the AWS CLI to test the compareFaces operation.

e Using AWS CLI

aws rekognition compare-faces \

--source-image '{"S30bject":{"Bucket":"bucket-name","Name":"source.jpg"}}' \
--target-image '{"S30bject":{"Bucket":"bucket-name","Name":"target.jpg"}}' \
--region us-east-1 \

--profile adminuser

« Using the AWS SDK for Java. This example compares two images loaded from the local file system.

package com.amazonaws.samples;

import java.io.File;

import java.io.FileInputStream;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.util.List;

import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;
import com.amazonaws.services.rekognition.AmazonRekognition;

import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.util.IOUtils;

import com.amazonaws.services.rekognition.model.BoundingBox;

import com.amazonaws.services.rekognition.model.CompareFacesMatch;

import com.amazonaws.services.rekognition.model.CompareFacesRequest;
import com.amazonaws.services.rekognition.model.CompareFacesResult;
import com.amazonaws.services.rekognition.model.ComparedFace;

public class CompareFacesExample {

public static void main(String[] args) throws Exception{
Float similarityThreshold = 70F;
String sourcelImage = "source.jpg";
String targetImage = "target.jpg";
ByteBuffer sourcelImageBytes=null;

35

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

ByteBuffer targetImageBytes=null;

AWSCredentials credentials;
try |
credentials = new
ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {
throw new AmazonClientException("Cannot load the credentials from the
credential profiles file. "
+ "Please make sure that your credentials file is at the correct "
+ "location (/Users/userid/.aws/credentials), and is in valid
format.", e);

}

EndpointConfiguration endpoint=new EndpointConfiguration("endpoint",
"us-east-1");

AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder
.standard()
.withEndpointConfiguration(endpoint)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

//Load source and target images and create input parameters
try (InputStream inputStream = new FileInputStream(new File(sourceImage))) {
sourceImageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));

}

catch(Exception e)

{
System.out.println("Failed to load source image " + sourcelmage);
System.exit(1);

}

try (InputStream inputStream = new FileInputStream(new File(targetImage))) {
targetImageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));

}

catch(Exception e)

{
System.out.println("Failed to load target images: " + targetImage);
System.exit(1);

}

Image source=new Image()
.withBytes(sourceImageBytes);

Image target=new Image()
.withBytes(targetImageBytes);

CompareFacesRequest request = new CompareFacesRequest()
.withSourceImage(source)
.withTargetImage(target)
.withSimilarityThreshold(similarityThreshold);

// Call operation
CompareFacesResult compareFacesResult=rekognitionClient.compareFaces(request);

// Display results
List <CompareFacesMatch> faceDetails = compareFacesResult.getFaceMatches();
for (CompareFacesMatch match: faceDetails){
ComparedFace face= match.getFace();
BoundingBox position = face.getBoundingBox();
System.out.println("Face at " + position.getLeft().toString()
+ " " + position.getTop()
+ " matches with " + face.getConfidence().toString()
+ "% confidence.");

36

Amazon Rekognition Developer Guide
Exercise 3: Compare Faces (API)

}

List<ComparedFace> uncompared = compareFacesResult.getUnmatchedFaces();

System.out.println("There were " + uncompared.size()
+ " that did not match");
System.out.println("Source image rotation: " +
compareFacesResult.getSourceImageOrientationCorrection());
System.out.println("target image rotation: " +
compareFacesResult.getTargetImageOrientationCorrection());

}

What's Next?

You can explore additional Additional Amazon Rekognition Examples (p. 64) of how to use other
Amazon Rekognition API operations (storage-based API operations) that describe how to create a face
collection, add faces to the collection, and search the collection for face matches.

37

Amazon Rekognition Developer Guide
Authentication

Authentication and Access Control
for Amazon Rekognition

Access to Amazon Rekognition requires credentials. Those credentials must have permissions to access
AWS resources, such as an Amazon Rekognition collection. The following sections provide details on how
you can use AWS Identity and Access Management (IAM) and Amazon Rekognition to help secure access
to your resources.

 Authentication (p. 38)
o Access Control (p. 39)

Authentication

You can access AWS as any of the following types of identities:

« AWS account root user — When you sign up for AWS, you provide an email address and password
that is associated with your AWS account. This is your AWS account root user. Its credentials provide
complete access to all of your AWS resources.

Important

For security reasons, we recommend that you use the root user only to create an
administrator, which is an IAM user with full permissions to your AWS account. You can then
use this administrator user to create other IAM users and roles with limited permissions. For
more information, see IAM Best Practices and Creating an Admin User and Group in the IAM
User Guide.

« 1AM user — An |IAM user is simply an identity within your AWS account that has specific custom
permissions (for example, permissions to create a collection in Amazon Rekognition). You can use an
IAM user name and password to sign in to secure AWS webpages like the AWS Management Console,
AWS Discussion Forums, or the AWS Support Center.

38

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/

Amazon Rekognition Developer Guide
Access Control

In addition to a user name and password, you can also generate access keys for each user. You can

use these keys when you access AWS services programmatically, either through one of the several
SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the access keys to
cryptographically sign your request. If you don't use the AWS tools, you must sign the request yourself.
Amazon Rekognition supports Signature Version 4, a protocol for authenticating inbound API requests.
For more information about authenticating requests, see Signature Version 4 Signing Process in the
AWS General Reference.

« IAM role — An |AM role is another IAM identity that you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM role
enables you to obtain temporary access keys that can be used to access AWS services and resources.
IAM roles with temporary credentials are useful in the following situations:

» Federated user access — Instead of creating an IAM user, you can use preexisting user identities from
AWS Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

« Cross-account access — You can use an IAM role in your account to grant another AWS account
permissions to access your account'’s resources. For an example, see Tutorial: Delegate Access Across
AWS Accounts Using IAM Roles in the JAM User Guide.

« AWS service access — You can use an IAM role in your account to grant an AWS service permissions
to access your account'’s resources. For example, you can create a role that allows Amazon Redshift
to access an Amazon S3 bucket on your behalf and then load data from that bucket into an Amazon
Redshift cluster. For more information, see Creating a Role to Delegate Permissions to an AWS
Service in the IAM User Guide.

« Applications running on Amazon EC2 - You can use an IAM role to manage temporary credentials
for applications running on an EC2 instance and making AWS API requests. This is preferable to
storing access keys within the EC2 instance. To assign an AWS role to an EC2 instance and make it
available to all of its applications, you create an instance profile that is attached to the instance.

An instance profile contains the role and enables programs running on the EC2 instance to get
temporary credentials. For more information, see Using Roles for Applications on Amazon EC2 in the
IAM User Guide.

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions you cannot
create or access Amazon Rekognition resources. For example, you must have permissions to create an
Amazon Rekognition collection.

The following sections describe how to manage permissions for Amazon Rekognition. We recommend
that you read the overview first.

« Overview of Managing Access Permissions to Your Amazon Rekognition Resources (p. 40)
« Using Identity-Based Policies (IAM Policies) for Amazon Rekognition (p. 43)

39

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon Rekognition Developer Guide
Overview of Managing Access

« Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference (p. 46)

Overview of Managing Access Permissions to Your
Amazon Rekognition Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource are
governed by permissions policies. An account administrator can attach permissions policies to IAM
identities (that is, users, groups, and roles), and some services (such as AWS Lambda) also support
attaching permissions policies to resources.

Note
An account administrator (or administrator user) is a user with administrator privileges. For more
information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get
permissions for, and the specific actions that you want to allow on those resources.
Topics

« Amazon Rekognition Resources and Operations (p. 40)

« Understanding Resource Ownership (p. 40)

« Managing Access to Resources (p. 41)

» Specifying Policy Elements: Actions, Effects, and Principals (p. 42)

» Specifying Conditions in a Policy (p. 43)

Amazon Rekognition Resources and Operations

In Amazon Rekognition, the primary resource is a collection. In a policy, you use an Amazon Resource
Name (ARN) to identify the resource that the policy applies to.

These resources have unique Amazon Resource Names (ARNSs) associated with them, as shown in the
following table.

Resource Type ARN Format

Collection ARN arn:aws:rekognition:region:account-id:collection/collection-id

Amazon Rekognition provides a set of operations to work with Amazon Rekognition resources. For a
list of available operations, see Amazon Rekognition Amazon Rekognition API Permissions: Actions,
Permissions, and Resources Reference (p. 46).

Understanding Resource Ownership

The AWS account owns the resources that are created in the account, regardless of who created the
resources. Specifically, the resource owner is the AWS account of the principal entity (that is, the root
account or an IAM user) that authenticates the resource creation request. The following examples
illustrate how this works:

« If you use the root account credentials of your AWS account to create a collection, your AWS account is
the owner of the resource (in Amazon Rekognition, the resource is a collection).

40

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html

Amazon Rekognition Developer Guide
Managing Access to Resources

« If you create an IAM user in your AWS account and grant permissions to create a collection to that
user, the user can create a collection. However, your AWS account, to which the user belongs, owns the
collection resource.

Managing Access to Resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of Amazon Rekognition. It doesn't provide
detailed information about the IAM service. For complete IAM documentation, see What Is IAM?
in the IAM User Guide. For information about IAM policy syntax and descriptions, see AWS IAM
Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies. Amazon Rekognition supports identity-
based policies.

Topics
« Identity-Based Policies (IAM Policies) (p. 41)
« Resource-Based Policies (p. 42)

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

« Attach a permissions policy to a user or a group in your account — To grant a user permissions to
create an Amazon Rekognition resource, such as a collection, you can attach a permissions policy to a
user or group that the user belongs to.

« Attach a permissions policy to a role (grant cross-account permissions) — You can attach an
identity-based permissions policy to an IAM role to grant cross-account permissions. For example,
the administrator in account A can create a role to grant cross-account permissions to another AWS
account (for example, account B) or an AWS service as follows:

1. Account A administrator creates an IAM role and attaches a permissions policy to the role that
grants permissions on resources in account A.

2. Account A administrator attaches a trust policy to the role identifying account B as the principal
who can assume the role.

3. Account B administrator can then delegate permissions to assume the role to any users in account B.
Doing this allows users in account B to create or access resources in account A. The principal in the
trust policy can also be an AWS service principal if you want to grant an AWS service permissions to
assume the role.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

The following is an example policy that lists all collections.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowsListCollectionAction",
"Effect": "Allow",
"Action": [
"rekognition:ListCollections"

41

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Rekognition Developer Guide
Specifying Policy Elements: Actions, Effects, and Principals

1,

"Resource": "*"

For more information about using identity-based policies with Amazon Rekognition, see Using Identity-
Based Policies (IAM Policies) for Amazon Rekognition (p. 43). For more information about users,
groups, roles, and permissions, see Identities (Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example, you
can attach a policy to an S3 bucket to manage access permissions to that bucket. Amazon Rekognition
doesn't support resource-based policies.

To access images stored in an Amazon S3 bucket, you must have permission to access object in the

S3 bucket. With this permission, Amazon Rekognition can download images from the S3 bucket. The
following example policy allows the user to perform the s3:cetobject action on the S3 bucket named
Tests3bucket.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "s3:GetObject",
"Resource": [
"arn:aws:s3:::Tests3bucket"
]
}
1
}

To use an S3 bucket with versioning enabled, add the s3:GetobjectVersion action, as shown in the
following example.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",

"Action": [
"s3:GetObject",
"s3:GetObjectVersion"

]I

"Resource": [
"arn:aws:s3:::Tests3bucket"

]

Specifying Policy Elements: Actions, Effects, and
Principals

For each Amazon Rekognition resource, the service defines a set of APl operations. To grant permissions
for these APl operations, Amazon Rekognition defines a set of actions that you can specify in a policy.

42

http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

Amazon Rekognition Developer Guide
Specifying Conditions in a Policy

Some API operations can require permissions for more than one action in order to perform the API
operation. For more information about resources and API operations, see Amazon Rekognition Resources
and Operations (p. 40) and Amazon Rekognition Amazon Rekognition APl Permissions: Actions,
Permissions, and Resources Reference (p. 46).

The following are the most basic policy elements:

« Resource - You use an Amazon Resource Name (ARN) to identify the resource that the policy applies
to. For more information, see Amazon Rekognition Resources and Operations (p. 40).

« Action - You use action keywords to identify resource operations that you want to allow or deny. For
example, you can use ListCollections to list collections.

« Effect - You specify the effect, either allow or deny, when the user requests the specific action. If you
don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also explicitly
deny access to a resource, which you might do to make sure that a user cannot access it, even if a
different policy grants access.

« Principal - In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other entity
that you want to receive permissions (applies to resource-based policies only). Amazon Rekognition
doesn't support resource-based policies.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM User
Guide.

For a list showing all of the Amazon Rekognition APl operations and the resources that they apply to, see
Amazon Rekognition APl Permissions: Actions, Permissions, and Resources Reference (p. 46).

Specifying Conditions in a Policy

When you grant permissions, you can use the access policy language to specify the conditions when a
policy should take effect. For example, you might want a policy to be applied only after a specific date.
For more information about specifying conditions in a policy language, see Condition in the /AM User
Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific to
Amazon Rekognition. However, there are AWS-wide condition keys that you can use as appropriate. For a
complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Using Identity-Based Policies (IAM Policies) for
Amazon Rekognition

This topic provides examples of identity-based policies that demonstrate how an account administrator
can attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant
permissions to perform operations on Amazon Rekognition resources.

Important

We recommend that you first review the introductory topics that explain the basic concepts
and options available to manage access to your Amazon Rekognition resources. For more
information, see Overview of Managing Access Permissions to Your Amazon Rekognition
Resources (p. 40).

Topics
« Permissions Required to Use the Amazon Rekognition Console (p. 44)
o AWS Managed (Predefined) Policies for Amazon Rekognition (p. 44)

43

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Rekognition Developer Guide
Permissions Required to Use the
Amazon Rekognition Console

o Customer Managed Policy Examples (p. 45)

The following shows an example of a permissions policy.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",

"Action": [
"rekognition:CompareFaces",
"rekognition:DetectFaces",
"rekognition:DetectLabels",
"rekognition:ListCollections",
"rekognition:ListFaces",
"rekognition:SearchFaces",
"rekognition:SearchFacesByImage"

]l

"Resource": "*"

This policy example grants read-only access to a user. That is, the user can't list perform write actions in
your account.

For a table showing all of the Amazon Rekognition APl operations and the resources that they apply to,
see Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference (p. 46).

Permissions Required to Use the Amazon Rekognition
Console

Amazon Rekognition does not require any additional permissions when working with the Amazon
Rekognition console.

AWS Managed (Predefined) Policies for Amazon
Rekognition

AWS addresses many common use cases by providing standalone 1AM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use cases
so that you can avoid having to investigate what permissions are needed. For more information, see AWS
Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon Rekognition:

« AmazonRekognitionFullAccess — Grants full access to Amazon Rekognition resources including
creating and deleting collections.

« AmazonRekognitionReadWriteAcces — Grants read and write access to Amazon Rekognition resources
except creating and deleting collections.

« AmazonRekognitionReadOnlyAccess — Grants read-only access to Amazon Rekognition resources.

Note
You can review these permissions policies by signing in to the IAM console and searching for
specific policies there.

44

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Rekognition Developer Guide
Customer Managed Policy Examples

These policies work when you are using AWS SDKs or the AWS CLI.

You can also create your own custom IAM policies to allow permissions for Amazon Rekognition actions
and resources. You can attach these custom policies to the IAM users or groups that require those
permissions.

Customer Managed Policy Examples

In this section, you can find example user policies that grant permissions for various Amazon Rekognition
actions. These policies work when you are using AWS SDKs or the AWS CLI. When you are using

the console, you need to grant additional permissions specific to the console, which is discussed in
Permissions Required to Use the Amazon Rekognition Console (p. 44).

Note
All examples use the us-west-2 region and contain fictitious account IDs.

Examples
o Example 1: Allow a User Read-Only Access to Resources (p. 45)
» Example 2: Allow a User Full Access to Resources (p. 45)

Example 1: Allow a User Read-Only Access to Resources

The following example grants read-only access to Amazon Rekognition resources.

"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"rekognition:CompareFaces",
"rekognition:DetectFaces",
"rekognition:DetectLabels",
"rekognition:ListCollections",
"rekognition:ListFaces",
"rekognition:SearchFaces",
"rekognition:SearchFacesByImage"

1,

"Resource": "*"

Example 2: Allow a User Full Access to Resources

The following example grants full access to Amazon Rekognition resources.

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"rekognition:CompareFaces",
"rekognition:CreateCollection,
"rekognition:DeleteCollection",
"rekognition:DeleteFaces",
"rekognition:DetectFaces",

45

Amazon Rekognition Developer Guide
Amazon Rekognition API Permissions Reference

"rekognition:DetectLabels",

"rekognition:IndexFaces",

"rekognition:ListCollections",

"rekognition:ListFaces",

"rekognition:SearchFaces",

"rekognition:SearchFacesByImage"
1,

"Resource": "*"

Amazon Rekognition APl Permissions: Actions,
Permissions, and Resources Reference

When you are setting up Access Control (p. 39) and writing a permissions policy that you can attach

to an IAM identity (identity-based policies), you can use the following list as a reference. The list includes
each Amazon Rekognition API operation, the corresponding actions for which you can grant permissions
to perform the action, and the AWS resource for which you can grant the permissions. You specify the
actions in the policy's action field, and you specify the resource value in the policy's resource field.

You can use AWS-wide condition keys in your Amazon Rekognition policies to express conditions. For a
complete list of AWS-wide keys, see Available Keys in the IAM User Guide.

Note
To specify an action, use the rekognition prefix followed by the API operation name (for
example, rekognition:DeleteCollection).

Amazon Rekognition APl and Required Permissions for Actions
API Operation: CompareFaces
Required Permissions (APl Action): rekognition:CompareFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

API Operation: CreateCollection
Required Permissions (API Action): rekognition:CreateCollection

Resources: arn:aws:rekognition:region:account-idicollection/collection-id
API Operation: DeleteCollection

Required Permissions (APl Action): rekognition:DeleteCollection

Resources: arn:aws:rekognition:region:account-id:collection/collection-id
API Operation: DeleteFaces

Required Permissions (APl Action): rekognition:DeleteFaces

Resources: arn:aws:rekognition:region:account-idicollection/collection-id
API Operation: DetectFaces

Required Permissions (APl Action): rekognition:DetectFaces

Resources: arn:aws:rekognition:regioniaccount-idicollection/collection-id

46

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Rekognition Developer Guide
Amazon Rekognition API Permissions Reference

API Operation: IndexFaces
Required Permissions (API Action): rekognition:IndexFaces

Resources: arn:aws:rekognition:region:account-id:collection/collection-id
API Operation: ListCollections

Required Permissions (API Action): rekognition:ListCollections

Resources: arn:aws:rekognition:regioniaccount-id:*
API Operation: ListFaces

Required Permissions (APl Action): rekognition:ListFaces

Resources: aI‘n:aWS:rekOgnition:regioniaccount—id:collect ion/collection-1id
API Operation: SearchFaces

Required Permissions (APl Action): rekognition:SearchFaces

Resources: arn:aws:rekognition:region:account-idicollection/collection-id
API Operation: SearchFacesBylmage

Required Permissions (API Action): rekognition:SearchFacesBylmage

Resources: arn:aws:rekognition:region:account-id:collection/collection-id

47

Amazon Rekognition Developer Guide
Calling RecognizeCelebrities

Recognizing Celebrities

Amazon Rekognition can recognize thousands of celebrities in a wide range of categories, such as
entertainment and media, sports, business, and politics.

To recognize celebrities within images and get additional information about recognized celebrities,
use the RecognizeCelebrities (p. 139) non-storage API operation. For example, in social media or
news and entertainment industries where information gathering can be time critical, you can use the
RecognizeCelebrities operation to identify as many as 15 celebrities in an image and return links
to celebrity web pages, if they are available. Amazon Rekognition doesn't remember which image it
detected a celebrity in. Your application must store this information.

If you haven't stored the additional information for a celebrity returned by Recognizecelebrities

and you want to avoid reanalyzing an image to get it, use GetCelebritylnfo (p. 119). To call
GetCelebrityInfo, you need the unique identifier that Rekognition assigns to each celebrity. The
identifier is returned as part of the Recognizecelebrities response for each celebrity recognized in an
image.

If you have a large collection of images to process for celebrity recognition, consider using AWS
Batch to process calls to Recognizecelebrities in batches in the background. When you add a new
image to your collection, you can use an AWS Lambda function to recognize celebrities by calling
RecognizeCelebrities as the image is uploaded into an S3 bucket.

Calling RecognizeCelebrities

You provide an input image to Recognizecelebrities either as image bytes or by referencing an image
stored in an S3 bucket. The image must be either a .png or .jpg formatted file. For information about
input image recommendations, see Working with Images (p. 30). The input image quality (brightness and
sharpness) is returned by RecognizeCelebrities.

RecognizeCelebrities returns an array of recognized celebrities and an array of unrecognized faces, as
shown in the following example:

48

http://docs.aws.amazon.com/batch/latest/userguide/
http://docs.aws.amazon.com/batch/latest/userguide/

Amazon Rekognition Developer Guide
Calling RecognizeCelebrities

"CelebrityFaces": [{
"Face": {
"BoundingBox": {
"Height": 0.617123007774353,
"Left": 0.15641026198863983,
"Top": 0.10864841192960739,
"Width": 0.3641025722026825
Iy
"Confidence": 99.99589538574219,
"Landmarks": [{
"Type": "eyeLeft",
"X": 0.2837241291999817,
"Y": 0.3637104034423828
A
"Type": "eyeRight",
"X": 0.4091649055480957,
"Y": 0.37378931045532227
oA
"Type": "nose",
"X": 0.35267341136932373,
"Y": 0.49657556414604187
A
"Type": "mouthLeft",
"X": 0.2786353826522827,
"Y": 0.5455248355865479
oA
"Type": "mouthRight",
"X": 0.39566439390182495,
"Y": 0.5597742199897766
1
"Pose": {
"Pitch": -7.749263763427734,
"Roll": 2.004552125930786,
"Yaw": 9.012002944946289
Iy
"Quality": {
"Brightness": 32.69192123413086,
"Sharpness": 99.9305191040039

Iy
"Id": "3IrOodu6",
"MatchConfidence": 98.0,
"Name": "Jeff Bezos",
"Urls": ["www.imdb.com/name/nml757263"]
1
"OrientationCorrection": "ROTATE_O",
"UnrecognizedFaces": [{
"BoundingBox": {
"Height": 0.5345501899719238,
"Left": 0.48461538553237915,
"Top": 0.16949152946472168,
"Width": 0.3153846263885498
Iy
"Confidence": 99.92860412597656,
"Landmarks": [{
"Type": "eyeLeft",
"X": 0.5863404870033264,
"Y": 0.36940744519233704

}' {
"Type": "eyeRight",
"X": 0.6999204754829407,
"Y": 0.3769848346710205
}' {

"Type": "nose",
"X": 0.6349524259567261,
"Y": 0.4804527163505554

49

Amazon Rekognition Developer Guide
Recognizing Celebrities in an Image

A
"Type": "mouthLeft",
"X": 0.5872702598571777,
"Y": 0.5535582304000854
A
"Type": "mouthRight",
"X": 0.6952020525932312,
"Y": 0.5600858926773071

1

"Pose": {
"Pitch": -7.386096477508545,
"Roll": 2.304218292236328,
"Yaw": -6.175624370574951

Iy

"Quality": {
"Brightness": 37.16635513305664,
"Sharpness": 99.884521484375

}

i3

The response includes the following:

« Recognized celebrities - celebrityFaces is an array of detected celebrities. Each Celebrity (p. 160)
object in the array contains the celebrity name and a list of URLs pointing to related content; for
example, the celebrity's IMDB link. Amazon Rekognition returns an ComparedFace (p. 161) object
that your application can use to determine where the celebrity's face is on the image and a unique
identifier for the celebrity. Use the unique identifier to retrieve celebrity information later with the
GetCelebritylnfo (p. 119) API operation.

« Unrecognized faces — unrecognizedFaces is an array of faces that didn't match any known celebrities.
Each ComparedFace (p. 161) object in the array contains a bounding box (as well as other
information) that you can use to locate the face in the image.

« Image orientation — Image orientation information is provided to allow you to correctly display of the
image.

Topics
« Recognizing Celebrities in an Image (p. 50)
» Getting Information about a Celebrity (p. 52)

Recognizing Celebrities in an Image

In these procedures, you use the RecognizeCelebrities (p. 139) operation to recognize celebrities in an
image that you supply. You can provide the input image as an image byte array (base64-encoded image
bytes) or as an S3 object, using either the AWS command line interface (AWS CLI) or the AWS SDK for
Java. In the AWS CLI procedure, you upload an image in .jpg or .png format to an S3 bucket. In the AWS
SDK for Java procedure, you use an image loaded from your local file system.

Prerequisites

To run these procedures, you need to have the AWS CLI and AWS SDK for Java installed. For more
information, see Getting Started with Amazon Rekognition (p. 17). The AWS account you use must have
access permissions to the Amazon Rekognition API. For more information, see Amazon Rekognition API
Permissions: Actions, Permissions, and Resources Reference (p. 46). You also need an image file that
contains one or more celebrity faces.

50

Amazon Rekognition Developer Guide
Prerequisites

To recognize celebrities in an image (AWS CLI)

1.

Upload an image that contains one or more celebrity faces to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

On the command line, type the following command. Replace bucketname and input. jpg with the S3
bucket name and image name that you used in step 1.

aws rekognition recognize-celebrities \
--image "S30bject={Bucket=bucketname,Name=input.jpg}"

To run the command, choose Enter. The JSON output for the Recognizecelebrities APl operation
is displayed.

Record the value of one of the celebrity IDs that are displayed. You'll need it in Getting Information
about a Celebrity (p. 52).

To recognize celebrities in an image (API)

1.

To recognize celebrities in an image, use the following AWS SDK for Java example code. Replace
input. jpg with the name and location of a locally stored .jpg image file that contains one or more
celebrity faces.

import java.util.List;

import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.AmazonRekognition;

import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.services.rekognition.model.BoundingBox;

import com.amazonaws.services.rekognition.model.Celebrity;

import com.amazonaws.services.rekognition.model.RecognizeCelebritiesRequest;
import com.amazonaws.services.rekognition.model.RecognizeCelebritiesResult;
import java.io.File;

import java.io.FileInputStream;

import java.io.InputStream;

import java.nio.ByteBuffer;

import com.amazonaws.util.IOUtils;

public class Celebs {

public static void main(String[] args) {

String photo = "input.jpg";
AWSCredentials credentials;
try {

credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {
throw new AmazonClientException("Cannot load the credentials from the
credential profiles file. "
+ "Please make sure that your credentials file is at the correct "
+ "location (/Users/<userid>/.aws/credentials), and is in valid
format.", e);

}

ByteBuffer imageBytes=null;
try (InputStream inputStream = new FileInputStream(new File(photo))) {
imageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));

51

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Getting Celebrity Information

}

catch(Exception e)

{
System.out.println("Failed to load file " + photo);
System.exit(1);

}

AmazonRekognition amazonRekognition = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST_2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

RecognizeCelebritiesRequest request = new RecognizeCelebritiesRequest()
.withImage(new Image()
.withBytes(imageBytes));

System.out.println("Looking for celebrities in image " + photo + "\n");

RecognizeCelebritiesResult
result=amazonRekognition.recognizeCelebrities(request);

//Display recognized celebrity information
List<Celebrity> celebs=result.getCelebrityFaces();
System.out.println(celebs.size() + " celebrity(s) were recognized.\n");

for (Celebrity celebrity: celebs) {
System.out.println("Celebrity recognized: " + celebrity.getName());
System.out.println("Celebrity ID: " + celebrity.getId());
BoundingBox boundingBox=celebrity.getFace().getBoundingBox();
System.out.println("position: " +
boundingBox.getLeft().toString() + " " +
boundingBox.getTop().toString());
System.out.println("Further information (if available):");
for (String url: celebrity.getUrls()){
System.out.println(url);
}
System.out.println();
}
System.out.println(result.getUnrecognizedFaces().size() + " face(s) were
unrecognized.");
}
}

2. Run the sample code. The output lists the names of celebrities that were recognized, the celebrity
IDs, the location of the celebrities' faces on the image, and links to further information. The output
also tells how many faces weren't recognized.

3. Record one of the celebrity IDs. You'll need it in Getting Information about a Celebrity (p. 52).

Getting Information about a Celebrity

In these procedures, you get celebrity information by using the GetCelebritylnfo (p. 119) API
operation. The celebrity is identified by using the celebrity ID returned from a previous call to

RecognizeCelebrities.

Prerequisites

To run these procedures, you need to have the AWS CLI and AWS SDK for Java installed. For more
information, see Getting Started with Amazon Rekognition (p. 17). The AWS account you use must have

52

Amazon Rekognition Developer Guide
Prerequisites

access permissions to the Amazon Rekognition API. For more information, see Amazon Rekognition API
Permissions: Actions, Permissions, and Resources Reference (p. 46).

These procedures also require the celebrity ID for a celebrity that Rekognition knows. Use the celebrity ID
you note in Recognizing Celebrities in an Image (p. 50).

To get celebrity information (AWS CLI)

1. On the command line, type the following command. Replace 1p with one of the celebrity IDs
displayed in Recognizing Celebrities in an Image (p. 50).

aws rekognition get-celebrity-info --id ID

2. To run the command, choose Enter. The JSON output for the cetcelebrityInfo APl operation is
displayed.

To get celebrity information (SDK)

1. Use the following AWS SDK for Java example code to get information about a celebrity that
Amazon Rekognition recognized in an image. Replace 1p with one of the celebrity IDs displayed in
Recognizing Celebrities in an Image (p. 50).

import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.AmazonRekognition;

import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.GetCelebrityInfoRequest;
import com.amazonaws.services.rekognition.model.GetCelebrityInfoResult;

public class CelebrityInfo {

public static void main(String[] args) {
String id = "ID";

AWSCredentials credentials;
try {
credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {
throw new AmazonClientException("Cannot load the credentials from the
credential profiles file. "
+ "Please make sure that your credentials file is at the correct "
+ "location (/Users/userid>.aws/credentials), and is in valid format.", e);

}

AmazonRekognition amazonRekognition = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST_2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

GetCelebrityInfoRequest request = new GetCelebrityInfoRequest()
.withId(id);
System.out.println("Getting information for celebrity: " + id);

GetCelebrityInfoResult result=amazonRekognition.getCelebrityInfo(request);

53

Amazon Rekognition Developer Guide
Prerequisites

//Display celebrity information

System.out.println("celebrity name: " + result.getName());

System.out.println("Further information (if available):");

for (String url: result.getUrls()){
System.out.println(url);

}

2. Run the example code. The celebrity name and information about the celebrity, if it is available, is
displayed.

54

Amazon Rekognition Developer Guide

Moderating Images

To determine if an image contains explicit or suggestive adult content, Amazon Rekognition provides the
DetectModerationLabels (p. 115) APl operation.

Amazon Rekognition uses a hierarchical taxonomy to label categories of explicit and suggestive content.
The two top-level categories are Explicit Nudity, and Suggestive. Each top-level category has a number of
child categories.

Top-Level Category Child Category
Explicit Nudity Nudity
Graphic Male Nudity
Graphic Female Nudity
Sexual Activity
Partial Nudity
Suggestive Female Swimwear Or Underwear
Male Swimwear Or Underwear

Revealing Clothes

You determine the suitability of an image for your application. For example, images of a suggestive
nature might be acceptable, but images containing nudity might not. To filter images, use the
ModerationLabel (p. 179) labels array returned by petectModerationLabels.

The ModerationLabel array contains labels in the preceding categories and an estimated confidence in
the accuracy of the recognized content. A top-level label is returned along with any child labels that were
identified. For example, Rekognition may return “Explicit Nudity” with a high confidence score as a top-
level label. That may be enough for your filtering needs, but if necessary, you can use the confidence
score of a child label, such as "Partial Nudity", to obtain more granular filtering. For an example, see
Detecting Moderation Labels (p. 56).

Note
Rekognition Image Moderation API is not an authority on, or in any way purports to be an
exhaustive filter of, explicit and suggestive adult content. Furthermore, the Image Moderation

55

Amazon Rekognition Developer Guide
Detecting Moderation Labels

API does not detect whether an image includes illegal content (such as child pornography) or
unnatural adult content.

DetectModerationLabels can retrieve input images from an S3 bucket or you can provide them as image

bytes.
The following example is the response from a call to betectModerationLabels.
{
"ModerationLabels": [
{
"Confidence": 99.24723052978516,
"ParentName": "",
"Name": "Explicit Nudity"
}l
{
"Confidence": 99.24723052978516,
"ParentName": "Explicit Nudity",
"Name": "Graphic Male Nudity"
}l
{
"Confidence": 88.25341796875,
"ParentName": "Explicit Nudity",
"Name": "Sexual Activity"
¥
]
¥

The response includes the following:

« Image moderation information — The example shows a list of moderation labels for explicit or
suggestive content found in the image. The list includes the top-level label and each child label
detected in the image.

Label - Each label has a name, an estimation of the confidence that Amazon Rekognition has that the
label is accurate, and the name of its parent label. The parent name for a top-level label is .

Label confidence - Each label has a confidence value between 0 and 100 that indicates the percentage
confidence that Amazon Rekognition has that the label is correct. You specify the required confidence
level for a label to be returned in the response in the API operation request.

Topics
« Detecting Moderation Labels (p. 56)

Detecting Moderation Labels

In these procedures you use the DetectModerationLabels (p. 115) operation to determine if an image
contains explicit or suggestive adult content. The image must be in either a .jpg or a .png format. You can
provide the input image as an image byte array (base64-encoded image bytes) or specify an S3 object. In
these procedures you upload an image (.jpg or .png) to your S3 bucket.

Prerequisites

To run these procedures, you need to have the AWS CLI and AWS SDK for Java installed. For more
information, see Getting Started with Amazon Rekognition (p. 17). The AWS account you use must have
access permissions to the Amazon Rekognition API. For more information, see Amazon Rekognition API
Permissions: Actions, Permissions, and Resources Reference (p. 46).

56

Amazon Rekognition Developer Guide
Prerequisites

To detect moderation labels in an image (AWS CLI)

1.

Upload an image to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

On the command line, type the following command. Replace bucketname and input. jpg with the S3
bucket name and image name that you used in step 1.

aws rekognition detect-moderation-labels \

--image '{"S30bject":{"Bucket":"bucketname","Name":"input.jpg"}}"' \
--region us-east-1 \
--profile adminuser

To run the command, choose Enter. The JSON output for the DetectModerationLabels API
operation is displayed.

To detect moderation labels in an image (API)

1.

Upload an image to your S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
Console User Guide.

To detect moderation labels in an image, use the following AWS SDK for Java example code. Replace
bucketname and input. jpg with the S3 bucket name and the image file name that you used in step
1.

import com.amazonaws.services.rekognition.AmazonRekognition;

import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.DetectModerationLabelsRequest;
import com.amazonaws.services.rekognition.model.DetectModerationLabelsResult;
import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.services.rekognition.model.ModerationLabel;

import com.amazonaws.services.rekognition.model.S30bject;

import java.util.List;

public class DetectModerationLabelsExample

{
public static void main(String[] args) throws Exception
{
String image = "input.jpg";
String bucket = "bucketname";
AWSCredentials credentials;
try
{
credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
¥
catch (Exception e)
{

throw new AmazonClientException("Cannot load the credentials from the
credential profiles file. "
+ "Please make sure that your credentials file is at the correct

"

57

http://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html
http://docs.aws.amazon.com/AmazonS3/latest/user-guide/UploadingObjectsintoAmazonS3.html

Amazon Rekognition Developer Guide
Prerequisites

+ "location (/Users/userid/.aws/credentials), and is in valid
format.", e);
¥
AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.standard()
.withRegion(Regions.US_WEST_2)
.withCredentials(new AWSStaticCredentialsProvider(credentials)).build();

DetectModerationLabelsRequest request = new DetectModerationLabelsRequest()
.withImage(new Image().withS30bject(new
S30bject().withName(image).withBucket(bucket)))
.withMinConfidence(60F);
try
{
DetectModerationLabelsResult result =
rekognitionClient.detectModerationLabels(request);
List<ModerationLabel> labels = result.getModerationLabels();
System.out.println("Detected labels for " + image);
for (ModerationLabel label : labels)
{
System.out.println("Label: " + label.getName()
+ "\n Confidence: " + label.getConfidence().toString() + "%"
+ "\n Parent:" + label.getParentName());
}
¥
catch (AmazonRekognitionException e)
{
e.printStackTrace();

}

Run the sample code. The output lists the label name, confidence and parent label for each detected
label.

58

Amazon Rekognition Developer Guide
Monitoring

Monitoring

To monitor Amazon Rekognition, use Amazon CloudWatch. This section provides information on how to
set up monitoring for Rekognition, and reference content for Rekognition metrics.

Topics
« Monitoring Rekognition (p. 59)
o CloudWatch Metrics for Rekognition (p. 62)

Monitoring Rekognition

With CloudWatch, you can get metrics for individual Rekognition operations or global Rekognition
metrics for your account, You can use metrics to track the health of your Rekognition-based solution
and set up alarms to notify you when one or more metrics fall outside a defined threshold. For example,
you can see metrics for the number of server errors that have occurred, or metrics for the number of
faces that have been detected. You can also see metrics for the number of times a specific Rekognition
operation has succeeded. To see metrics, you can use Amazon CloudWatch, Amazon AWS Command Line
Interface, or the CloudWatch API.

You can also see aggregated metrics, for a chosen period of time, by using the Rekognition console. For
more information, see Exercise 4: See Aggregated Metrics (Console) (p. 29).

Using CloudWatch Metrics for Rekognition

To use metrics, you must specify the following information:

« The metric dimension, or no dimension. A dimension is a name-value pair that helps you to uniquely
identify a metric. Rekognition has one dimension, named Operation. It provides metrics for a specific
operation. If you do not specify a dimension, the metric is scoped to all Rekognition operations within
your account.

« The metric name, such as UserErrorcCount.

59

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

Amazon Rekognition Developer Guide
Access Rekognition Metrics

You can get monitoring data for Rekognition using the AWS Management Console, the AWS CLI, or

the CloudWatch API. You can also use the CloudWatch API through one of the Amazon AWS Software
Development Kits (SDKs) or the CloudWatch API tools. The console displays a series of graphs based on
the raw data from the CloudWatch API. Depending on your needs, you might prefer to use either the
graphs displayed in the console or retrieved from the API.

The following list shows some common uses for the metrics. These are suggestions to get you started,

not a comprehensive list.

How Do I?

How do | track the numbers of faces recognized?

How do | know if my application has reached the
maximimum number of requests per second?

How can | monitor the request errors?

How can | find the total number of requests?

How can | monitor the latency of Rekognition
operation calls?

How can | monitor how many times IndexFaces
successfully added faces to Rekognition
collections?

Relevant Metrics

Monitor the sum statistic of the
DetectedFaceCount metric.

Monitor the sum statistic of the Throttledcount
metric.

Use the sum statistic of the userErrorcount
metric.

Use the ResponseTime and Data Samples statistic
of the rResponseTime metric. This includes any
request that results in an error. If you want

to see only successful operation calls, use the
SuccessfuleRequestCount metric.

Use the ResponseTime metric.

Monitor the sum statistic with the
SuccessfulRequestCount Metric and IndexFaces
operation. Use the operation dimension to select
the operation and metric.

You must have the appropriate CloudWatch permissions to monitor Rekognition with CloudWatch. For
more information, see Authentication and Access Control for Amazon CloudWatch.

Access Rekognition Metrics

The following examples show how to access Rekognition metrics using the CloudWatch console, the AWS

CLI, and the CloudWatch API.

To view metrics (console)

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. Choose Metrics, choose the All Metrics tab, and then choose Rekognition.
3. Choose Metrics with no dimensions, and then choose a metric.

For example, choose the DetectedFace metric to measure how many faces have been detected.

4. Choose a value for the date range. The metric count displayed in the graph.

To view metrics successful petectraces operation calls have been made over a period of time

(CLI).

o Open the AWS CLI and enter the following command:

60

http://docs.aws.amazon.com//AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://console.aws.amazon.com/cloudwatch

Amazon Rekognition Developer Guide
Create an Alarm

aws cloudwatch get-metric-statistics --metric-name SuccessfulRequestCount --start-

time 2017-1-1T19:46:20 --end-time 2017-1-6T19:46:57 —--period 3600 --namespace AWS/
Rekognition --statistics Sum --dimensions Name=Operation,Value=DetectFaces --region us-
west-2

This example shows the successful petectFaces operation calls made over a period of time. For more
information, see get-metric-statistics.

To access metrics (CloudWatch API)

e Call cetMetricstatistics. For more information, see the Amazon CloudWatch API Reference.

Create an Alarm

You can create a CloudWatch alarm that sends an Amazon Simple Notification Service (Amazon SNS)
message when the alarm changes state. An alarm watches a single metric over a time period you specify,
and performs one or more actions based on the value of the metric relative to a given threshold over

a number of time periods. The action is a notification sent to an Amazon SNS topic or an Auto Scaling
policy.

Alarms invoke actions for sustained state changes only. CloudWatch alarms do not invoke actions simply
because they are in a particular state. The state must have changed and been maintained for a specified
number of time periods.

To set an alarm (console)

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Create Alarm. This launches the Create Alarm Wizard.

3. In the Metrics with no dimensions metric list, choose Rekognition Metrics, and then choose a
metric.

For example, choose DetectedFaceCount to set an alarm for a maximum number of detected faces.

4. Inthe Time Range area, select a date range value that includes face detection operations that you
have called. Choose Next

5. Fillin the Name and Description. For Whenever, choose >=, and enter a maximum value of your
choice.

6. If you want CloudWatch to send you email when the alarm state is reached, for Whenever this
alarm:, choose State is ALARM. To send alarms to an existing Amazon SNS topic, for Send
notification to:, choose an existing SNS topic. To set the name and email addresses for a new email
subscription list, choose Create topic CloudWatch saves the list and displays it in the field so you can
use it to set future alarms.

Note

If you use Create topic to create a new Amazon SNS topic, the email addresses must be
verified before the intended recipients receive notifications. Amazon SNS sends email only
when the alarm enters an alarm state. If this alarm state change happens before the email
addresses are verified, intended recipients do not receive a notification.

7. Preview the alarm in the Alarm Preview section. Choose Create Alarm.

To set an alarm (AWS CLI)

« Open the AWS CLI and enter the following command. Change value of the alarm-actions parameter
to reference an Amazon SNS topic that you previously created.

61

http://docs.aws.amazon.com/cli/latest/reference/get-metric-statistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Rekognition Developer Guide
CloudWatch Metrics for Rekognition

aws cloudwatch put-

metric-alarm --alarm-name UserErrors --alarm-description "Alarm

when more than 10 user errors occur" --metric-name UserErrorCount --namespace
AWS/Rekognition --statistic Average --period 300 --threshold 10 --comparison-

operator GreaterThanThreshold --evaluation-periods 2 --alarm-actions arn:aws:sns:us-
west-2:111111111111:UserError --unit Count

This example shows how to create an alarm for when more than 10 user errors occur within 5
minutes. For more information, see put-metric-alarm.

To set an alarm (CloudWatch API)

e Call putMetricalarm. For more information, see Amazon CloudWatch API Reference.

CloudWatch Metrics for Rekognition

This section contains information about the Amazon CloudWatch metrics and the Operation dimension
available for Amazon Rekognition.

You can also see an aggregate view of Rekognition metrics from the Rekognition console. For more
information, see Exercise 4: See Aggregated Metrics (Console) (p. 29).

CloudWatch Metrics for Rekognition

The following table summarizes the Rekognition metrics.

Metric

SuccessfulRequestCount

ThrottledCount

ResponseTime

Description

The number of successful requests. The response code range for a successful
request is 200 to 299.

Unit: Count
Valid statistics: sum, Average

The number of throttled requests. Rekognition throttles a request when it
receives more requests than the limit of transactions per second set for your
account. If the limit set for your account is frequently exceeded, you can
request a limit increase. To request an increase, see AWS Service Limits.

Unit: Count

Valid statistics: sum, Average

The time in milliseconds for Rekognition to compute the response.
Units:

1. Count for pata samples statistics
2. Milliseconds for average statistics

Valid statistics: bata Samples,Average

Note
The ResponseTime metric is not included in the Rekognition metric
pane.

62

http://docs.aws.amazon.com/cli/latest/reference/put-metric-alarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Rekognition Developer Guide
CloudWatch Dimension for Rekognition

Metric Description
DetectedFaceCount The number of faces detected with the 1ndexFaces or DetectFaces operation.
Unit: Count

Valid statistics: sum, Average

DetectedLabelCount The number of labels detected with the petectLabels operation.
Unit: Count
Valid statistics: sum, Average

ServerErrorCount The number of server errors. The response code range for a server error is
500 to 599.

Unit: Count
Valid statistics: sum, Average

UserErrorCount The number of user errors (invalid parameters, invalid image, no permission,
etc). The response code range for a user error is 400 to 499.

Unit: Count

Valid statistics: sum, Average

CloudWatch Dimension for Rekognition

To retrieve operation-specific metrics, use the Rekognition namespace and provide an operation
dimension. For more information about dimensions, see Dimensions in the Amazon CloudWatch User
Guide.

63

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension

Amazon Rekognition Developer Guide
Example 1: Managing Collections

Additional Amazon Rekognition
Examples

This section provides additional examples of working with Amazon Rekognition. Examples using AWS
SDK for Java and the AWS CLI are provided. We recommend that you first review the following topics:

« Amazon Rekognition: How It Works (p. 3)
« Getting Started with Amazon Rekognition (p. 17)

Topics
o Example 1: Managing Collections (p. 64)
« Example 2: Storing Faces (p. 68)
« Example 3: Searching Faces (p. 75)
« Example 4: Supplying Image Bytes to Amazon Rekognition Operations (p. 80)

Example 1: Managing Collections

This section provides working examples of creating, listing, and deleting collections. Examples using both
the AWS CLI and the AWS SDK for Java are provided.

For information about managing collections and related API operations, see Storage-Based API
Operations: Storing Faces and Searching Face Matches (p. 12).

Topics
« Creating, Listing, and Deleting Collections: Using the AWS CLI (p. 65)
« Creating, Listing, and Deleting Face Collections: Using the AWS SDK for Java (p. 66)

64

Amazon Rekognition Developer Guide
Creating, Listing, and Deleting
Collections: Using the AWS CLI

Creating, Listing, and Deleting Collections: Using the
AWS CLI

The following are example AWS CLI commands that you can use to create and delete collections. An
example AWS CLI command that lists collections is also provided.

« Create a face collection — The following create-collection AWS CLI command creates a face
collection (examplecollection) in the us-east-1 region.

Note

The command specifies the adminuser profile that you set up in Step 2: Set Up the AWS
Command Line Interface (AWS CLI) (p. 18). The AWS CLI command uses the credentials
associated with the adminuser profile to sign and authenticate the request. If you don't
provide this profile, the default profile is assumed.

aws rekognition create-collection \
--collection-id "examplecollection" \
--region us-east-1 \

--profile adminuser

Amazon Rekognition creates the collection in the specified region, and returns the Amazon Resource
Name (ARN) of the newly created collection. An example response is shown following:

"CollectionArn": "aws:rekognition:us-east-l:acct-id:collection/examplecollection",
"StatusCode": 200

o List Collections — The following 1ist-collections AWS CLI command returns a list of collections in
the us-east-1 region.

aws rekognition list-collections \
--region us-east-1 \
--profile adminuser

The following is an example response:

{

"CollectionIds": [
"examplecollectionl",
"examplecollection2",
"examplecollection3"

]

}

« Delete a face collection — The following delete-collection AWS CLI command deletes a face
collection.

aws rekognition delete-collection \
--collection-id "examplecollection" \
--region us-east-1 \

--profile adminuser

65

Amazon Rekognition Developer Guide
Creating, Listing, and Deleting Face
Collections: Using the AWS SDK for Java

Creating, Listing, and Deleting Face Collections: Using

the

AWS SDK for Java

The following Java example code uses the AWS SDK for Java to create and delete two collections. The
code example also lists the available collections.

import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

pub

java.util.List;

com.amazonaws .AmazonClientException;

com.amazonaws .auth.AWSCredentials;

com.amazonaws .auth.AWSStaticCredentialsProvider;
com.amazonaws.auth.profile.ProfileCredentialsProvider;
com.amazonaws.regions.Regions;
com.amazonaws.services.rekognition.AmazonRekognition;
com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
com.amazonaws.services.rekognition.model.CreateCollectionRequest;
com.amazonaws.services.rekognition.model.CreateCollectionResult;
com.amazonaws.services.rekognition.model.DeleteCollectionRequest;
com.amazonaws.services.rekognition.model.DeleteCollectionResult;
com.amazonaws.services.rekognition.model.ListCollectionsRequest;
com.amazonaws.services.rekognition.model.ListCollectionsResult;

class CollectionExample {
lic static void main(String[] args) throws Exception {

AWSCredentials credentials;
try {
credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {
throw new AmazonClientException(
"Cannot load the credentials from the credential profiles file. " +
"Please make sure that your credentials file is at the correct " +
"location (/Users/userid/.aws/credentials), and is in valid format.",
e);

AmazonRekognition amazonRekognition = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST_ 2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

// 1. CreateCollection 1

String collectionId = "exampleCollection";
String collectionId2 = "exampleCollection2";
System.out.println("Creating collections: " +

collectionId +
" & " + collectionId2);

CreateCollectionResult createCollectionResult = callCreateCollection(
collectionId, amazonRekognition);

System.out.println("CollectionArn : " +
createCollectionResult.getCollectionArn());
System.out.println("Status code : " +

createCollectionResult.getStatusCode().toString());

//CreateCollection 2

createCollectionResult = callCreateCollection(collectionId2,
amazonRekognition);

System.out.println("CollectionArn : " +
createCollectionResult.getCollectionArn());

66

Amazon Rekognition Developer Guide
Creating, Listing, and Deleting Face
Collections: Using the AWS SDK for Java

System.out.println("Status code : " +
createCollectionResult.getStatusCode().toString());

// 3. Page through collections with ListCollections
System.out.println("Listing collections");

int limit = 1;

ListCollectionsResult listCollectionsResult = null;
String paginationToken = null;

do {
if (listCollectionsResult != null) {
paginationToken = listCollectionsResult.getNextToken();
}

listCollectionsResult = calllListCollections(paginationToken, limit,
amazonRekognition);

List < String > collectionIds = listCollectionsResult.getCollectionIds();
for (String resultId: collectionIds) {
System.out.println(resultId);

}
} while (listCollectionsResult != null && listCollectionsResult.getNextToken() !=

null);
// 4. Clean up collections with DeleteCollection

System.out.println("Deleting collections");

DeleteCollectionResult deleteCollectionResult = callDeleteCollection(
collectionId, amazonRekognition);

System.out.println(collectionId + ": " + deleteCollectionResult.getStatusCode()

.toString());

DeleteCollectionResult deleteCollectionResult2 = callDeleteCollection(
collectionId2, amazonRekognition);

System.out.println(collectionId2 + ": " + deleteCollectionResult2.getStatusCode()
.toString());

}

private static CreateCollectionResult callCreateCollection(String collectionId,
AmazonRekognition amazonRekognition) {
CreateCollectionRequest request = new CreateCollectionRequest()
.withCollectionId(collectionId);
return amazonRekognition.createCollection(request);

}

private static DeleteCollectionResult callDeleteCollection(String collectionId,
AmazonRekognition amazonRekognition) {
DeleteCollectionRequest request = new DeleteCollectionRequest()
.withCollectionId(collectionId);
return amazonRekognition.deleteCollection(request);

}

private static ListCollectionsResult callListCollections(String paginationToken,
int limit, AmazonRekognition amazonRekognition) {
ListCollectionsRequest listCollectionsRequest = new ListCollectionsRequest()
.withMaxResults(limit)
.withNextToken(paginationToken);
return amazonRekognition.listCollections(listCollectionsRequest);

67

Amazon Rekognition Developer Guide
Example 2: Storing Faces

Example 2: Storing Faces

This section provides working examples of storing faces in a collection. Examples using both the AWS CLI
and the AWS SDK for Java are provided.

For information about the collections and storing faces API operations, see Storage-Based API
Operations: Storing Faces and Searching Face Matches (p. 12).

Topics
« Storing Faces: Using the AWS CLI (p. 68)
« Storing Faces: Using the AWS SDK for Java (p. 73)

Storing Faces: Using the AWS CLI

The following index-faces AWS CLI command detects faces in the input images, and for each face
extracts facial features and store the feature information in a database. In addition, the command stores
metadata for each face detected in the specified face collection.

aws rekognition index-faces \

--image '{"S30bject":{"Bucket":"bucket","Name":"S30bjectKey"}}' \
--collection-id "collection-id" \

--region us-east-1 \

--profile adminuser

For, more information, see Storing Faces in a Face Collection: The IndexFaces Operation (p. 13)

In the following example response, note the following:

 Information in the facepetail element is not persisted on the server. It is only returned as part of this
response. The faceDetail includes five facial landmarks (see 1andmark element), pose, and quality.

« Information in the face element is the face metadata that is persisted on the server. This is the same
information the ListFaces (p. 133) API returns in response.

"FaceRecords": [
{
"FaceDetail": {
"BoundingBox": {
"Width": 0.6154,
"Top": 0.2442,
"Left": 0.1765,
"Height": 0.4692

Iy
"Landmarks": [
{
"Y": 0.41730427742004395,
"X": 0.36835095286369324,
"Type": "eyeLeft"
e
{
"Y": 0.4281611740589142,
"X": 0.5960656404495239,
"Type": "eyeRight"
e
{

"Y": 0.5349795818328857,

68

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

"X": 0.47817257046699524,

"Type": "nose"
e
{
"y": 0.5721957683563232,
"X": 0.352621465921402,
"Type": "mouthLeft"
e
{
"Y": 0.5792245864868164,
"X": 0.5936088562011719,
"Type": "mouthRight"
}
1,
"Pose": {

"Yaw": 1.8526556491851807,
"Roll": 3.623055934906006,

"Pitch": -10.605680465698242
Iy
"Quality": {
"Sharpness": 130.0,
"Brightness": 49.129302978515625
Iy
"Confidence": 99.99968719482422
Iy
"Face": {
"BoundingBox": {
"Width": 0.6154,
"Top": 0.2442,
"Left": 0.1765,
"Height": 0.4692
Iy
"FaceId": "84delc86-5059-53f2-a432-34ebb704615d",
"Confidence": 99.9997,
"ImageId": "d38ebf91-1all-58fc-ba42-£f978b3£f32f60"
}
}
1,
"OrientationCorrection": "ROTATE_O"

The following index-faces command specifies two optional parameters:

e —-detection-attribute parameter to request all facial attributes in the response.

+ --external-image-id parameter to specify an ID to be associated with all faces in this image. You
might use this information on the client side, for example, you might maintain a client-side index of
images and faces in the images.

aws rekognition index-faces \

--image '{"S30bject":{"Bucket":"bucketname", "Name":"object-key"}}' \
--collection-id "collection-id" \

--detection-attributes "ALL" \

--external-image-id "example-image.jpg" \

--region us-east-1 \

--profile adminuser

In the following example response, note the additional information in the facepetail element, which is
not persisted on the server:

« 25 facial landmarks (compared to only five in the preceding example)
« Nine facial attributes (eyeglasses, beard, etc)

69

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

« Emotions (see the emotion element)

The face element provides metadata that is persisted on the server.

"FaceRecords": [
{
"FaceDetail": {

"Confidence": 99.99968719482422,

"Eyeglasses": {
"Confidence": 99.94019317626953,
"Value": false

Iy

"Sunglasses": {
"Confidence": 99.62261199951172,
"Value": false

Iy
"Gender": {
"Confidence": 99.92701721191406,
"Value": "Male"
Iy
"Pose": {
"Yaw": 1.8526556491851807,
"Roll": 3.623055934906006,
"Pitch": -10.605680465698242
Iy
"Emotions": [
{
"Confidence": 99.38518524169922,
"Type": "HAPPY"
e
{
"Confidence": 1.1799871921539307,
"Type": "ANGRY"
e
{
"Confidence": 1.0325908660888672,
"Type": "CONFUSED"
}
1,

"EyesOpen": {
"Confidence": 54.15227508544922,
"Value": false

Iy
"Quality": {
"Sharpness": 130.0,
"Brightness": 49.129302978515625
Iy

"BoundingBox": {
"Width": 0.6153846383094788,
"Top": 0.24423076212406158,
"Left": 0.17654477059841156,
"Height": 0.4692307710647583

Iy

"Smile": {
"Confidence": 99.8236083984375,
"Value": true

Iy

"MouthOpen": {
"Confidence": 88.39942169189453,
"Value": true

Iy

"Landmarks": [

70

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

nyns o
nxs 0
"Type:
nyns o
"X": 0.
"Type:
nyns o
nxs 0
"Type:
"Y": 0.
nxs 0
"Type:
"Y": 0.
"X": 0.
"Type:
nyns o
"X": 0.
"Type:
nyns o
nx"s 0
"Type:
"Y": 0.
"X": 0.
"Type:
nyns o
"X": 0.
"Type:
"Y": 0.
nxs 0
"Type:
"Y": 0.
"X": 0.
"Type:
nyns o
"X": 0.
"Type:
nyns o
nxs 0
"Type:

.41730427742004395,
.36835095286369324,

"eyeLeft"

.4281611740589142,

5960656404495239,
"eyeRight"

.5349795818328857,
.47817257046699524,

"nose"

5721957683563232,

.352621465921402,

"mouthLeft"

5792245864868164,
5936088562011719,
"mouthRight"

.4163532555103302,

3697868585586548,
"leftPupil"

.42626339197158813,
.6037314534187317,

"rightPupil"

38954615592956543,
27343833446502686,
"leftEyeBrowLeft"

.3775958716869354,

35098740458488464,
"leftEyeBrowRight"

39108505845069885,

.433648943901062,

"leftEyeBrowUp"

3952394127845764,
5416828989982605,
"rightEyeBrowLeft"

.38667190074920654,

6171167492866516,
"rightEyeBrowRight"

.40419116616249084,
.6827319264411926,

"rightEyeBrowUp"

71

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS CLI

"Y": 0
"X": 0.
"Type":

}

{

"Y": 0
"X": 0
"Type":

}

{

"Y": 0
"X": 0
"Type":

3

{

"Y": 0
"X": 0.
"Type":

3

{

"Y": 0
"X": 0.
"Type":

3

{

"Y": 0
"X": 0.
"Type":

3

{

"Y": 0
"X": 0.
"Type":

3

{

"Y": 0
"X": 0.
"Type":

3

{

"Y": 0.
"X": 0
"Type":

3

{

"Y": 0.
"X": 0.
"Type":

3

{

"Y": 0
"X": 0
"Type":

3

{

"Y": 0.

"X": 0

"Type":
}

1,

"Mustache": {

.41925403475761414,

32195475697517395,
"leftEyeLeft"

.4225293695926666,
.41227561235427856,

"leftEyeRight"

.4096950888633728,
.3705553412437439,

"leftEyeUp"

.4213259816169739,

36738231778144836,
"leftEyeDown"

.4294262230396271,

5498995184898376,
"rightEyeLeft"

.4327501356601715,

6390777826309204,
"rightEyeRight"

.42076829075813293,

5977370738983154,
"rightEyeUp"

.4326271116733551,

5959710478782654,
"rightEyeDown"

5411174893379211,

.4253743588924408,

"noseLeft"

5450678467750549,
5309309959411621,
"noseRight"

.5795656442642212,
.47389525175094604,

"mouthUp"

6466911435127258,

.47393468022346497,

"mouthDown"

"Confidence": 99.75302124023438,
"Value": false

T
"Beard": {

"Confidence": 89.82911682128906,

72

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS SDK for Java

"Value": false

}
Iy
"Face": {
"BoundingBox": {
"Width": 0.6153846383094788,
"Top": 0.24423076212406158,
"Left": 0.17654477059841156,
"Height": 0.4692307710647583
Iy
"FaceId": "407b95a5-f8f7-50c7-bf86-27c9bab5c6931",
"ExternalImageId": "example-image.jpg",
"Confidence": 99.99968719482422,
"ImageId": "af554b0d-fcb2-56e8-9658-69aec6c901be"
}
}
1,
"OrientationCorrection": "ROTATE_O"

You can use the list-faces command to get a list of faces in a collection:

aws rekognition list-faces \
--collection-id "collection-id" \
--region us-east-1

--profile adminuser

The command returns faces in the collection along with a NextToken in the response. You can use this in
your subsequent request (by adding the --next-token parameter in the AWS CLI command) to fetch next
set of faces.

Storing Faces: Using the AWS SDK for Java

The following example AWS SDK for Java code stores two faces to a collection. You need to update the
code by providing an S3 bucket name, two object keys (.jpg objects), and an Amazon Rekognition face
collection name.

import java.util.List;

import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.Face;

import com.amazonaws.services.rekognition.model.FaceRecord;

import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.services.rekognition.model.IndexFacesRequest;
import com.amazonaws.services.rekognition.model.IndexFacesResult;
import com.amazonaws.services.rekognition.model.ListFacesRequest;
import com.amazonaws.services.rekognition.model.ListFacesResult;
import com.amazonaws.services.rekognition.model.S30bject;

import com.fasterxml.jackson.databind.ObjectMapper;

public class IndexAndListFacesExample {
public static final String COLLECTION_ID = "collectionid";
public static final String S3_BUCKET = "S3Bucket";

public static void main(String[] args) throws Exception {
AWSCredentials credentials;

73

Amazon Rekognition Developer Guide
Storing Faces: Using the AWS SDK for Java

try {
credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();

} catch (Exception e) {
throw new AmazonClientException(
"Cannot load the credentials from the credential profiles file. " +
"Please make sure that your credentials file is at the correct " +
"location (/Users/userid/.aws/credentials), and is in valid format.",
e);

}

ObjectMapper objectMapper = new ObjectMapper();

AmazonRekognition amazonRekognition = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST_ 2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

// 1. Index face 1
Image image = getImageUtil(S3_BUCKET, "imagel.jpg");
String externalImageId = "imagel.jpg";
IndexFacesResult indexFacesResult = callIndexFaces(COLLECTION_ID,
externalImageId, "ALL", image, amazonRekognition);
System.out.println(externalImageId + " added");
List < FaceRecord > faceRecords = indexFacesResult.getFaceRecords();
for (FaceRecord faceRecord: faceRecords) {
System.out.println("Face detected: Faceid is " +
faceRecord.getFace().getFaceId());

}

// 2. Index face 2

indexFacesResult = null;

faceRecords = null;

Image image2 = getImageUtil(S3_BUCKET, "image2.jpg");

String externalImageId2 = "image2.jpg";

System.out.println(externalImageId2 + " added");

indexFacesResult = callIndexFaces(COLLECTION_ID, externallImageId2,
"ALL", image2, amazonRekognition);

faceRecords = indexFacesResult.getFaceRecords();

for (FaceRecord faceRecord: faceRecords) {
System.out.println("Face detected. Faceid is " +

faceRecord.getFace().getFaceId());

// 3. Page through the faces with ListFaces
ListFacesResult listFacesResult = null;
System.out.println("Faces in collection " + COLLECTION_ID);

String paginationToken = null;

do {
if (listFacesResult != null) {
paginationToken = listFacesResult.getNextToken();
}

listFacesResult = callListFaces(COLLECTION_ID, 1, paginationToken,
amazonRekognition);

List < Face > faces = listFacesResult.getFaces();

for (Face face: faces) {
System.out.println(objectMapper.writerWithDefaultPrettyPrinter()

.writeValueAsString(face));
}
} while (listFacesResult != null && listFacesResult.getNextToken() !=
null);

74

Amazon Rekognition Developer Guide
Example 3: Searching Faces

private static IndexFacesResult callIndexFaces(String collectionId, String
externalImageld,

String attributes, Image image, AmazonRekognition amazonRekognition) {

IndexFacesRequest indexFacesRequest = new IndexFacesRequest()
.withImage(image)
.withCollectionId(collectionId)
.withExternalImageId(externalImageId)
.withDetectionAttributes(attributes);

return amazonRekognition.indexFaces(indexFacesRequest);

}

private static ListFacesResult callListFaces(String collectionId, int limit,
String paginationToken, AmazonRekognition amazonRekognition) {
ListFacesRequest listFacesRequest = new ListFacesRequest()
.withCollectionId(collectionId)
.withMaxResults(limit)
.withNextToken(paginationToken);
return amazonRekognition.listFaces(listFacesRequest);

}

private static Image getImageUtil(String bucket, String key) {
return new Image()
.withS30bject(new S30bject()
.withBucket(bucket)
.withName(key));

Example 3: Searching Faces

This section provides working examples of API operations that you can use to search a face collection for
face matches. Examples using both AWS CLI and AWS SDK for Java are provided.

For information about collections and search faces API operations, see Storage-Based API Operations:
Storing Faces and Searching Face Matches (p. 12).

Topics
« Searching Faces: Using the AWS CLI (p. 75)
« Searching Faces: Using the AWS SDK for Java (p. 77)

Searching Faces: Using the AWS CLI

You can search a face collection for face matches using the search-faces (see SearchFaces (p. 145))
and search-faces-by-image (see SearchFacesBylmage (p. 150)) commands:

« Search faces by face ID - You can use the search-faces command to search a face collection for face
matches by providing a face ID (that is, one of the face IDs that exists in the face collection). Then, the
command searches the collection for similar faces.

For this exercise, if you don't know a face ID value, you can use the 1ist-faces command:

aws rekognition list-faces \
--collection-id "collection-id" \

75

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS CLI

--region us-east-1 \
--profile adminuser

Specify the search-faces command, as shown following:

aws rekognition search-faces \
--face-id face-id \
--collection-id "collection-id" \
--region us-east-1 \

--profile adminuser

The following is the example response that includes the search face ID you provided as input
and three face matches. For more information about the response, see Searching Faces in a Face
Collection (p. 14).

"SearchedFaceId": "e0182208-f475-55b4-8d88-cf162509718d",
"FaceMatches": [
{
"Face": {
"BoundingBox": {
"Width": 0.49505001306533813,
"Top": 0.221110999584198,
"Left": 0.3069309890270233,
"Height": 0.33333298563957214
}!
"FaceId": "9b0Olac35-61be-55b0-bc95-54b6421e4950",
"ExternalImageId": "example-image.jpg",
"Confidence": 99.99949645996094,
"ImageId": "fba488d7-9c3a-537f-a30a-b8alee326bé6c"
}!
"Similarity": 0.9172449111938477
}I
{
"Face": {
"BoundingBox": {
"Width": 0.2044440060853958,
"Top": 0.22542400658130646,
"Left": 0.46222200989723206,
"Height": 0.3118639886379242
}!
"FaceId": "98fd3f10-a078-5b35-83c5-5d5c8423a8fc",
"ExternalImageId": "example-image.jpg",
"Confidence": 99.99810028076172,
"ImageId": "b5d3f633-1b8c-560a-adfb-08891b6536a0"
}!
"Similarity": 0.9123537540435791
}I
{
"Face": {
"BoundingBox": {
"Width": 0.6153849959373474,
"Top": 0.24423100054264069,
"Left": 0.17654499411582947,
"Height": 0.4692310094833374
}!
"FaceId": "407b95a5-f8f7-50c7-bf86-27c9ba5c6931",
"ExternalImageId": "example-image.jpg",
"Confidence": 99.99970245361328,
"ImageId": "af554b0d-fcb2-56e8-9658-6%9aec6c90lbe”
}!
"Similarity": 0.6758826971054077

76

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS SDK for Java

« Search faces by providing an image as input - In this case, Amazon Rekognition first detects the face
in the input image, and then searches the collection for matching faces. The following search-faces-
by-image command specifies an S3 object as input image.

aws rekognition search-faces-by-image \

--image '{"S30bject":{"Bucket":"bucket-name","Name":"Example.jpg"}}"' \
--collection-id "collection-id" \

--region us-east-1 \

--profile adminuser

The following is an example response that includes the bounding box of the face in the input image,
and a list of face matches. For more information about the response, see Searching Faces in a Face
Collection (p. 14).

"SearchedFaceBoundingBox": {
"Width": 0.10111111402511597,
"Top": 0.32203391194343567,
"Left": 0.23999999463558197,
"Height": 0.1542372852563858
T
"SearchedFaceConfidence": 98.51010131835938,
"FaceMatches": [
{
"Face": {
"BoundingBox": {
"Width": 0.10111100226640701,
"Top": 0.32203400135040283,
"Left": 0.23999999463558197,
"Height": 0.15423700213432312
Iy
"FaceId": "e0182208-f475-55b4-8d88-cf162509718d",
"ExternalImageId": "example-image.jpg",
"Confidence": 98.51010131835938,
"ImageId": "b5d3f633-1b8c-560a-adfb-08891b6536a0"
T
"Similarity": 99.9808578491211

Searching Faces: Using the AWS SDK for Java

The following AWS SDK for Java code example stores three faces to an Amazon Rekognition face
collection. Then, it searches the face collection for face matches. It shows usage of both searchFaces
and searchFacesByImage APl operations. The code example specifies both the FaceMatchThreshold and
MaxFaces parameters to limit the results returned in the response.

import java.util.List;

import com.amazonaws.AmazonClientException;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.AmazonRekognition;

77

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS SDK for Java

import
import
import
import
import
import
import
import
import
import

public
pub

pub

pub

com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
com.amazonaws.services.rekognition.model.FaceMatch;
com.amazonaws.services.rekognition.model. Image;
com.amazonaws.services.rekognition.model.IndexFacesRequest;
com.amazonaws.services.rekognition.model.IndexFacesResult;
com.amazonaws.services.rekognition.model.S30bject;
com.amazonaws.services.rekognition.model.SearchFacesByImageRequest;
com.amazonaws.services.rekognition.model.SearchFacesByImageResult;
com.amazonaws.services.rekognition.model.SearchFacesRequest;
com.amazonaws.services.rekognition.model.SearchFacesResult;

class SearchFacesExample {fvcihtieviirgce

lic static final String COLLECTION_ID = "collectionid";
lic static final String S3_BUCKET = "S3Bucket";

lic static void main(String[] args) throws Exception {

AWSCredentials credentials;
try {
credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {
throw new AmazonClientException(
"Cannot load the credentials from the credential profiles file. " +
"Please make sure that your credentials file is at the correct " +
"location (/Users/userid/.aws/credentials), and is in a valid format.",
e);

AmazonRekognition amazonRekognition = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST_ 2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

IndexFacesResult indexFacesResult = callIndexFaces(COLLECTION_ID,
amazonRekognition, "imagel.jpg");

//2. Retrieve face ID of the 1lst face added.

String faceId = indexFacesResult.getFaceRecords().stream()
.map(f-> f.getFace().getFaceld())
.findFirst().orElseThrow(()-> new IllegalArgumentException(

"No face found"));

callIndexFaces(COLLECTION_ID, amazonRekognition, "image2.jpg");
callIndexFaces(COLLECTION_ID, amazonRekognition, "image3.jpg");

Float threshold = 70F;
int maxFaces = 2;

//3. Search similar faces for a give face (identified by face ID).

System.out.println("Faces matching FaceId: " + faceId);

SearchFacesResult searchFacesResult = callSearchFaces(COLLECTION_ID,
faceId, threshold, maxFaces, amazonRekognition);

List < FaceMatch > faceMatches = searchFacesResult.getFaceMatches();

for (FaceMatch face: faceMatches) {
System.out.println(face.getFace().toString());
System.out.println();

//4. Get an image object in S3 bucket.

78

Amazon Rekognition Developer Guide
Searching Faces: Using the AWS SDK for Java

String fileName = "imagex.jpg";
Image image = getImageUtil(S3_BUCKET, fileName);

//5. Search collection for faces similar to the largest face in the image.
SearchFacesByImageResult searchFacesByImageResult =
callSearchFacesByImage(COLLECTION_ID, image, threshold, maxFaces,
amazonRekognition);

System.out.println("Faces matching largest face in image " + fileName);
List < FaceMatch > faceImageMatches = searchFacesByImageResult.getFaceMatches();
for (FaceMatch face: faceImageMatches) {
System.out.println(face.getFace().toString());
System.out.println();

}

private static IndexFacesResult callIndexFaces(
String collectionId, AmazonRekognition amazonRekognition, String name) {
IndexFacesRequest req = new IndexFacesRequest()
.withImage(getImageUtil(S3_BUCKET, name))
.withCollectionId(collectionId)
.withExternalImageId(name);

return amazonRekognition.indexFaces(req);

}

private static SearchFacesByImageResult callSearchFacesByImage(String collectionId,
Image image, Float threshold, int maxFaces, AmazonRekognition amazonRekognition
) |
SearchFacesByImageRequest searchFacesByImageRequest = new SearchFacesByImageRequest()
.withCollectionId(collectionId)
.withImage(image)
.withFaceMatchThreshold(threshold)
.withMaxFaces(maxFaces);
return amazonRekognition.searchFacesByImage(searchFacesByImageRequest);

}

private static SearchFacesResult callSearchFaces(String collectionId, String faceId,
Float threshold, int maxFaces, AmazonRekognition amazonRekognition) {
SearchFacesRequest searchFacesRequest = new SearchFacesRequest()
.withCollectionId(collectionId)
.withFaceId(faceId)
.withFaceMatchThreshold(threshold)
.withMaxFaces(maxFaces);
return amazonRekognition.searchFaces(searchFacesRequest);

private static Image getImageUtil(String bucket, String key) {
return new Image()
.withS30bject(new S30bject()
.withBucket(bucket)
.withName(key));

79

Amazon Rekognition Developer Guide
Example 4: Supplying Image Bytes

Example 4: Supplying Image Bytes to Amazon
Rekognition Operations

This section provides AWS SDK examples of supplying image bytes to Amazon Rekognition API
operations by using a file loaded from a local file system. A Rekognition APl operation can analyse an
image provided as base64 encoded image bytes or it can analyze an image retrieved from an Amazon S3
bucket. You pass an image to a Rekognition APl operation by using the Image (p. 175) input parameter.
Within 1mage you specify the Bytes property to pass base64 encoded image bytes or you specify the
S30bject (p. 183) object property to reference an image stored in an S3 bucket.

Image bytes passed to a Rekognition APl operation using the Bytes input parameter must be base64
encoded. The following common AWS SDKs automatically base64 encode images and you do not need to
encode image bytes prior to calling a Rekognition API operation.

» Java

» JavaScript
« Python

« PHP

If you are using another AWS SDK and get an image format error when calling a Rekognition API
operation, try base64 encoding the image bytes before passing them to a Rekognition API operation.

Note
The image does not need to be base64 encoded if you pass an image stored in an s30bject
instead of image bytes.

If you use HTTP to call Amazon Rekognition operations, the image bytes must be a base64-encoded
string. For more information, see Working with Images (p. 30).

The following examples show how to load images from the local file system and supply the image bytes
to a Rekognition operation.

Topics
» Supplying Images: Using the Local File System and Java (p. 80)
» Supplying Images: Using the Local File System and Python (p. 82)
« Supplying Images: Using the Local File System and PHP (p. 82)

Supplying Images: Using the Local File System and
Java

The following Java example shows how to load an image from the local file system and detect labels
using the detectLabels AWS SDK operation.

import java.io.File;

import java.io.FileInputStream;

import java.io.InputStream;

import java.nio.ByteBuffer;

import java.util.List;

import com.amazonaws.services.rekognition.AmazonRekognition;

import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.AmazonClientException;

80

Amazon Rekognition Developer Guide
Supplying Images: Using the Local File System and Java

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.rekognition.model.AmazonRekognitionException;
import com.amazonaws.services.rekognition.model.DetectLabelsRequest;

import com.amazonaws.services.rekognition.model.DetectLabelsResult;

import com.amazonaws.services.rekognition.model.Image;

import com.amazonaws.services.rekognition.model.Label;

import com.amazonaws.util.IOUtils;

public class DetectLabelsExampleImageBytes {
public static void main(String[] args) throws Exception {
String photo="/path/inputimage. jpg";

AWSCredentials credentials;
try |
credentials = new ProfileCredentialsProvider("AdminUser").getCredentials();
} catch (Exception e) {
throw new AmazonClientException("Cannot load the credentials from the
credential profiles file. "
+ "Please make sure that your credentials file is at the correct "
+ "location (/Usersuserid.aws/credentials), and is in a valid format.",

e);
}
ByteBuffer imageBytes;
try (InputStream inputStream = new FileInputStream(new File(photo))) {
imageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
}
AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder
.standard()
.withRegion(Regions.US_WEST_ 2)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();
DetectLabelsRequest request = new DetectLabelsRequest()
.withImage(new Image()
.withBytes(imageBytes))
.withMaxLabels(10)
.withMinConfidence(77F);
try |
DetectLabelsResult result = rekognitionClient.detectLabels(request);
List <Label> labels = result.getLabels();
System.out.println("Detected labels for " + photo);
for (Label label: labels) {
System.out.println(label.getName() + ": " +
label.getConfidence().toString());
}
} catch (AmazonRekognitionException e) {
e.printStackTrace();
}
}

81

Amazon Rekognition Developer Guide
Supplying Images: Using the Local File System and Python

Supplying Images: Using the Local File System and
Python

The following AWS SDK for Python example shows how to load an image from the local file system and
add them to a collection using the IndexFaces operation.

#!/usr/bin/env python

from argparse import ArgumentParser
import boto3
from os import environ

def get_client(endpoint):

key_id = environ.get('AWS_ACCESS_KEY_ID')

secret_key = environ.get('AWS_SECRET_ ACCESS_KEY')

token = environ.get('AWS_SESSION_TOKEN')

if not key_id or not secret_key or not token:

raise Exception('Missing AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, or

AWS_SESSION_TOKEN')

client = boto3.client('rekognition', region_name='us-east-1', endpoint_url=endpoint,
verify=False,

aws_access_key_id=key_id, aws_secret_access_key=secret_key,
aws_session_token=token)
return client

def get_args():
parser = ArgumentParser(description='Call index faces')

parser.add_argument('-e', '--endpoint')
parser.add_argument('-i', '--image')
parser.add_argument('-c', '--collection')

return parser.parse_args()

if _ name_ == '_ _main_ ':
args = get_args()
client = get_client(args.endpoint)
with open(args.image, 'rb') as image:
response = client.index_ faces(Image={'Bytes': image.read()},
CollectionId=args.collection)
print response
print "help"

Supplying Images: Using the Local File System and
PHP

The following AWS SDK for PHP example shows how to load an image from the local file system and call
the DetectFaces API operation.

<?php
require 'path/vendor/autoload.php';

use Aws\Rekognition\RekognitionClient;
$options = [
'region’ => 'us-west-2',
'version' => '2016-06-27",

1;

$rekognition = new RekognitionClient($options);

82

https://aws.amazon.com/sdk-for-python/
http://boto3.readthedocs.org/en/latest/reference/services/rekognition.html#Rekognition.Client.index_faces
http://docs.aws.amazon.com/aws-sdk-php/v3/guide/index.html#getting-started
http://docs.aws.amazon.com/aws-sdk-php/v3/api/api-rekognition-2016-06-27.html#detectfaces

Amazon Rekognition Developer Guide
Supplying Images: Using the Local File System and PHP

#Get local image

$fp_image = fopen('test.png', 'r');

$image = fread($fp_image, filesize('test.png'));
fclose($fp_image);

Call DetectFaces
$result = $rekognition->DetectFaces(array(
'Image' => array(
'Bytes' => $image,
)
'Attributes' => array('ALL')
)
)i

Display info for each detected person
print 'People: Image position and estimated age' . PHP_EOL;
for ($n=0;$n<sizeof($result['FaceDetails']); $n++){

print 'Position: ' . $result['FaceDetails'][$n]['BoundingBox']['Left"']
. $result['FaceDetails'][$n]['BoundingBox']['Top"']
. PHP_EOL

'Age (low): '.$result['FaceDetails'][$n]['AgeRange']['Low']

PHP_EOL

'Age (high): ' . $result['FaceDetails'][$n]['AgeRange']['High']

PHP_EOL . PHP_EOL;

83

Amazon Rekognition Developer Guide
HTTP Headers

APl Reference

This section provides documentation for the Amazon Rekognition APl operations.

HTTP Headers

Beyond the usual HTTP headers, Amazon Rekognition HTTP operations have the following required
headers:

Header Value Description

Content-Type: application/x-amz-json-1.1 Specifies that the request
content is JSON. Also specifies
the JSON version.

X-Amz-Date: <Date> The date used to create the
signature in the Authorization
header. The format must
be ISO 8601 basic in the
YYYYMMDD'T'HHMMSS'Z'
format. For example,
the following date/time
20141123T120000Z is a valid x-
amz-date for use with Amazon
Rekognition.

X-Amz-Target: RekognitionService.<operation> | The target Amazon Rekognition
operation. For example, use
RekognitionService.ListCollections
to call the ListCcollections
operation.

Topics

« Actions (p. 85)
« Data Types (p. 155)

84

Amazon Rekognition Developer Guide
Actions

Actions

The following actions are supported:

CompareFaces (p. 86)
CreateCollection (p. 93)
DeleteCollection (p. 96)
DeleteFaces (p. 99)
DetectFaces (p. 102)
DetectLabels (p. 108)
DetectModerationLabels (p. 115)
GetCelebritylnfo (p. 119)
IndexFaces (p. 122)
ListCollections (p. 130)
ListFaces (p. 133)
RecognizeCelebrities (p. 139)
SearchFaces (p. 145)
SearchFacesBylmage (p. 150)

85

Amazon Rekognition Developer Guide
CompareFaces

CompareFaces

Compares a face in the source input image with each face detected in the target input image.

Note
If the source image contains multiple faces, the service detects the largest face and compares it
with each face detected in the target image.

In response, the operation returns an array of face matches ordered by similarity score in descending
order. For each face match, the response provides a bounding box of the face, facial landmarks, pose
details (pitch, role, and yaw), quality (brightness and sharpness), and confidence value (indicating the
level of confidence that the bounding box contains a face). The response also provides a similarity score,
which indicates how closely the faces match.

Note
By default, only faces with a similarity score of greater than or equal to 80% are returned in the
response. You can change this value by specifying the similarityThreshold parameter.

compareFaces also returns an array of faces that don't match the source image. For each face, it returns
a bounding box, confidence value, landmarks, pose details, and quality. The response also returns
information about the face in the source image, including the bounding box of the face and confidence
value.

If the image doesn't contain Exif metadata, compareFaces returns orientation information for the source
and target images. Use these values to display the images with the correct image orientation.

Note
This is a stateless APl operation. That is, data returned by this operation doesn't persist.

For an example, see Exercise 3: Compare Faces (API) (p. 34).

This operation requires permissions to perform the rekognition:CompareFaces action.

Request Syntax

{
"SimilarityThreshold": number,
"SourceImage": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}l
"TargetImage": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}
¥

Request Parameters

The request accepts the following data in JSON format.

86

Amazon Rekognition Developer Guide
CompareFaces

SimilarityThreshold (p. 86)

The minimum level of confidence in the face matches that a match must meet to be included in the
FaceMatches array.

Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Sourcelmage (p. 86)

The source image, either as bytes or as an S3 object.
Type: Image (p. 175) object

Required: Yes
Targetimage (p. 86)

The target image, either as bytes or as an S3 object.
Type: Image (p. 175) object
Required: Yes

Response Syntax

"FaceMatches": [
{
"Face": {
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
T
"Confidence": number,
"Landmarks": [

{
"Type": "string",
"X": number,
"Y": number
}
1.
"Pose": {

"Pitch": number,
"Roll": number,
"Yaw": number
Iy
"Quality": {
"Brightness": number,
"Sharpness": number
}
Iy
"Similarity": number
}
1,
"SourceImageFace": {
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,

87

Amazon Rekognition Developer Guide
CompareFaces

"Width": number
Iy
"Confidence": number
Iy
"SourceImageOrientationCorrection": "string",
"TargetImageOrientationCorrection": "string",
"UnmatchedFaces": [
{
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
Iy
"Confidence": number,
"Landmarks": [
{
"Type": "string",
"X": number,
"Y": number
}
1,
"Pose": {
"Pitch": number,
"Roll": number,
"Yaw": number
Iy
"Quality": {
"Brightness": number,
"Sharpness": number

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
FaceMatches (p. 87)

An array of faces in the target image that match the source image face. Each compareFacesMatch
object provides the bounding box, the confidence level that the bounding box contains a face, and
the similarity score for the face in the bounding box and the face in the source image.

Type: Array of CompareFacesMatch (p. 163) objects
SourcelmageFace (p. 87)

The face in the source image that was used for comparison.

Type: ComparedSourcelmageFace (p. 162) object
SourcelmageOrientationCorrection (p. 87)

The orientation of the source image (counterclockwise direction). If your application displays the
source image, you can use this value to correct image orientation. The bounding box coordinates
returned in sourceImageFace represent the location of the face before the image orientation is
corrected.

Note
If the source image is in .jpeg format, it might contain exchangeable image (Exif) metadata
that includes the image's orientation. If the Exif metadata for the source image populates

88

Amazon Rekognition Developer Guide
CompareFaces

the orientation field, the value of orientationCorrection is null and the sourceImageFace
bounding box coordinates represent the location of the face after Exif metadata is used to
correct the orientation. Images in .png format don't contain Exif metadata.

Type: String

Valid Values: ROTATE_0 | ROTATE_90 | ROTATE_180 | ROTATE_270
TargetimageOrientationCorrection (p. 87)

The orientation of the target image (in counterclockwise direction). If your application displays

the target image, you can use this value to correct the orientation of the image. The bounding box
coordinates returned in FaceMatches and UnmatchedFaces represent face locations before the image
orientation is corrected.

Note

If the target image is in .jpg format, it might contain Exif metadata that includes the
orientation of the image. If the Exif metadata for the target image populates the
orientation field, the value of orientationcorrection is null and the bounding box
coordinates in FaceMatches and UnmatchedFaces represent the location of the face after
Exif metadata is used to correct the orientation. Images in .png format don't contain Exif
metadata.

Type: String

Valid Values: ROTATE 0 | ROTATE 90 | ROTATE_180 | ROTATE_270
UnmatchedFaces (p. 87)

An array of faces in the target image that did not match the source image face.

Type: Array of ComparedFace (p. 161) objects

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

89

Amazon Rekognition Developer Guide
CompareFaces

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example shows a request that compares a source image (people.img) with a target image
(family.jpg).

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 170
X-Amz-Target: RekognitionService.CompareFaces
X-Amz-Date: 20170105T1654377Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170105/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX
{
"TargetImage":{
"S30bject":{
"Bucket":"example-photos",
"Name" :"family. jpg"
}
}l
"SourcelImage":{
"S30bject":{
"Bucket":"example-photos",
"Name" : "people.jpg"

Sample Response

"FaceMatches": [{
"Face": {
"BoundingBox": {

90

Amazon Rekognition Developer Guide
CompareFaces

"Width": 0.5521978139877319,
"Top": 0.1203877404332161,

"Left": 0.23626373708248138,
"Height": 0.3126954436302185

Iy
"Confidence": 99.98751068115234,
"Pose": {
"Yaw": -82.36799621582031,
"Roll": -62.13221740722656,
"Pitch": 0.8652129173278809
Iy
"Quality": {
"Sharpness": 99.99880981445312,
"Brightness": 54.49755096435547
Iy

"Landmarks": [{
"Y": 0.2996366024017334,
"X": 0.41685718297958374,
"Type": "eyeLeft"

Iy
{
"Y": 0.2658946216106415,
"X": 0.4414493441581726,
"Type": "eyeRight"
Iy
{
"Y": 0.3465650677680969,
"X": 0.48636093735694885,
"Type": "nose"
Iy
{
"Y": 0.30935320258140564,
"X": 0.6251809000968933,
"Type": "mouthLeft"
Iy
{
"Y": 0.26942989230155945,
"X": 0.6454493403434753,
"Type": "mouthRight"
}
]
Iy
"Similarity": 100.0
1
"SourceImageOrientationCorrection": "ROTATE_90",
"TargetImageOrientationCorrection": "ROTATE_90",

"UnmatchedFaces": [{
"BoundingBox": {
"Width": 0.4890109896659851,
"Top": 0.6566604375839233,
"Left": 0.10989011079072952,
"Height": 0.278298944234848

Iy
"Confidence": 99.99992370605469,
"Pose": {
"Yaw": 51.51519012451172,
"Roll": -110.32493591308594,
"Pitch": -2.322134017944336
Iy
"Quality": {
"Sharpness": 99.99671173095703,
"Brightness": 57.23163986206055
Iy

"Landmarks": [{
"Y": 0.8288310766220093,
"X": 0.3133862614631653,

91

Amazon Rekognition Developer Guide
CompareFaces

"Type": "eyeLeft"

Iy

{
"Y": 0.7632885575294495,
"X": 0.28091415762901306,
"Type": "eyeRight"

Iy

{
"Y": 0.7417283654212952,
"X": 0.3631140887737274,
"Type": "nose"

Iy

{
"Y": 0.8081989884376526,
"X": 0.48565614223480225,
"Type": "mouthLeft"

Iy

{
"Y": 0.7548204660415649,
"X": 0.46090251207351685,
"Type": "mouthRight"

}

]
1
"SourceImageFace": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185

},
"Confidence": 99.98751068115234
}
}
See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
« AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

92

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/CompareFaces
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/CompareFaces

Amazon Rekognition Developer Guide
CreateCollection

CreateCollection

Creates a collection in an AWS Region. You can add faces to the collection using the IndexFaces (p. 122)
operation.

For example, you might create collections, one for each of your application users. A user can then index
faces using the 1ndexFaces operation and persist results in a specific collection. Then, a user can search
the collection for faces in the user-specific container.

Note
Collection names are case-sensitive.

For an example, see Example 1: Managing Collections (p. 64).

This operation requires permissions to perform the rekognition:createcollection action.

Request Syntax

"CollectionId": "string"

Request Parameters
The request accepts the following data in JSON format.
Collectionld (p. 93)
ID for the collection that you are creating.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

Response Syntax

"CollectionArn": "string",
"StatusCode": number

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
CollectionArn (p. 93)

Amazon Resource Name (ARN) of the collection. You can use this to manage permissions on your
resources.

93

Amazon Rekognition Developer Guide
CreateCollection

Type: String
StatusCode (p. 93)

HTTP status code indicating the result of the operation.
Type: Integer

Valid Range: Minimum value of 0.

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceAlreadyExistsException

A collection with the specified ID already exists.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request
The following example shows a request that creates a collection named mycollection.

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity

94

Amazon Rekognition Developer Guide
CreateCollection

Content-Length: 32

X-Amz-Target: RekognitionService.CreateCollection

X-Amz-Date: 20170105T155520%

User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82

Content-Type: application/x-amz-json-1.1

Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXX/20170105/us-west-2/

rekognition/aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target,
Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

{"CollectionId": "mycollection"}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Thu, 05 Jan 2017 15:55:22 GMT

x-amzn-RequestId: 5d4c8b73-d35f-11e6-96d5-039839£35287
Content-Length: 99

Connection: keep-alive

{
"CollectionArn":"aws:rekognition:us-west-2:11111111111:collection/mycollection",
"StatusCode":200

}

For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
o AWS SDK for .NET

o AWS SDK for C++

« AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

95

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/CreateCollection
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/CreateCollection

Amazon Rekognition Developer Guide
DeleteCollection

DeleteCollection

Deletes the specified collection. Note that this operation removes all faces in the collection. For an
example, see Example 1: Managing Collections (p. 64).

This operation requires permissions to perform the rekognition:DeleteCollection action.

Request Syntax

"CollectionId": "string"

Request Parameters
The request accepts the following data in JSON format.
Collectionld (p. 96)
ID of the collection to delete.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9 .\-]+

Required: Yes

Response Syntax

"StatusCode": number

Response Elements
If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
StatusCode (p. 96)

HTTP status code that indicates the result of the operation.

Type: Integer

Valid Range: Minimum value of 0.

Errors

AccessDeniedException

You are not authorized to perform the action.

96

Amazon Rekognition Developer Guide
DeleteCollection

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request
The following example shows a request that deletes a collection named mycollection.

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1

Host: rekognition.us-west-2.amazonaws.com

Accept-Encoding: identity

Content-Length: 32

X-Amz-Target: RekognitionService.DeleteCollection

X-Amz-Date: 20170105T170937Z

User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1

Authorization: AWS4-HMAC-SHA256 Credential=XXXXX/us-west-2/rekognition/aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target,

Signature=XXXXXXXXXXXXXXXX

{"CollectionId": "mycollection"}

Sample Response

HTTP/1.1 200 OK
Content-Type: application/x-amz-json-1.1

97

Amazon Rekognition Developer Guide
DeleteCollection

Date: Thu, 05 Jan 2017 17:09:39 GMT

x-amzn-RequestId: bde4e432-d369-11e6-9921-8744f72327ab
Content-Length: 18

Connection: keep-alive

{"StatusCode":200}

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
o AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

98

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/DeleteCollection
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/DeleteCollection

Amazon Rekognition Developer Guide
DeleteFaces

DeleteFaces

Deletes faces from a collection. You specify a collection ID and an array of face IDs to remove from the
collection.

This operation requires permissions to perform the rekognition:DeleteFaces action.

Request Syntax

"CollectionId": "string",
"FaceIds": ["string"]

Request Parameters

The request accepts the following data in JSON format.
Collectionld (p. 99)
Collection from which to remove the specific faces.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9_.\-]+

Required: Yes
Facelds (p. 99)

An array of face IDs to delete.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 4096 items.
Pattern: [0-9a-£]{8}-[0-9a-£]{4}-[0-9a-f]{4}-[0-9a-£]{4}-[0-9a-£]{12}

Required: Yes

Response Syntax

"DeletedFaces": ["string"]

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
DeletedFaces (p. 99)

An array of strings (face IDs) of the faces that were deleted.

99

Amazon Rekognition Developer Guide
DeleteFaces

Type: Array of strings
Array Members: Minimum number of 1 item. Maximum number of 4096 items.

Pattern: [0-9a-£]{8}-[0-9a-£]{4}-[0-9a-£]{4}-[0-9a-f]{4}-[0-9a-£]{12}

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request
The following example shows a request that deletes a face from a collection named examplemyphotos.

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1

Host: rekognition.us-west-2.amazonaws.com

Accept-Encoding: identity

Content-Length: 81

X-Amz-Target: RekognitionService.DeleteFaces

X-Amz-Date: 20170105T170305%Z

User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82

100

Amazon Rekognition Developer Guide
DeleteFaces

Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170105/us-west-2/rekognition/
aws4_request,

SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

{
"FaceIds":[
"11111111-2222-3333-4444-555555555555"
1,
"CollectionId":"examplemyphotos"
}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Thu, 05 Jan 2017 17:03:06 GMT

x-amzn-RequestId: d3c6£630-d368-11e6-96d5-039839f35287
Content-Length: 57

Connection: keep-alive

{
"DeletedFaces":[
"11111111-2222-3333-4444-555555555555"
]
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
o AWS SDK for .NET

o AWS SDK for C++

« AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

101

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/DeleteFaces
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/DeleteFaces

Amazon Rekognition Developer Guide
DetectFaces

DetectFaces

Detects faces within an image (JPEG or PNG) that is provided as input.

For each face detected, the operation returns face details including a bounding box of the face, a
confidence value (that the bounding box contains a face), and a fixed set of attributes such as facial
landmarks (for example, coordinates of eye and mouth), gender, presence of beard, sunglasses, etc.

The face-detection algorithm is most effective on frontal faces. For non-frontal or obscured faces, the
algorithm may not detect the faces or might detect faces with lower confidence.

Note
This is a stateless APl operation. That is, the operation does not persist any data.

For an example, see Exercise 2: Detect Faces (API) (p. 33).

This operation requires permissions to perform the rekognition:DetectFaces action.

Request Syntax

{
"Attributes": ["string"],
"Image": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
¥
}

Request Parameters

The request accepts the following data in JSON format.
Attributes (p. 102)

An array of facial attributes you want to be returned. This can be the default list of attributes or all
attributes. If you don't specify a value for attributes or if you specify ["pEFaULT"], the API returns
the following subset of facial attributes: BoundingBox, Confidence, Pose, Quality and Landmarks. If
you provide ["aLL"], all facial attributes are returned but the operation will take longer to complete.

If you provide both, ["aLL", "DEFAULT"], the service uses a logical AND operator to determine
which attributes to return (in this case, all attributes).

Type: Array of strings
Valid Values: DEFAULT | ALL

Required: No
Image (p. 102)

The image in which you want to detect faces. You can specify a blob or an S3 object.
Type: Image (p. 175) object

Required: Yes

102

Amazon Rekognition Developer Guide
DetectFaces

Response Syntax

"FaceDetails": [
{
"AgeRange": {
"High": number,
"Low": number

I

"Beard": {
"Confidence": number,
"Value": boolean

I

"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number

I

"Confidence": number,

"Emotions": [

{
"Confidence": number,
"Type": "string"

}

1,

"Eyeglasses": {
"Confidence": number,
"Value": boolean

I

"EyesOpen": {
"Confidence": number,
"Value": boolean

I
"Gender": {
"Confidence": number,
"Value": "string"
I
"Landmarks": [
{
"Type": "string",
"X": number,
"Y": number
}
1,

"MouthOpen": {
"Confidence": number,
"Value": boolean

I

"Mustache": {
"Confidence": number,
"Value": boolean

Iy

"Pose": {
"Pitch": number,
"Roll": number,
"Yaw": number

Iy

"Quality": {
"Brightness": number,
"Sharpness": number

Iy

"Smile": {

"Confidence": number,

103

Amazon Rekognition Developer Guide

DetectFaces
"Value": boolean
Iy
"Sunglasses": {
"Confidence": number,
"Value": boolean
}
}
1,
"OrientationCorrection": "string"

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

FaceDetails (p. 103)
Details of each face found in the image.

Type: Array of FaceDetail (p. 169) objects
OrientationCorrection (p. 103)

The orientation of the input image (counter-clockwise direction). If your application displays the
image, you can use this value to correct image orientation. The bounding box coordinates returned
in FaceDetails represent face locations before the image orientation is corrected.

Note

If the input image is in .jpeg format, it might contain exchangeable image (Exif) metadata
that includes the image's orientation. If so, and the Exif metadata for the input image
populates the orientation field, the value of orientationCorrection is null and the
FaceDetails bounding box coordinates represent face locations after Exif metadata is used
to correct the image orientation. Images in .png format don't contain Exif metadata.

Type: String

Valid Values: ROTATE_0 | ROTATE_90 | ROTATE_180 | ROTATE 270

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

104

Amazon Rekognition Developer Guide
DetectFaces

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example shows a request that detects faces in an image (crowd.jpg) stored in an Amazon
S3 bucket (example-photos).

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 77
X-Amz-Target: RekognitionService.DetectFaces
X-Amz-Date: 20170104T233701Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170104/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX
{
"Image":{
"S30bject":{
"Bucket":"example-photos",
"Name" :"crowd. jpg"

Sample Response

HTTP/1.1 200 OK

105

Amazon Rekognition Developer Guide
DetectFaces

Content-Type: application/x-amz-json-1.1

Date: Wed, 04 Jan 2017 23:37:03 GMT

x-amzn-RequestId: b1827570-d2d6-11le6-a51e-73b99a9%bb0b9
Content-Length: 1355

Connection: keep-alive

{
"FaceDetails":[
{

"BoundingBox": {
"Height":0.18000000715255737,
"Left":0.5555555820465088,
"Top":0.33666667342185974,
"Width":0.23999999463558197

Iy

"Confidence":100.0,

"Landmarks":[

{
"Type":"eyeLeft",
"X":0.6394737362861633,
"Y":0.40819624066352844

"Type":"eyeRight",
"X":0.7266660928726196,
"Y":0.41039225459098816

"Type":"nose",
"X":0.6912462115287781,
"Y":0.44240960478782654

"Type":"mouthLeft",
"X":0.6306198239326477,
"Y":0.46700039505958557

"Type":"mouthRight",

"X":0.7215608954429626,

"Y":0.47114261984825134
}

1,

"Pose":{
"Pitch":4.050806522369385,
"Roll":0.9950747489929199,
"Yaw":13.693790435791016

Iy

"Quality":{
"Brightness":37.60169982910156,
"Sharpness":80.0

"BoundingBox": {
"Height":0.16555555164813995,
"Left":0.3096296191215515,
"Top":0.7066666483879089,
"Width":0.22074073553085327

Iy

"Confidence":99.99998474121094,

"Landmarks":[

{
"Type":"eyeLeft",
"X":0.3767718970775604,
"Y":0.7863991856575012

106

Amazon Rekognition Developer Guide
DetectFaces

Iy

{
"Type":"eyeRight",
"X":0.4517287313938141,
"Y":0.7715709209442139

Iy

{
"Type":"nose",
"X":0.42001065611839294,
"Y":0.8192070126533508

Iy

{
"Type":"mouthLeft",
"X":0.3915625810623169,
"Y":0.8374140858650208

Iy

{
"Type":"mouthRight",
"X":0.46825936436653137,
"Y":0.823401689529419

}

1,

"Pose":{
"Pitch":-16.320178985595703,
"Roll":-15.097439765930176,
"Yaw":-5.771541118621826

Iy

"Quality":{
"Brightness":31.440860748291016,
"Sharpness":60.000003814697266

}

}
1,
"OrientationCorrection":"ROTATE_O"
}
See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
« AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

107

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/DetectFaces
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/DetectFaces

Amazon Rekognition Developer Guide
DetectLabels

DetectLabels

Detects instances of real-world labels within an image (JPEG or PNG) provided as input. This includes
objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts like
landscape, evening, and nature. For an example, see Exercise 1: Detect Labels in an Image (API) (p. 31).

For each object, scene, and concept the API returns one or more labels. Each label provides the object
name, and the level of confidence that the image contains the object. For example, suppose the input
image has a lighthouse, the sea, and a rock. The response will include all three labels, one for each
object.

{Name: lighthouse, Confidence: 98.4629}
{Name: rock,Confidence: 79.2097}
{Name: sea,Confidence: 75.061}

In the preceding example, the operation returns one label for each of the three objects. The operation
can also return multiple labels for the same object in the image. For example, if the input image shows a
flower (for example, a tulip), the operation might return the following three labels.

{Name: flower,Confidence: 99.0562}
{Name: plant,Confidence: 99.0562}
{Name: tulip,Confidence: 99.0562}
In this example, the detection algorithm more precisely identifies the flower as a tulip.

You can provide the input image as an S3 object or as base64-encoded bytes. In response, the API
returns an array of labels. In addition, the response also includes the orientation correction. Optionally,
you can specify Minconfidence to control the confidence threshold for the labels returned. The default is
50%. You can also add the MaxT.abels parameter to limit the number of labels returned.

Note
If the object detected is a person, the operation doesn't provide the same facial details that the
DetectFaces (p. 102) operation provides.

This is a stateless APl operation. That is, the operation does not persist any data.

This operation requires permissions to perform the rekognition:DetectLabels action.

Request Syntax

"Image": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}l
"MaxLabels": number,
"MinConfidence": number

Request Parameters

The request accepts the following data in JSON format.

108

Amazon Rekognition Developer Guide
DetectLabels

Image (p. 108)
The input image. You can provide a blob of image bytes or an S3 object.
Type: Image (p. 175) object

Required: Yes
MaxLabels (p. 108)

Maximum number of labels you want the service to return in the response. The service returns the
specified number of highest confidence labels.

Type: Integer
Valid Range: Minimum value of 0.

Required: No
MinConfidence (p. 108)

Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return

any labels with confidence lower than this specified value.

If Minconfidence is not specified, the operation returns labels with a confidence values greater than

or equal to 50 percent.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Response Syntax

{
"Labels": [
{
"Confidence": number,
"Name": "string"
}
]l
"OrientationCorrection": "string"
¥

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
Labels (p. 109)

An array of labels for the real-world objects detected.

Type: Array of Label (p. 177) objects
OrientationCorrection (p. 109)

The orientation of the input image (counter-clockwise direction). If your application displays
the image, you can use this value to correct the orientation. If Amazon Rekognition detects that

109

Amazon Rekognition Developer Guide
DetectLabels

the input image was rotated (for example, by 90 degrees), it first corrects the orientation before
detecting the labels.

Note

If the input image Exif metadata populates the orientation field, Amazon Rekognition does

not perform orientation correction and the value of OrientationCorrection will be null.
Type: String

Valid Values: ROTATE 0 | ROTATE_90 | ROTATE_180 | ROTATE_270

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

110

Amazon Rekognition Developer Guide
DetectLabels

HTTP Status Code: 500

Example

Example Request

The following example shows a request that detects labels in an image (skateboard.jpg) stored in an
Amazon S3 bucket (example-photos).

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 91
X-Amz-Target: RekognitionService.DetectLabels
X-Amz-Date: 20170104T2334057Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170104/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

{
"Image":{
"S30bject":{
"Bucket":"example-photos",
"Name": "skateboard. jpg"
}
}
}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Wed, 04 Jan 2017 23:34:28 GMT

x-amzn-RequestId: 54cd6508-d2d6-1le6-bbda-cfd624bc06b2
Content-Length: 1882

Connection: keep-alive

{
"Labels":[

{
"Confidence":99.25072479248047,

"Name" :"People"

I

{
"Confidence":99.25074005126953,
"Name" :"Person"

I

{
"Confidence":99.2429428100586,
"Name" : "Human"

I

{
"Confidence":99.23795318603516,
"Name" : "Skateboard"

I

Amazon Rekognition Developer Guide
DetectLabels

"Confidence":99.23795318603516,
"Name" :"Sport"

"Confidence":97.44398498535156,
"Name" : "Parking"

"Confidence":97.44398498535156,
"Name" :"Parking Lot"

"Confidence":87.81458282470703,
"Name" : "Automobile"

"Confidence":87.81458282470703,
"Name" : "Car"

"Confidence":87.81458282470703,
"Name" :"Vehicle"

"Confidence":82.21033477783203,
"Name":"Sedan"

"Confidence":78.62909698486328,
"Name" : "Boardwalk"

"Confidence":78.62909698486328,
"Name" :"Path"

"Confidence":78.62909698486328,
"Name" : "Pavement"

"Confidence":78.62909698486328,
"Name" :"Sidewalk"

"Confidence":78.62909698486328,
"Name" : "Walkway"

"Confidence":76.63581085205078,
"Name":"Intersection"

"Confidence":76.63581085205078,
"Name" : "Road"

"Confidence":71.48307800292969,
"Name" : "Coupe"

"Confidence":71.48307800292969,
"Name":"Sports Car"

"Confidence":67.8428726196289,

112

Amazon Rekognition Developer Guide
DetectLabels

"Name" :"Building"

"Confidence":62.91515350341797,
"Name" : "City"

"Confidence":62.91515350341797,
"Name" : "Downtown"

"Confidence":62.91515350341797,
"Name" : "Urban"

"Confidence":62.04115676879883,
"Name" : "Neighborhood"

"Confidence":62.04115676879883,
"Name" : "Town"

"Confidence":61.2546272277832,
"Name" : "Suv"

"Confidence":56.249610900878906,
"Name":"Street"

"Confidence":53.987510681152344,
"Name" :"Metropolis"

"Confidence":52.98323059082031,
"Name" : "Housing"

"Confidence":52.358848571777344,
"Name":"Office Building"

"Confidence":51.10673904418945,
"Name" : "Engine"

"Confidence":51.10673904418945,
"Name" : "Machine"

"Confidence":51.10673904418945,
"Name" :"Motor"

"Confidence":51.06093215942383,
"Name" : "Apartment Building"

"Confidence":51.06093215942383,
"Name":"High Rise"

"Confidence":50.64869689941406,
"Name" :"Pedestrian"

113

Amazon Rekognition Developer Guide
DetectLabels

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
« AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

114

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/DetectLabels
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/DetectLabels

Amazon Rekognition Developer Guide
DetectModerationLabels

DetectModerationLabels

Detects explicit or suggestive adult content in a specified JPEG or PNG format image. Use
DetectModerationLabels to moderate images depending on your requirements. For example, you might
want to filter images that contain nudity, but not images containing suggestive content.

To filter images, use the labels returned by petectModerationLabels to determine which types of
content are appropriate. For information about moderation labels, see Moderating Images (p. 55).

Request Syntax

"Image": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}l

"MinConfidence": number

Request Parameters

The request accepts the following data in JSON format.
Image (p. 115)

The input image as bytes or an S3 object.

Type: Image (p. 175) object

Required: Yes
MinConfidence (p. 115)

Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return
any labels with a confidence level lower than this specified value.

If you don't specify minconfidence, the operation returns labels with confidence values greater than
or equal to 50 percent.

Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

Response Syntax

{
"ModerationLabels": [
{
"Confidence": number,
"Name": "string",
"ParentName": "string"

115

Amazon Rekognition Developer Guide
DetectModerationLabels

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
ModerationLabels (p. 115)

An array of labels for explicit or suggestive adult content found in the image. The list includes
the top-level label and each child label detected in the image. This is useful for filtering specific
categories of content.

Type: Array of ModerationLabel (p. 179) objects

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400

116

Amazon Rekognition Developer Guide
DetectModerationLabels

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Examples

Example Request
The following example shows the request for a etectModerationLabels APl operation.

Sample Request

POST / HTTP/1.1

Host: rekognition.us-west-2.amazonaws.com

Accept-Encoding: identity

Content-Length: 77

X-Amz-Target: RekognitionService.DetectModerationLabels

X-Amz-Date: 20170424T195840%Z

User-Agent: aws-cli/1.11.44 Python/2.7.6 Linux/4.2.0-42-generic botocore/1.5.7
Content-Type: application/x-amz-json-1.1

Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXXXXXXXXXXXXXXXXXXX/20170424/us-west-2/
rekognition/aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target,
Signature=XXXXXXXXXXXXXXXXXXXXXXXXX

{
"Image":{

"S30bject": {
"Bucket":"example-photos",
"Name":"input. jpg"

}

}
}

Example Response
The following example shows the response of a call to DetectmoderationLabels.

Sample Response

{
"ModerationLabels": [

{
"Confidence": 79.03318786621094,
"ParentName": "",
"Name": "Explicit Nudity"

Iy

{
"Confidence": 79.03318786621094,
"ParentName": "Explicit Nudity",
"Name": "Graphic Male Nudity"

Iy

{
"Confidence": 68.99967956542969,
"ParentName": "Explicit Nudity",
"Name": "Sexual Activity"

}

117

Amazon Rekognition Developer Guide
DetectModerationLabels

‘ }

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
« AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

118

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/DetectModerationLabels
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/DetectModerationLabels

Amazon Rekognition Developer Guide
GetCelebritylnfo

GetCelebritylnfo

Gets the name and additional information about a celebrity based on his or her Rekognition ID. The
additional information is returned as an array of URLs. If there is no additional information about the
celebrity, this list is empty. For more information, see Recognizing Celebrities (p. 48).

This operation requires permissions to perform the rekognition:GetcelebrityInfo action.

Request Syntax

"Id": "string"

Request Parameters
The request accepts the following data in JSON format.
Id (p. 119)

The ID for the celebrity. You get the celebrity ID from a call to the RecognizeCelebrities (p. 139)
operation, which recognizes celebrities in an image.

Type: String
Pattern: [0-9A-Za-z]*

Required: Yes

Response Syntax

"Name": "string",
"Urls": ["string"]

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Name (p. 119)
The name of the celebrity.

Type: String
Urls (p. 119)

An array of URLs pointing to additional celebrity information.

Type: Array of strings

119

Amazon Rekognition Developer Guide
GetCelebritylnfo

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request
The following example shows a request that gets information about a celebrity.

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1

Host: rekognition.us-west-2.amazonaws.com

Accept-Encoding: identity

Content-Length: 18

X-Amz-Target: RekognitionService.GetCelebrityInfo

X-Amz-Date: 20170414T184757Z

User-Agent: aws-cli/1.11.47 Python/2.7.9 Windows/8 botocore/1.5.10
Content-Type: application/x-amz-json-1.1

Authorization: AWS4-HMAC-SHA256 Credential=XXXXX/us-west-2/rekognition/aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target,

Signature=XXXXXXXXXXXXXXXXXXX

{"Id": "3IrO0du6"}

120

Amazon Rekognition Developer Guide
GetCelebritylnfo

Sample Response

{

"Name": "Jeff Bezos",

"Urls": ["www.imdb.com/name/nml757263"]
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

« AWS Command Line Interface
o AWS SDK for .NET

o AWS SDK for C++

o AWS SDK for Go

« AWS SDK for Java

o AWS SDK for JavaScript

o AWS SDK for PHP V3

o AWS SDK for Python

« AWS SDK for Ruby V2

121

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/GetCelebrityInfo
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/GetCelebrityInfo

Amazon Rekognition Developer Guide
IndexFaces

IndexFaces

Detects faces in the input image and adds them to the specified collection.

Amazon Rekognition does not save the actual faces detected. Instead, the underlying detection
algorithm first detects the faces in the input image, and for each face extracts facial features
into a feature vector, and stores it in the back-end database. Amazon Rekognition uses feature
vectors when performing face match and search operations using the SearchFaces (p. 145) and
SearchFacesBylmage (p. 150) operations.

If you provide the optional externalimageID for the input image you provided, Amazon Rekognition
associates this ID with all faces that it detects. When you call the ListFaces (p. 133) operation, the
response returns the external ID. You can use this external image ID to create a client-side index to
associate the faces with each image. You can then use the index to find all faces in an image.

In response, the operation returns an array of metadata for all detected faces. This includes, the
bounding box of the detected face, confidence value (indicating the bounding box contains a face),

a face ID assigned by the service for each face that is detected and stored, and an image ID assigned

by the service for the input image. If you request all facial attributes (using the detectionAttributes
parameter, Amazon Rekognition returns detailed facial attributes such as facial landmarks (for example,
location of eye and mount) and other facial attributes such gender. If you provide the same image,
specify the same collection, and use the same external ID in the 1ndexFaces operation, Amazon
Rekognition doesn't save duplicate face metadata.

For an example, see Example 2: Storing Faces (p. 68).

This operation requires permissions to perform the rekognition: IndexFaces action.

Request Syntax

"CollectionId": "string",
"DetectionAttributes": ["string"],
"ExternalImageId": "string",
"Image": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"

Request Parameters
The request accepts the following data in JSON format.

Collectionld (p. 122)

The ID of an existing collection to which you want to add the faces that are detected in the input
images.

Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9_.\-]+

Required: Yes

122

Amazon Rekognition Developer Guide
IndexFaces

DetectionAttributes (p. 122)

An array of facial attributes that you want to be returned. This can be the default list of attributes
or all attributes. If you don't specify a value for attributes or if you specify ["DEFAULT"], the

API returns the following subset of facial attributes: BoundingBox, Confidence, Pose, Quality and
Landmarks. If you provide ["arL"], all facial attributes are returned but the operation will take
longer to complete.

If you provide both, ["arL", "pEFAULT"], the service uses a logical AND operator to determine
which attributes to return (in this case, all attributes).

Type: Array of strings
Valid Values: DEFAULT | ALL

Required: No
Externallmageld (p. 122)

ID you want to assign to all the faces detected in the image.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-270-9 .\-:]+

Required: No
Image (p. 122)

The input image as bytes or an S3 object.
Type: Image (p. 175) object
Required: Yes

Response Syntax

"FaceRecords": [
{
"Face": {
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
Iy
"Confidence": number,
"ExternalImageId": "string",
"FaceId": "string",
"ImageId": "string"
Iy
"FaceDetail": {
"AgeRange": {
"High": number,
"Low": number

I

"Beard": {
"Confidence": number,
"Value": boolean

I

"BoundingBox": {
"Height": number,

123

Amazon Rekognition Developer Guide
IndexFaces

"Left": number,
"Top": number,
"Width": number

I

"Confidence": number,

"Emotions": [

{
"Confidence": number,
"Type": "string"

}

1,

"Eyeglasses": {
"Confidence": number,
"Value": boolean

I

"EyesOpen": {
"Confidence": number,
"Value": boolean

I
"Gender": {
"Confidence": number,
"Value": "string"
I
"Landmarks": [
{
"Type": "string",
"X": number,
"Y": number
}
1,

"MouthOpen": {
"Confidence": number,
"Value": boolean

I

"Mustache": {
"Confidence": number,
"Value": boolean

I

"Pose": {
"Pitch": number,
"Roll": number,
"Yaw": number

I

"Quality": {
"Brightness": number,
"Sharpness": number

I

"Smile": {
"Confidence": number,
"Value": boolean

I

"Sunglasses": {
"Confidence": number,
"Value": boolean

}
1,

"OrientationCorrection": "string"

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

124

Amazon Rekognition Developer Guide
IndexFaces

The following data is returned in JSON format by the service.

FaceRecords (p. 123)

An array of faces detected and added to the collection. For more information, see Storing Faces in a

Face Collection: The IndexFaces Operation (p. 13).

Type: Array of FaceRecord (p. 173) objects
OrientationCorrection (p. 123)

The orientation of the input image (counterclockwise direction). If your application displays the

image, you can use this value to correct image orientation. The bounding box coordinates returned

in FaceRecords represent face locations before the image orientation is corrected.

Note

If the input image is in jpeg format, it might contain exchangeable image (Exif)

metadata. If so, and the Exif metadata populates the orientation field, the value of
OrientationCorrection is null and the bounding box coordinates in FaceRecords represent
face locations after Exif metadata is used to correct the image orientation. Images in .png
format don't contain Exif metadata.

Type: String

Valid Values: ROTATE 0 | ROTATE_90 | ROTATE_180 | ROTATE_270

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

125

Amazon Rekognition Developer Guide
IndexFaces

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example shows a request that adds an image (people.jpg) stored in an Amazon S3 bucket
(examplephotos) to a collection (examplemyphotos).

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 107
X-Amz-Target: RekognitionService.IndexFaces
X-Amz-Date: 20170105T162002Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170105/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

{
"Image":{

"S30bject":{
"Bucket":"example-photos",
"Name" : "people.jpg"

}

}l
"CollectionId":"examplemyphotos"
}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Thu, 05 Jan 2017 16:20:04 GMT

x-amzn-RequestId: cfe5d2f3-d362-11e6-988e-1194c13£d971
Content-Length: 1889

Connection: keep-alive

126

Amazon Rekognition Developer Guide
IndexFaces

"FaceRecords":[

{

"Face":{
"BoundingBox" :{

b

"Height":0.22206704318523407,
"Left":0.503333330154419,
"Top":0.21229049563407898,
"Width":0.17666666209697723

"Confidence":99.9996566772461,
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

b

"FaceDetail":{
"BoundingBox" :{

I

"Height":0.22206704318523407,
"Left":0.503333330154419,
"Top":0.21229049563407898,
"Width":0.17666666209697723

"Confidence":99.9996566772461,
"Landmarks":[

{
"Type":"eyeLeft",
"X":0.5582929253578186,
"Y":0.327402263879776
Iy
{
"Type":"eyeRight",
"X":0.6097898483276367,
"Y":0.28622597455978394
Iy
{
"Type":"nose",
"X":0.6182368993759155,
"Y":0.34145522117614746
Iy
{
"Type":"mouthLeft",
"X":0.5820220708847046,
"Y":0.40035346150398254
Iy
{
"Type":"mouthRight",
"X":0.6310185194015503,
"Y":0.35822394490242004
}

1,

"Pose" :{
"Pitch":-8.25561237335205,
"Roll":-34.76542663574219,
"Yaw" :30.61958122253418

Iy

"Quality":{
"Brightness":45.9112663269043,
"Sharpness":50.0

}

}
"Face":{

"BoundingBox" :{

"Height":0.22067038714885712,
"Left":0.402222216129303,

127

Amazon Rekognition Developer Guide
IndexFaces

"Top":0.3393854796886444,
"Width":0.17555555701255798
Iy
"Confidence":99.9998779296875,
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"
Iy
"FaceDetail":{
"BoundingBox" :{
"Height":0.22067038714885712,
"Left":0.402222216129303,
"Top":0.3393854796886444,
"Width":0.17555555701255798
Iy
"Confidence":99.9998779296875,
"Landmarks":[

{
"Type":"eyeLeft",
"X":0.46082764863967896,
"Y":0.4488079249858856
Iy
{
"Type":"eyeRight",
"X":0.509974479675293,
"Y":0.4110442101955414
Iy
{
"Type":"nose",
"X":0.5182068943977356,
"Y":0.4580079913139343
Iy
{
"Type":"mouthLeft",
"X":0.49137336015701294,
"Y":0.5153146386146545
Iy
{
"Type" :"mouthRight",
"X":0.52939772605896,
"Y":0.4874058663845062
}

1,

"Pose" :{
"Pitch":-12.197214126586914,
"Roll":-33.81959533691406,
"Yaw" :32.57762908935547

Iy

"Quality":{
"Brightness":32.43154525756836,
"Sharpness":40.0

}

}
}
1,
"OrientationCorrection":"ROTATE_O"
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

« AWS Command Line Interface
o AWS SDK for .NET

128

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/IndexFaces

Amazon Rekognition Developer Guide
IndexFaces

AWS SDK for C++

AWS SDK for Go

AWS SDK for Java

AWS SDK for JavaScript
AWS SDK for PHP V3
AWS SDK for Python
AWS SDK for Ruby V2

129

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/IndexFaces
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/IndexFaces

Amazon Rekognition Developer Guide
ListCollections

ListCollections

Returns list of collection IDs in your account. If the result is truncated, the response also provides a
NextToken that you can use in the subsequent request to fetch the next set of collection IDs.

For an example, see Example 1: Managing Collections (p. 64).

This operation requires permissions to perform the rekognition:ListCollections action.

Request Syntax

"MaxResults": number,
"NextToken": "string"

Request Parameters
The request accepts the following data in JSON format.
MaxResults (p. 130)

Maximum number of collection IDs to return.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 4096.

Required: No
NextToken (p. 130)

Pagination token from the previous response.
Type: String
Length Constraints: Maximum length of 255.

Required: No

Response Syntax

"CollectionIds": ["string"],
"NextToken": "string"

Response Elements
If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
Collectionlds (p. 130)

An array of collection IDs.

Type: Array of strings

130

Amazon Rekognition Developer Guide
ListCollections

Length Constraints: Minimum length of 1. Maximum length of 255.

Pattern: [a-zA-Z0-9_.\-]+
NextToken (p. 130)

If the result is truncated, the response provides a NextToken that you can use in the subsequent
request to fetch the next set of collection IDs.

Type: String

Length Constraints: Maximum length of 255.

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidPaginationTokenException

Pagination token in the request is not valid.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example shows a request that lists the available collections.

131

Amazon Rekognition Developer Guide
ListCollections

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: RekognitionService.ListCollections
X-Amz-Date: 20170105T155800Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170105/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

{}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Thu, 05 Jan 2017 15:58:07 GMT

x-amzn-RequestId: bfe63e6c-d35f-11e6-840b-e97493937970
Content-Length: 45

Connection: keep-alive

{

"CollectionIds":[
"mycollection",
"examplemyphotos"

]

}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
o AWS SDK for .NET

o AWS SDK for C++

o AWS SDK for Go

« AWS SDK for Java

« AWS SDK for JavaScript

e AWS SDK for PHP V3

o AWS SDK for Python

« AWS SDK for Ruby V2

132

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/ListCollections
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/ListCollections

Amazon Rekognition Developer Guide
ListFaces

ListFaces

Returns metadata for faces in the specified collection. This metadata includes information such as the
bounding box coordinates, the confidence (that the bounding box contains a face), and face ID. For an
example, see Example 3: Searching Faces (p. 75).

This operation requires permissions to perform the rekognition:ListFaces action.

Request Syntax

{
"CollectionId": "string",
"MaxResults": number,
"NextToken": "string"

¥

Request Parameters
The request accepts the following data in JSON format.
Collectionld (p. 133)
ID of the collection from which to list the faces.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9 .\-]+

Required: Yes
MaxResults (p. 133)

Maximum number of faces to return.
Type: Integer
Valid Range: Minimum value of 0. Maximum value of 4096.

Required: No
NextToken (p. 133)

If the previous response was incomplete (because there is more data to retrieve), Amazon
Rekognition returns a pagination token in the response. You can use this pagination token to retrieve
the next set of faces.

Type: String
Length Constraints: Maximum length of 255.

Required: No

Response Syntax

<

133

Amazon Rekognition Developer Guide
ListFaces

"Faces": [
{
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
Iy
"Confidence": number,
"ExternalImageId": "string",
"FaceId": "string",
"ImageId": "string"
}
1,

"NextToken": "string"

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
Faces (p. 133)

An array of Face objects.

Type: Array of Face (p. 167) objects
NextToken (p. 133)

If the response is truncated, Amazon Rekognition returns this token that you can use in the
subsequent request to retrieve the next set of faces.

Type: String

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidPaginationTokenException

Pagination token in the request is not valid.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400

134

Amazon Rekognition Developer Guide
ListFaces

ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request
The following example shows a request that lists the faces in a collection (examplemyphotos).

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 28
X-Amz-Target: RekognitionService.ListFaces
X-Amz-Date: 20170104T2320327Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170104/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

{"CollectionId": "examplemyphotos"}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Wed, 04 Jan 2017 23:20:33 GMT

x-amzn-RequestId: 63d76916-d2d4-11e6-aa8b-8bcb9b9028b4
Content-Length: 3440

Connection: keep-alive

{
"Faces":[
{

"BoundingBox": {
"Height":0.14222200214862823,
"Left":-0.06083089858293533,
"Top":0.2477779984474182,
"Width":0.18991099298000336

135

Amazon Rekognition Developer Guide
ListFaces

"Confidence":99.99889373779297,
"ExternalImageId":"externalimageidONE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.1644439995288849,
"Left":0.4376850128173828,
"Top":0.22555600106716156,
"Width":0.22106799483299255
Iy
"Confidence":99.2842025756836,
"ExternalImageId":"externalimageidTwO",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.1599999964237213,
"Left":0.643172025680542,
"Top":0.11999999731779099,
"Width":0.20998500287532806
Iy
"Confidence":99.99870300292969,
"ExternalImageId":"externalimageidTHREE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.10555599629878998,
"Left":0.5014839768409729,
"Top":0.22777800261974335,
"Width":0.14243300259113312
Iy
"Confidence":99.9761962890625,
"ExternalImageId":"externalimageidONE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.10888899862766266,
"Left":0.8056380152702332,
"Top":0.21555599570274353,
"Width":0.1454010009765625
Iy
"Confidence":99.94869995117188,
"ExternalImageId":"externalimageidONE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.12999999523162842,
"Left":0.5430560111999512,
"Top":0.2544440031051636,
"Width":0.16249999403953552
Iy
"Confidence":99.97720336914062,
"ExternalImageId":"externalimageidFOUR",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

136

Amazon Rekognition Developer Guide
ListFaces

"BoundingBox": {
"Height":0.2055560052394867,
"Left":0.12166199833154678,
"Top":-0.06888890266418457,
"Width":0.27448099851608276
Iy
"Confidence":100.0,
"ExternalImageId":"externalimageidFIVE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox":{
"Height":0.1622219979763031,
"Left":0.18942700326442719,
"Top":0.008888890035450459,
"Width":0.21292200684547424
Iy
"Confidence":99.96389770507812,
"ExternalImageId":"externalimageidSIX",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.11222200095653534,
"Left":0.04154299944639206,
"Top":0.01888890005648136,
"Width":0.149851992726326
Iy
"Confidence":99.99949645996094,
"ExternalImageId":"externalimageidSEVEN",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.04222220182418823,
"Left":0.46696001291275024,
"Top":0.8944439888000488,
"Width":0.05580030009150505
Iy
"Confidence":90.60900115966797,
"ExternalImageId":"externalimageidSIX",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox":{
"Height":0.3222219944000244,
"Left":0.24332299828529358,
"Top":0.22333300113677979,
"Width":0.43026700615882874
Iy
"Confidence":99.97339630126953,
"ExternalImageId":"externalimageidFIVE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

"BoundingBox": {
"Height":0.09666670113801956,
"Left":0.04154299944639206,
"Top":0.05444439873099327,
"Width":0.12907999753952026

b

137

Amazon Rekognition Developer Guide
ListFaces

"Confidence":99.99909973144531,
"ExternalImageId":"externalimageidONE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
« AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

138

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/ListFaces
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/ListFaces

Amazon Rekognition Developer Guide
RecognizeCelebrities

RecognizeCelebrities

Returns an array of celebrities recognized in the input image. The image is passed either as base64-
encoded image bytes or as a reference to an image in an Amazon S3 bucket. The image must be either a
PNG or JPEG formatted file. For more information, see Recognizing Celebrities (p. 48).

RecognizeCelebrities returns the 15 largest faces in the image. It lists recognized celebrities in the
CelebrityFaces list and unrecognized faces in the unrecognizedraces list. The operation doesn't return
celebrities whose face sizes are smaller than the largest 15 faces in the image.

For each celebrity recognized, the API returns a celebrity object. The celebrity object contains the
celebrity name, ID, URL links to additional information, match confidence, and a comparedrace object
that you can use to locate the celebrity's face on the image.

Rekognition does not retain information about which images a celebrity has been recognized
in. Your application must store this information and use the celebrity ID property as a unique
identifier for the celebrity. If you don't store the celebrity name or additional information URLs
returned by Recognizecelebrities, you will need the ID to identify the celebrity in a call to the
GetCelebritylnfo (p. 119) operation.

For an example, see Recognizing Celebrities in an Image (p. 50).

This operation requires permissions to perform the rekognition:RecognizeCelebrities operation.

Request Syntax

{
"Image": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}
}

Request Parameters

The request accepts the following data in JSON format.
Image (p. 139)
The input image to use for celebrity recognition.
Type: Image (p. 175) object

Required: Yes

Response Syntax

"CelebrityFaces": [

{
"Face": {
"BoundingBox": {

139

Amazon Rekognition Developer Guide
RecognizeCelebrities

"Height": number,
"Left": number,
"Top": number,
"Width": number

I

"Confidence": number,

"Landmarks": [

{
"Type": "string",
"X": number,
"Y": number
}
1,
"Pose": {
"Pitch": number,
"Roll": number,
"Yaw": number
Iy

"Quality": {
"Brightness": number,
"Sharpness": number

}

Iy

"Id": "string",

"MatchConfidence": number,

"Name": "string",

"Urls": ["string"]

}
1,
"OrientationCorrection": "string",
"UnrecognizedFaces": [

{

"BoundingBox": {
"Height": number,
"Left": number,

"Top": number,

"Width": number

Iy

"Confidence": number,

"Landmarks": [

{

"Type": "string",
"X": number,
"Y": number

}

1,

"Pose": {

"Pitch": number,

"Roll": number,

"Yaw": number

Iy

"Quality": {
"Brightness": number,
"Sharpness": number

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

140

Amazon Rekognition Developer Guide
RecognizeCelebrities

CelebrityFaces (p. 139)

Details about each celebrity found in the image. Amazon Rekognition can detect a maximum of 15
celebrities in an image.

Type: Array of Celebrity (p. 160) objects
OrientationCorrection (p. 139)

The orientation of the input image (counterclockwise direction). If your application displays the
image, you can use this value to correct the orientation. The bounding box coordinates returned in
CelebrityFaces and UnrecognizedFaces represent face locations before the image orientation is
corrected.

Note

If the input image is in .jpeg format, it might contain exchangeable image (Exif) metadata
that includes the image's orientation. If so, and the Exif metadata for the input image
populates the orientation field, the value of orientationCorrection is null and the
CelebrityFaces and UnrecognizedFaces bounding box coordinates represent face locations
after Exif metadata is used to correct the image orientation. Images in .png format don't
contain Exif metadata.

Type: String

Valid Values: ROTATE_0 | ROTATE_90 | ROTATE_180 | ROTATE_270
UnrecognizedFaces (p. 139)

Details about each unrecognized face in the image.

Type: Array of ComparedFace (p. 161) objects

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400

141

Amazon Rekognition Developer Guide
RecognizeCelebrities

InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the API operation
again.

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example recognizes celebrities in an image (image.jpg) stored in an Amazon S3 bucket
(photo-collection).

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1

Host: rekognition.us-west-2.amazonaws.com

Accept-Encoding: identity

Content-Length: 83

X-Amz-Target: RekognitionService.RecognizeCelebrities

X-Amz-Date: 20170414T195420Z

User-Agent: aws-cli/1.11.47 Python/2.7.9 Windows/8 botocore/1.5.10

Content-Type: application/x-amz-json-1.1

Authorization: AWS4-HMAC-SHA256 Credential=XXXX/20170414/us-west-2/rekognition/

aws4_request, SignedHeaders=content-type;host;x-amz-date;x-amz-target,
Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

{
"Image": {
"S30bject": {
"Bucket": "photo-collection",
"Name": "image.jpg"
}
}
¥

Sample Response

"CelebrityFaces": [{
"Face": {

142

Amazon Rekognition Developer Guide
RecognizeCelebrities

"BoundingBox": {
"Height": 0.617123007774353,
"Left": 0.15641026198863983,
"Top": 0.10864841192960739,
"Width": 0.3641025722026825
Iy
"Confidence": 99.99589538574219,
"Landmarks": [{
"Type": "eyeLeft",
"X": 0.2837241291999817,
"Y": 0.3637104034423828
A
"Type": "eyeRight",
"X": 0.4091649055480957,
"Y": 0.37378931045532227
A
"Type": "nose",
"X": 0.35267341136932373,
"Y": 0.49657556414604187
A
"Type": "mouthLeft",
"X": 0.2786353826522827,
"Y": 0.5455248355865479
A
"Type": "mouthRight",
"X": 0.39566439390182495,
"Y": 0.5597742199897766
1
"Pose": {
"Pitch": -7.749263763427734,
"Roll": 2.004552125930786,
"Yaw": 9.012002944946289
Iy
"Quality": {
"Brightness": 32.69192123413086,
"Sharpness": 99.9305191040039
}
Iy
"Id": "3Iro0odu6",
"MatchConfidence": 98.0,
"Name": "Jeff Bezos",
"Urls": ["www.imdb.com/name/nml757263"]
1
"OrientationCorrection": "ROTATE_O",
"UnrecognizedFaces": [{
"BoundingBox": {
"Height": 0.5345501899719238,
"Left": 0.48461538553237915,
"Top": 0.16949152946472168,
"Width": 0.3153846263885498
Iy
"Confidence": 99.92860412597656,
"Landmarks": [{
"Type": "eyeLeft",
"X": 0.5863404870033264,
"Y": 0.36940744519233704

A

"Type": "eyeRight",

"X": 0.6999204754829407,

"Y": 0.3769848346710205
A

"Type": "nose",

"X": 0.6349524259567261,

"Y": 0.4804527163505554
A

"Type": "mouthLeft",

143

Amazon Rekognition Developer Guide
RecognizeCelebrities

"X": 0.5872702598571777,
"Y": 0.5535582304000854

A
"Type": "mouthRight",
"X": 0.6952020525932312,
"Y": 0.5600858926773071

1

"Pose": {
"Pitch": -7.386096477508545,
"Roll": 2.304218292236328,
"Yaw": -6.175624370574951

Iy

"Quality": {
"Brightness": 37.16635513305664,
"Sharpness": 99.884521484375

iy

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS Command Line Interface
« AWS SDK for .NET

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for JavaScript

o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

144

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/RecognizeCelebrities
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/RecognizeCelebrities

Amazon Rekognition Developer Guide
SearchFaces

SearchFaces

For a given input face ID, searches for matching faces in the collection the face belongs to. You get a
face ID when you add a face to the collection using the IndexFaces (p. 122) operation. The operation
compares the features of the input face with faces in the specified collection.

Note
You can also search faces without indexing faces by using the searchFacesByImage operation.

The operation response returns an array of faces that match, ordered by similarity score with the highest
similarity first. More specifically, it is an array of metadata for each face match that is found. Along

with the metadata, the response also includes a confidence value for each face match, indicating the
confidence that the specific face matches the input face.

For an example, see Example 3: Searching Faces (p. 75).

This operation requires permissions to perform the rekognition:SearchFaces action.

Request Syntax

{
"CollectionId": "string",
"FaceId": "string",
"FaceMatchThreshold": number,
"MaxFaces": number

}

Request Parameters
The request accepts the following data in JSON format.
Collectionld (p. 145)
ID of the collection the face belongs to.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9_.\-]+

Required: Yes
Faceld (p. 145)

ID of a face to find matches for in the collection.
Type: String
Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Required: Yes
FaceMatchThreshold (p. 145)

Optional value specifying the minimum confidence in the face match to return. For example, don't
return any matches where confidence in matches is less than 70%.

Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

145

Amazon Rekognition Developer Guide
SearchFaces

MaxFaces (p. 145)

Maximum number of faces to return. The operation returns the maximum number of faces with the
highest confidence in the match.

Type: Integer
Valid Range: Minimum value of 1. Maximum value of 4096.

Required: No

Response Syntax

{
"FaceMatches": [
{
"Face": {
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
}I
"Confidence": number,
"ExternalImageId": "string",
"FaceId": "string",
"ImageId": "string"
}I
"Similarity": number
}
]l
"SearchedFaceId": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
FaceMatches (p. 146)
An array of faces that matched the input face, along with the confidence in the match.

Type: Array of FaceMatch (p. 172) objects
SearchedFaceld (p. 146)

ID of the face that was searched for matches in a collection.
Type: String

Pattern: [0-9a-£]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-£]{12}

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400

146

Amazon Rekognition Developer Guide
SearchFaces

InternalServerError
Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400
ThrottlingException

Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example shows a request that searches for occurrences of a face within the collection
(examplemyphotos) the face belongs to.

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1
Host: rekognition.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 78
X-Amz-Target: RekognitionService.SearchFaces
X-Amz-Date: 20170105T1632062Z
User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82
Content-Type: application/x-amz-json-1.1
Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/20170105/us-west-2/rekognition/
aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

"FaceId":"11111111-2222-3333-4444-555555555555",
"CollectionId":"examplemyphotos"

Sample Response

HTTP/1.1 200 OK

147

Amazon Rekognition Developer Guide
SearchFaces

Content-Type: application/x-amz-json-1.1

Date: Thu, 05 Jan 2017 16:32:08 GMT

x-amzn-RequestId: 80269055-d364-11e6-9e9d-9b236fb2a3ad
Content-Length: 1057

Connection: keep-alive

{

"FaceMatches": [
{
"Face":{
"BoundingBox" :{
"Height":0.1622219979763031,
"Left":0.18942700326442719,
"Top":0.008888890035450459,
"Width":0.21292200684547424
Iy
"Confidence":99.96389770507812,
"ExternalImageId":"externalimageidONE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"
Iy
"Similarity":95.46002197265625
Iy
{
"Face":{
"BoundingBox" :{
"Height":0.09666670113801956,
"Left":0.04154299944639206,
"Top":0.05444439873099327,
"Width":0.12907999753952026
Iy
"Confidence":99.99909973144531,
"ExternalImageId":"externalimageidTwWoO",
"FaceId":"22222222-2222-3333-4444-555555555555",
"ImageId":"22222222-2222-3333-4444-555555555555"
Iy
"Similarity":92.89849090576172
Iy
{
"Face":{
"BoundingBox" :{
"Height":0.11222200095653534,
"Left":0.04154299944639206,
"Top":0.01888890005648136,
"Width":0.149851992726326
Iy
"Confidence":99.99949645996094,
"ExternalImageId":"externalimageidTHREE",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"
Iy
"Similarity":92.22525024414062
}

1,
"SearchedFaceId":"11111111-2222-3333-4444-555555555555"

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

« AWS Command Line Interface
o AWS SDK for .NET

148

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/SearchFaces

Amazon Rekognition Developer Guide
SearchFaces

AWS SDK for C++

AWS SDK for Go

AWS SDK for Java

AWS SDK for JavaScript
AWS SDK for PHP V3
AWS SDK for Python
AWS SDK for Ruby V2

149

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/SearchFaces
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/SearchFaces

Amazon Rekognition Developer Guide
SearchFacesBylmage

SearchFacesBylmage

For a given input image, first detects the largest face in the image, and then searches the specified
collection for matching faces. The operation compares the features of the input face with faces in the
specified collection.

Note

To search for all faces in an input image, you might first call the IndexFaces (p. 122) operation,
and then use the face IDs returned in subsequent calls to the SearchFaces (p. 145) operation.
You can also call the petectFaces operation and use the bounding boxes in the response to
make face crops, which then you can pass in to the searchFacesByImage operation.

The response returns an array of faces that match, ordered by similarity score with the highest similarity
first. More specifically, it is an array of metadata for each face match found. Along with the metadata,
the response also includes a similarity indicating how similar the face is to the input face. In the
response, the operation also returns the bounding box (and a confidence level that the bounding box
contains a face) of the face that Amazon Rekognition used for the input image.

For an example, see Example 3: Searching Faces (p. 75).

This operation requires permissions to perform the rekognition:SearchFacesByImage action.

Request Syntax

"CollectionId": "string",
"FaceMatchThreshold": number,
"Image": {
"Bytes": blob,
"S30bject": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}l

"MaxFaces": number

Request Parameters

The request accepts the following data in JSON format.
Collectionld (p. 150)
ID of the collection to search.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-Z0-9 .\-]+

Required: Yes
FaceMatchThreshold (p. 150)

(Optional) Specifies the minimum confidence in the face match to return. For example, don't return
any matches where confidence in matches is less than 70%.

Type: Float

150

Amazon Rekognition Developer Guide
SearchFacesBylmage

Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Image (p. 150)

The input image as bytes or an S3 object.
Type: Image (p. 175) object

Required: Yes
MaxFaces (p. 150)

Maximum number of faces to return. The operation returns the maximum number of faces with the
highest confidence in the match.

Type: Integer
Valid Range: Minimum value of 1. Maximum value of 4096.

Required: No

Response Syntax

{
"FaceMatches": [
{
"Face": {
"BoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
}V
"Confidence": number,
"ExternalImageId": "string",
"FaceId": "string",
"ImageId": "string"
}I
"Similarity": number
}
]l
"SearchedFaceBoundingBox": {
"Height": number,
"Left": number,
"Top": number,
"Width": number
}l
"SearchedFaceConfidence": number
¥

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
FaceMatches (p. 151)

An array of faces that match the input face, along with the confidence in the match.

151

Amazon Rekognition Developer Guide
SearchFacesBylmage

Type: Array of FaceMatch (p. 172) objects
SearchedFaceBoundingBox (p. 151)

The bounding box around the face in the input image that Amazon Rekognition used for the search.

Type: BoundingBox (p. 158) object
SearchedFaceConfidence (p. 151)

The level of confidence that the searchedFaceBoundingBox, contains a face.
Type: Float

Valid Range: Minimum value of 0. Maximum value of 100.

Errors

AccessDeniedException
You are not authorized to perform the action.

HTTP Status Code: 400
ImageTooLargeException

The input image size exceeds the allowed limit. For more information, see Limits in Amazon
Rekognition (p. 186).

HTTP Status Code: 400
InternalServerError

Amazon Rekognition experienced a service issue. Try your call again.

HTTP Status Code: 500
InvalidimageFormatException

The provided image format is not supported.

HTTP Status Code: 400
InvalidParameterException

Input parameter violated a constraint. Validate your parameter before calling the APl operation
again.

HTTP Status Code: 400
InvalidS30bjectException

Amazon Rekognition is unable to access the S3 object specified in the request.

HTTP Status Code: 400
ProvisionedThroughputExceededException

The number of requests exceeded your throughput limit. If you want to increase this limit, contact
Amazon Rekognition.

HTTP Status Code: 400
ResourceNotFoundException

Collection specified in the request is not found.

HTTP Status Code: 400

152

Amazon Rekognition Developer Guide
SearchFacesBylmage

ThrottlingException
Amazon Rekognition is temporarily unable to process the request. Try your call again.

HTTP Status Code: 500

Example

Example Request

The following example shows a request that determines the largest face in the supplied image
(people.img) and scans a collection (examplemyphotos) for matching faces.

Sample Request

POST https://rekognition.us-west-2.amazonaws.com/ HTTP/1.1

Host: rekognition.us-west-2.amazonaws.com

Accept-Encoding: identity

Content-Length: 107

X-Amz-Target: RekognitionService.SearchFacesByImage

X-Amz-Date: 20170105T1625527

User-Agent: aws-cli/1.11.25 Python/2.7.9 Windows/8 botocore/1.4.82

Content-Type: application/x-amz-json-1.1

Authorization: AWS4-HMAC-SHA256 Credential=XXXXXXXX/us-west-2/rekognition/aws4_request,
SignedHeaders=content-type;host;x-amz-date;x-amz-target, Signature=XXXXXXXX

{
"Image":{

"S30bject": {
"Bucket":"example-photos",
"Name" : "people.jpg"

}

T
"CollectionId":"examplemyphotos"
}

Sample Response

HTTP/1.1 200 OK

Content-Type: application/x-amz-json-1.1

Date: Thu, 05 Jan 2017 16:25:54 GMT

x-amzn-RequestId: a0cl3bb0-d363-11e6-86be-1d11e90c3£85
Content-Length: 1460

Connection: keep-alive

{
"FaceMatches":[
{
"Face":{
"BoundingBox" :{
"Height":0.2220669984817505,
"Left":0.5033329725265503,
"Top":0.21229000389575958,
"Width":0.1766670048236847
Iy
"Confidence":99.99970245361328,
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"

153

Amazon Rekognition Developer Guide
SearchFacesBylmage

"Similarity":100.0
Iy
{
"Face":{
"BoundingBox" :{
"Height":0.1622219979763031,
"Left":0.18942700326442719,
"Top":0.008888890035450459,
"Width":0.21292200684547424
Iy
"Confidence":99.96389770507812,
"ExternalImageId":"jadenoah2",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"
Iy
"Similarity":95.46002960205078
Iy
{
"Face":{
"BoundingBox" :{
"Height":0.09666670113801956,
"Left":0.04154299944639206,
"Top":0.05444439873099327,
"Width":0.12907999753952026
Iy
"Confidence":99.99909973144531,
"ExternalImageId":"jadegarrettelinoah",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"
Iy
"Similarity":92.89849090576172
Iy
{
"Face":{
"BoundingBox" :{
"Height":0.11222200095653534,
"Left":0.04154299944639206,
"Top":0.01888890005648136,
"Width":0.149851992726326
Iy
"Confidence":99.99949645996094,
"ExternalImageId":"noahjade",
"FaceId":"11111111-2222-3333-4444-555555555555",
"ImageId":"11111111-2222-3333-4444-555555555555"
Iy
"Similarity":92.22525787353516
}
1,
"SearchedFaceBoundingBox" :{
"Height":0.22206704318523407,
"Left":0.503333330154419,
"Top":0.21229049563407898,
"Width":0.17666666209697723

T
"SearchedFaceConfidence":99.9996566772461
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

« AWS Command Line Interface
o AWS SDK for .NET

154

http://docs.aws.amazon.com/goto/aws-cli/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/DotNetSDKV3/rekognition-2016-06-27/SearchFacesByImage

Amazon Rekognition Developer Guide
Data Types

o AWS SDK for C++

« AWS SDK for Go

o AWS SDK for Java

o AWS SDK for JavaScript
o AWS SDK for PHP V3

« AWS SDK for Python

o AWS SDK for Ruby V2

Data Types

The following data types are supported:

« AgeRange (p. 156)

« Beard (p. 157)

« BoundingBox (p. 158)

o Celebrity (p. 160)

« ComparedFace (p. 161)

» ComparedSourcelmageFace (p. 162)
o CompareFacesMatch (p. 163)
« Emotion (p. 164)

« Eyeglasses (p. 165)

» EyeOpen (p. 166)

« Face (p. 167)

« FaceDetail (p. 169)

« FaceMatch (p. 172)

« FaceRecord (p. 173)

o Gender (p. 174)

» Image (p. 175)

« ImageQuality (p. 176)

o Label (p. 177)

o Landmark (p. 178)

« ModerationLabel (p. 179)
« MouthOpen (p. 180)

« Mustache (p. 181)

o Pose (p. 182)

o S30bject (p. 183)

o Smile (p. 184)

» Sunglasses (p. 185)

155

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/AWSJavaScriptSDK/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/SdkForPHPV3/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/boto3/rekognition-2016-06-27/SearchFacesByImage
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/SearchFacesByImage

Amazon Rekognition Developer Guide
AgeRange

AgeRange
Structure containing the estimated age range, in years, for a face.

Rekognition estimates an age-range for faces detected in the input image. Estimated age ranges can
overlap; a face of a 5 year old may have an estimated range of 4-6 whilst the face of a 6 year old may
have an estimated range of 4-8.

Contents
High
The highest estimated age.
Type: Integer
Valid Range: Minimum value of 0.

Required: No
Low

The lowest estimated age.
Type: Integer
Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

156

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/AgeRange
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/AgeRange
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/AgeRange
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/AgeRange

Amazon Rekognition Developer Guide
Beard

Beard

Indicates whether or not the face has a beard, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the face has beard or not.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

157

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Beard
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Beard
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Beard
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Beard

Amazon Rekognition Developer Guide
BoundingBox

BoundingBox

Identifies the bounding box around the object or face. The 1eft (x-coordinate) and top (y-coordinate) are
coordinates representing the top and left sides of the bounding box. Note that the upper-left corner of
the image is the origin (0,0).

The top and 1eft values returned are ratios of the overall image size. For example, if the input image is
700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API returns a left
value of 0.5 (350/700) and a top value of 0.25 (50/200).

The width and height values represent the dimensions of the bounding box as a ratio of the overall
image dimension. For example, if the input image is 700x200 pixels, and the bounding box width is 70
pixels, the width returned is 0.1.

Note

The bounding box coordinates can have negative values. For example, if Amazon Rekognition is
able to detect a face that is at the image edge and is only partially visible, the service can return
coordinates that are outside the image bounds and, depending on the image edge, you might
get negative values or values greater than 1 for the 1eft or top values.

Contents

Height
Height of the bounding box as a ratio of the overall image height.
Type: Float

Required: No
Left

Left coordinate of the bounding box as a ratio of overall image width.
Type: Float

Required: No
Top

Top coordinate of the bounding box as a ratio of overall image height.
Type: Float

Required: No
Width

Width of the bounding box as a ratio of the overall image width.
Type: Float

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++
o AWS SDK for Go

158

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/BoundingBox
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/BoundingBox

Amazon Rekognition Developer Guide
BoundingBox

o AWS SDK for Java
« AWS SDK for Ruby V2

159

http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/BoundingBox
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/BoundingBox

Amazon Rekognition Developer Guide
Celebrity

Celebrity

Provides information about a celebrity recognized by the RecognizeCelebrities (p. 139) operation.

Contents

Face
Provides information about the celebrity's face, such as its location on the image.
Type: ComparedFace (p. 161) object

Required: No

A unique identifier for the celebrity.
Type: String
Pattern: [0-9A-Za-z]*

Required: No
MatchConfidence

The confidence, in percentage, that Rekognition has that the recognized face is the celebrity.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Name

The name of the celebrity.
Type: String

Required: No
Urls

An array of URLs pointing to additional information about the celebrity. If there is no additional
information about the celebrity, this list is empty.

Type: Array of strings

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

160

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Celebrity
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Celebrity
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Celebrity
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Celebrity

Amazon Rekognition Developer Guide
ComparedFace

ComparedFace

Provides face metadata for target image faces that are analysed by compareFaces and
RecognizeCelebrities.

Contents

BoundingBox
Bounding box of the face.
Type: BoundingBox (p. 158) object

Required: No
Confidence

Level of confidence that what the bounding box contains is a face.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Landmarks

An array of facial landmarks.
Type: Array of Landmark (p. 178) objects

Required: No
Pose

Indicates the pose of the face as determined by its pitch, roll, and yaw.
Type: Pose (p. 182) object

Required: No
Quality

Identifies face image brightness and sharpness.
Type: ImageQuality (p. 176) object

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

o AWS SDK for Ruby V2

161

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/ComparedFace
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/ComparedFace
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/ComparedFace
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/ComparedFace

Amazon Rekognition Developer Guide
ComparedSourcelmageFace

ComparedSourcelmageFace

Type that describes the face Amazon Rekognition chose to compare with the faces in the target. This
contains a bounding box for the selected face and confidence level that the bounding box contains a
face. Note that Amazon Rekognition selects the largest face in the source image for this comparison.

Contents

BoundingBox
Bounding box of the face.
Type: BoundingBox (p. 158) object

Required: No
Confidence

Confidence level that the selected bounding box contains a face.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

162

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/ComparedSourceImageFace
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/ComparedSourceImageFace
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/ComparedSourceImageFace
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/ComparedSourceImageFace

Amazon Rekognition Developer Guide
CompareFacesMatch

CompareFacesMatch

Provides information about a face in a target image that matches the source image face analysed
by compareFaces. The Face property contains the bounding box of the face in the target image. The
similarity property is the confidence that the source image face matches the face in the bounding box.

Contents

Face

Provides face metadata (bounding box and confidence that the bounding box actually contains a
face).

Type: ComparedFace (p. 161) object

Required: No
Similarity

Level of confidence that the faces match.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

163

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/CompareFacesMatch
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/CompareFacesMatch
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/CompareFacesMatch
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/CompareFacesMatch

Amazon Rekognition Developer Guide
Emotion

Emotion

The emotions detected on the face, and the confidence level in the determination. For example, HAPPY,
SAD, and ANGRY.

Contents
Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Type
Type of emotion detected.
Type: String
Valid Values: HAPPY | SAD | ANGRY | CONFUSED | DISGUSTED | SURPRISED | CALM | UNKNOWN

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

« AWS SDK for Java

o AWS SDK for Ruby V2

164

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Emotion
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Emotion
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Emotion
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Emotion

Amazon Rekognition Developer Guide
Eyeglasses

Eyeglasses

Indicates whether or not the face is wearing eye glasses, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the face is wearing eye glasses or not.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

165

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Eyeglasses
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Eyeglasses
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Eyeglasses
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Eyeglasses

Amazon Rekognition Developer Guide
EyeOpen

EyeOpen
Indicates whether or not the eyes on the face are open, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the eyes on the face are open.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

166

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/EyeOpen
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/EyeOpen
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/EyeOpen
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/EyeOpen

Amazon Rekognition Developer Guide
Face

Face

Describes the face properties such as the bounding box, face ID, image ID of the input image, and
external image ID that you assigned.

Contents

BoundingBox
Bounding box of the face.
Type: BoundingBox (p. 158) object

Required: No
Confidence

Confidence level that the bounding box contains a face (and not a different object such as a tree).
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Externallmageld

Identifier that you assign to all the faces in the input image.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 255.
Pattern: [a-zA-20-9_.\-:]+

Required: No
Faceld

Unique identifier that Amazon Rekognition assigns to the face.
Type: String
Pattern: [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Required: No
Imageld

Unique identifier that Amazon Rekognition assigns to the input image.
Type: String
Pattern: [0-9a-£]{8}-[0-9a-£]{4}-[0-9a-£]{4}-[0-9a-£]{4}-[0-9a-£]{12}

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

167

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Face

Amazon Rekognition Developer Guide
Face

« AWS SDK for Go
« AWS SDK for Java
o AWS SDK for Ruby V2

168

http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Face
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Face
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Face

Amazon Rekognition Developer Guide
FaceDetail

FaceDetail

Structure containing attributes of the face that the algorithm detected.

Contents

AgeRange

The estimated age range, in years, for the face. Low represents the lowest estimated age and High
represents the highest estimated age.

Type: AgeRange (p. 156) object

Required: No
Beard

Indicates whether or not the face has a beard, and the confidence level in the determination.
Type: Beard (p. 157) object

Required: No
BoundingBox

Bounding box of the face.
Type: BoundingBox (p. 158) object

Required: No
Confidence

Confidence level that the bounding box contains a face (and not a different object such as a tree).
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Emotions

The emotions detected on the face, and the confidence level in the determination. For example,
HAPPY, SAD, and ANGRY.

Type: Array of Emotion (p. 164) objects

Required: No
Eyeglasses

Indicates whether or not the face is wearing eye glasses, and the confidence level in the
determination.

Type: Eyeglasses (p. 165) object

Required: No
EyesOpen

Indicates whether or not the eyes on the face are open, and the confidence level in the
determination.

Type: EyeOpen (p. 166) object

169

Amazon Rekognition Developer Guide
FaceDetail

Required: No
Gender

Gender of the face and the confidence level in the determination.
Type: Gender (p. 174) object

Required: No
Landmarks

Indicates the location of landmarks on the face.
Type: Array of Landmark (p. 178) objects

Required: No
MouthOpen

Indicates whether or not the mouth on the face is open, and the confidence level in the
determination.

Type: MouthOpen (p. 180) object

Required: No
Mustache

Indicates whether or not the face has a mustache, and the confidence level in the determination.
Type: Mustache (p. 181) object

Required: No
Pose

Indicates the pose of the face as determined by its pitch, roll, and yaw.
Type: Pose (p. 182) object

Required: No
Quality

Identifies image brightness and sharpness.
Type: ImageQuality (p. 176) object

Required: No
Smile

Indicates whether or not the face is smiling, and the confidence level in the determination.
Type: Smile (p. 184) object

Required: No
Sunglasses

Indicates whether or not the face is wearing sunglasses, and the confidence level in the
determination.

Type: Sunglasses (p. 185) object

Required: No

170

Amazon Rekognition Developer Guide
FaceDetail

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

« AWS SDK for Java

o AWS SDK for Ruby V2

171

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/FaceDetail
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/FaceDetail
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/FaceDetail
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/FaceDetail

Amazon Rekognition Developer Guide
FaceMatch

FaceMatch

Provides face metadata. In addition, it also provides the confidence in the match of this face with the
input face.

Contents

Face

Describes the face properties such as the bounding box, face ID, image ID of the source image, and
external image ID that you assigned.

Type: Face (p. 167) object

Required: No
Similarity

Confidence in the match of this face with the input face.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

172

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/FaceMatch
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/FaceMatch
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/FaceMatch
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/FaceMatch

Amazon Rekognition Developer Guide
FaceRecord

FaceRecord

Object containing both the face metadata (stored in the back-end database) and facial attributes that are
detected but aren't stored in the database.

Contents

Face

Describes the face properties such as the bounding box, face ID, image ID of the input image, and
external image ID that you assigned.

Type: Face (p. 167) object

Required: No
FaceDetail

Structure containing attributes of the face that the algorithm detected.
Type: FaceDetail (p. 169) object

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

173

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/FaceRecord
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/FaceRecord
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/FaceRecord
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/FaceRecord

Amazon Rekognition Developer Guide
Gender

Gender

Gender of the face and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Gender of the face.
Type: String
Valid Values: MALE | FEMALE

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

« AWS SDK for Java

o AWS SDK for Ruby V2

174

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Gender
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Gender
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Gender
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Gender

Amazon Rekognition Developer Guide
Image

Image
Provides the input image either as bytes or an S3 object.

You pass image bytes to a Rekognition APl operation by using the Bytes property. For example, you
would use the Bytes property to pass an image loaded from a local file system. Image bytes passed by
using the Bytes property must be base64-encoded. Your code may not need to encode image bytes if
you are using an AWS SDK to call Rekognition APl operations. For more information, see Example 4:
Supplying Image Bytes to Amazon Rekognition Operations (p. 80).

You pass images stored in an S3 bucket to a Rekognition API operation by using the s3object property.
Images stored in an S3 bucket do not need to be base64-encoded.

The region for the S3 bucket containing the S3 object must match the region you use for Amazon
Rekognition operations.

If you use the Amazon CLI to call Amazon Rekognition operations, passing image bytes using the Bytes
property is not supported. You must first upload the image to an Amazon S3 bucket and then call the
operation using the S30bject property.

For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object.
For more information, see Resource-Based Policies (p. 42).

Contents

Bytes
Blob of image bytes up to 5 MBs.
Type: Base64-encoded binary data object
Length Constraints: Minimum length of 1. Maximum length of 5242880.

Required: No
S30bject

Identifies an S3 object as the image source.
Type: S30bject (p. 183) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

175

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Image
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Image
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Image
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Image

Amazon Rekognition Developer Guide
ImageQuality

ImageQuality
Identifies face image brightness and sharpness.

Contents

Brightness

Value representing brightness of the face. The service returns a value between 0 and 100 (inclusive).
A higher value indicates a brighter face image.

Type: Float

Required: No
Sharpness

Value representing sharpness of the face. The service returns a value between 0 and 100 (inclusive).
A higher value indicates a sharper face image.

Type: Float

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

176

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/ImageQuality
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/ImageQuality
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/ImageQuality
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/ImageQuality

Amazon Rekognition Developer Guide
Label

Label

Structure containing details about the detected label, including name, and level of confidence.

Contents

Confidence
Level of confidence.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Name

The name (label) of the object.
Type: String

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

177

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Label
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Label
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Label
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Label

Amazon Rekognition Developer Guide
Landmark

Landmark

Indicates the location of the landmark on the face.
Contents

Type
Type of the landmark.
Type: String

Valid Values: EYE LEFT | EYE_RIGHT | NOSE | MOUTH_LEFT | MOUTH_RIGHT | LEFT EYEBROW_LEFT
| LEFT_EYEBROW_RIGHT | LEFT_EYEBROW _UP | RIGHT EYEBROW_LEFT | RIGHT EYEBROW_RIGHT

| RIGHT_EYEBROW UP | LEFT EYE LEFT | LEFT_EYE_RIGHT | LEFT EYE UP | LEFT_EYE_DOWN

| RIGHT_EYE_LEFT | RIGHT EYE RIGHT | RIGHT EYE UP | RIGHT_EYE_DOWN | NOSE_LEFT |
NOSE_RIGHT | MOUTH UP | MOUTH_DOWN | LEFT_PUPIL | RIGHT PUPIL

Required: No

x-coordinate from the top left of the landmark expressed as the ration of the width of the image.
For example, if the images is 700x200 and the x-coordinate of the landmark is at 350 pixels, this
value is 0.5.

Type: Float

Required: No

y-coordinate from the top left of the landmark expressed as the ration of the height of the image.
For example, if the images is 700x200 and the y-coordinate of the landmark is at 100 pixels, this
value is 0.5.

Type: Float

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

o AWS SDK for Ruby V2

178

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Landmark
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Landmark
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Landmark
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Landmark

Amazon Rekognition Developer Guide
ModerationLabel

ModerationLabel

Provides information about a single type of moderated content found in an image. Each type of
moderated content has a label within a hierarchical taxonomy. For more information, see Moderating
Images (p. 55).

Contents

Confidence
Specifies the confidence that Amazon Rekognition has that the label has been correctly identified.

If you don't specify the Minconfidence parameter in the call to petectModerationLabels, the
operation returns labels with a confidence value greater than or equal to 50 percent.

Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Name

The label name for the type of content detected in the image.
Type: String

Required: No
ParentName

The name for the parent label. Labels at the top-level of the hierarchy have the parent label .
Type: String

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

» AWS SDK for Ruby V2

179

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/ModerationLabel
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/ModerationLabel
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/ModerationLabel
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/ModerationLabel

Amazon Rekognition Developer Guide
MouthOpen

MouthOpen

Indicates whether or not the mouth on the face is open, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the mouth on the face is open or not.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

180

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/MouthOpen
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/MouthOpen
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/MouthOpen
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/MouthOpen

Amazon Rekognition Developer Guide
Mustache

Mustache

Indicates whether or not the face has a mustache, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the face has mustache or not.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

181

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Mustache
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Mustache
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Mustache
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Mustache

Amazon Rekognition Developer Guide
Pose

Pose

Indicates the pose of the face as determined by its pitch, roll, and yaw.

Contents

Pitch
Value representing the face rotation on the pitch axis.
Type: Float
Valid Range: Minimum value of -180. Maximum value of 180.

Required: No
Roll

Value representing the face rotation on the roll axis.
Type: Float
Valid Range: Minimum value of -180. Maximum value of 180.

Required: No
Yaw

Value representing the face rotation on the yaw axis.
Type: Float
Valid Range: Minimum value of -180. Maximum value of 180.

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

182

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Pose
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Pose
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Pose
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Pose

Amazon Rekognition Developer Guide
S30bject

S30bject

Provides the S3 bucket name and object name.

The region for the S3 bucket containing the S3 object must match the region you use for Amazon
Rekognition operations.

For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object.
For more information, see Resource-Based Policies (p. 42).

Contents

Bucket
Name of the S3 bucket.
Type: String
Length Constraints: Minimum length of 3. Maximum length of 255.
Pattern: [0-9A-Za-2z\.\-_]*

Required: No
Name

S3 object key name.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No
Version

If the bucket is versioning enabled, you can specify the object version.
Type: String
Length Constraints: Minimum length of 1. Maximum length of 1024.

Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

o AWS SDK for C++

o AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

183

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/S3Object
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/S3Object
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/S3Object
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/S3Object

Amazon Rekognition Developer Guide
Smile

Smile

Indicates whether or not the face is smiling, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the face is smiling or not.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

184

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Smile
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Smile
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Smile
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Smile

Amazon Rekognition Developer Guide
Sunglasses

Sunglasses

Indicates whether or not the face is wearing sunglasses, and the confidence level in the determination.

Contents

Confidence
Level of confidence in the determination.
Type: Float
Valid Range: Minimum value of 0. Maximum value of 100.

Required: No
Value

Boolean value that indicates whether the face is wearing sunglasses or not.
Type: Boolean

Required: No

See Also

For more information about using this APl in one of the language-specific AWS SDKs, see the following:

« AWS SDK for C++

» AWS SDK for Go

o AWS SDK for Java

« AWS SDK for Ruby V2

185

http://docs.aws.amazon.com/goto/SdkForCpp/rekognition-2016-06-27/Sunglasses
http://docs.aws.amazon.com/goto/SdkForGoV1/rekognition-2016-06-27/Sunglasses
http://docs.aws.amazon.com/goto/SdkForJava/rekognition-2016-06-27/Sunglasses
http://docs.aws.amazon.com/goto/SdkForRubyV2/rekognition-2016-06-27/Sunglasses

Amazon Rekognition Developer Guide

Limits in Amazon Rekognition

The following is a list of limits in Amazon Rekognition:

Maximum image size stored as an Amazon S3 object is limited to 15 MB. The minimum pixel resolution
for height and width is 80 pixels.

Maximum images size as raw bytes passed in as parameter to an APl is 5 MB.

Amazon Rekognition supports the PNG and JPEG image formats. That is, the images you provide
as input to various APl operations, such as betectLabels and IndexFaces must be in one of the
supported formats.

Maximum number of faces you can store in a single face collection is 1 million.
The maximum matching faces the search API returns is 4096.

186

Amazon Rekognition Developer Guide

Document History for Amazon

Rekognition

The following table describes the documentation for this release of Amazon Rekognition.

« API version: 2017-02-09
 Latest documentation update: April 19th, 2017

Change

Celebrity Recognition

Image Moderation

Age Range for Detected Faces

Aggregated Rekognition Metrics
Pane

Description

Amazon Rekognition can now
analyze images for celebrities.
For more information, see
Recognizing Celebrities (p. 48).

Amazon Rekognition can now
determine if an image contains
explicit or suggestive adult
content. For more information,
see ??? (p. 55).

Amazon Rekognition now
returns the estimated age
range, in years, for faces
detected by the Rekognition
API. For more information, see
AgeRange (p. 156).

The Rekognition console now
has a metrics pane showing

activity graphs for an aggregate
of Amazon CloudWatch metrics
for Rekognition over a specified

period of time. For more
information, see Exercise
4: See Aggregated Metrics
(Console) (p. 29).

Date

In this release

April 19th, 2017

February 9th, 2017

187

Amazon Rekognition Developer Guide

Change Description Date

New service and guide This is the initial release of the November 30, 2016
image analysis service, Amazon
Rekognition, and the Amazon
Rekognition Developer Guide.

188

Amazon Rekognition Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

189

http://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Rekognition
	Table of Contents
	What Is Amazon Rekognition?
	Are You a First-Time Amazon Rekognition User?

	Amazon Rekognition: How It Works
	Non-Storage API Operations
	Detecting Labels and Faces
	Detecting Labels
	Detecting Faces

	Comparing Faces

	Storage-Based API Operations: Storing Faces and Searching Face Matches
	Managing Face Collections
	Storing Faces in a Face Collection: The IndexFaces Operation
	Searching Faces in a Face Collection

	Getting Started with Amazon Rekognition
	Step 1: Set Up an AWS Account and Create an Administrator User
	Sign up for AWS
	Create an IAM User
	Next Step

	Step 2: Set Up the AWS Command Line Interface (AWS CLI)
	Next Step

	Step 3: Getting Started Using the Amazon Rekognition Console
	Exercise 1: Detect Objects and Scenes in an Image (Console)
	Detect Objects and Scenes in an Image You Provide

	Exercise 2: Analyze Faces in an Image (Console)
	Analyze Faces in an Image You Provide

	Exercise 3: Compare Faces in Images (Console)
	Compare Faces in an Image You Provide

	Exercise 4: See Aggregated Metrics (Console)

	Step 4: Getting Started Using the API
	Using the AWS SDK or HTTP to Call Amazon Rekognition API Operations
	Formatting the AWS CLI Examples
	Working with Images
	Recommendations for Facial Recognition Input Images

	Exercise 1: Detect Labels in an Image (API)
	Exercise 2: Detect Faces (API)
	Exercise 3: Compare Faces (API)

	Authentication and Access Control for Amazon Rekognition
	Authentication
	Access Control
	Overview of Managing Access Permissions to Your Amazon Rekognition Resources
	Amazon Rekognition Resources and Operations
	Understanding Resource Ownership
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, and Principals
	Specifying Conditions in a Policy

	Using Identity-Based Policies (IAM Policies) for Amazon Rekognition
	Permissions Required to Use the Amazon Rekognition Console
	AWS Managed (Predefined) Policies for Amazon Rekognition
	Customer Managed Policy Examples
	Example 1: Allow a User Read-Only Access to Resources
	Example 2: Allow a User Full Access to Resources

	Amazon Rekognition API Permissions: Actions, Permissions, and Resources Reference

	Recognizing Celebrities
	Calling RecognizeCelebrities
	Recognizing Celebrities in an Image
	Prerequisites

	Getting Information about a Celebrity
	Prerequisites

	Moderating Images
	Detecting Moderation Labels
	Prerequisites

	Monitoring
	Monitoring Rekognition
	Using CloudWatch Metrics for Rekognition
	

	Access Rekognition Metrics
	Create an Alarm

	CloudWatch Metrics for Rekognition
	CloudWatch Metrics for Rekognition
	CloudWatch Dimension for Rekognition

	Additional Amazon Rekognition Examples
	Example 1: Managing Collections
	Creating, Listing, and Deleting Collections: Using the AWS CLI
	Creating, Listing, and Deleting Face Collections: Using the AWS SDK for Java

	Example 2: Storing Faces
	Storing Faces: Using the AWS CLI
	Storing Faces: Using the AWS SDK for Java

	Example 3: Searching Faces
	Searching Faces: Using the AWS CLI
	Searching Faces: Using the AWS SDK for Java

	Example 4: Supplying Image Bytes to Amazon Rekognition Operations
	Supplying Images: Using the Local File System and Java
	Supplying Images: Using the Local File System and Python
	Supplying Images: Using the Local File System and PHP

	API Reference
	HTTP Headers
	Actions
	CompareFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	CreateCollection
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	DeleteCollection
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	DeleteFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	DetectFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	DetectLabels
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	DetectModerationLabels
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Example Request
	Sample Request

	Example Response
	Sample Response

	See Also

	GetCelebrityInfo
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	IndexFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	ListCollections
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	ListFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	RecognizeCelebrities
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	SearchFaces
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	SearchFacesByImage
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Example
	Example Request
	Sample Request
	Sample Response

	See Also

	Data Types
	AgeRange
	Contents
	See Also

	Beard
	Contents
	See Also

	BoundingBox
	Contents
	See Also

	Celebrity
	Contents
	See Also

	ComparedFace
	Contents
	See Also

	ComparedSourceImageFace
	Contents
	See Also

	CompareFacesMatch
	Contents
	See Also

	Emotion
	Contents
	See Also

	Eyeglasses
	Contents
	See Also

	EyeOpen
	Contents
	See Also

	Face
	Contents
	See Also

	FaceDetail
	Contents
	See Also

	FaceMatch
	Contents
	See Also

	FaceRecord
	Contents
	See Also

	Gender
	Contents
	See Also

	Image
	Contents
	See Also

	ImageQuality
	Contents
	See Also

	Label
	Contents
	See Also

	Landmark
	Contents
	See Also

	ModerationLabel
	Contents
	See Also

	MouthOpen
	Contents
	See Also

	Mustache
	Contents
	See Also

	Pose
	Contents
	See Also

	S3Object
	Contents
	See Also

	Smile
	Contents
	See Also

	Sunglasses
	Contents
	See Also

	Limits in Amazon Rekognition
	Document History for Amazon Rekognition
	AWS Glossary

