
  

Mathematical Logic
Part One



  

Question: How do we formalize the logic
we've been using in our proofs?



  

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Friday/Monday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this 

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.



  

More Propositions

● I stay out too late.
● Got nothing in my brain.
● That's what people say.
● You should've known better than to mess 

with me.
● I'm gonna love ya like a black widow.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half is 
a valid 

proposition.

The first half is 
a valid 

proposition.

Jibberish cannot 
be true or 

false.

Jibberish cannot 
be true or 

false.



  

Propositional Logic

● Propositional logic is a mathematical system 
for reasoning about propositions and how they 
relate to one another.

● Every statement in propositional logic consists 
of propositional variables combined via 
propositional connectives.
● Each variable represents some proposition, such as 

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you liked it, then you should have put a 
ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.



  

Truth Tables

● A truth table is a table showing the 
truth value of a propositional logic 
formula as a function of its inputs.

● Useful for several reasons:
● Formally defining what a connective 

“means.”
● Deciphering what a complex propositional 

formula means.



  

The Truth Table Tool



  

Summary of Important Points

● The ∨ operator is an inclusive “or.” It's 
true if at least one of the operands is 
true.
● Similar to the || operator in C, C++, Java and 

the or operator in Python.

● If we need an exclusive “or” operator, we 
can build it out of what we already have.



  

Mathematical Implication



  

Implication

● The → connective is used to represent 
implications.
● Its technical name is the material 

conditional operator.

● What is its truth table?



  

Why This Truth Table?

● The truth values of the → are the way they are 
because they're defined that way.

● We want p → q to mean “whenever p is true, q 
is true as well.”

● The only way this doesn't happen is if p is true 
and q is false.

● In other words, p → q should be true whenever 
¬(p ∧ ¬q) is true.

● What's the truth table for ¬(p ∧ ¬q)?



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The only way for 
p   q to be false is →

for p to be true and 
q to be false. 

Otherwise, p  → q is by 
definition true.

The only way for 
p   q to be false is →

for p to be true and 
q to be false. 

Otherwise, p  → q is by 
definition true.



  

The Biconditional Operator



  

The Biconditional Operator

● The biconditional operator ↔ is used to 
represent a two-directional implication.

● Specifically, p ↔ q means that p implies q 
and q implies p.

● What should its truth table look like?



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like p 
∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Just ask!



  

Time-Out for Announcements!



  

Graded Assignments

● Problem Set 1 and Problem Set 2 
Checkpoints are graded and available 
online through Scoryst.

● Be sure to review the feedback and not 
just the grade – you'll get a lot more out 
of this course if you do!



  

Solution Sets

● Problem Set 1 solutions, Problem Set 2 
Checkpoint solutions, and Discussion 
Problems 2 solutions are all available in 
hardcopy outside.

● Missed lecture? Pick them up in the filing 
cabinet in the Gates B wing.

● SCPD students – you should get copies of 
these handouts soon.



  

Stanford HOPES

● Stanford HOPES 
(Huntington's Outreach 
Program for Education, at 
Stanford) is looking for web 
designers, graphic 
designers, and researchers 
for this academic year.

● Check out their website at 
http://hopes.stanford.edu.

● Interested? Contact Kristen 
Powers at
kapowers@stanford.edu.

http://hopes.stanford.edu/
mailto:kapowers@stanford.edu


  

Some Logistics

● Maesen and I will be at the Grace Hopper 
Conference for the rest of this week.
● Stephen Macke (smacke@cs.stanford.edu) is 

acting as Head TA while Maesen is out.
● Kevin Crain will be giving Friday's lecture on 

logic.

● I will be a lot slower at responding to 
emails – sorry for the inconvenience!

mailto:smacke@cs.stanford.edu


  

Your Questions



  

A Quick Note on Questions



  

“How important is discrete math compared 
to calculus in the math world? In your 

opinion, what should be taught first,set 
theory or limits?”



  

“How important is it to learn LaTeX?
I know some people that use it and
wondered if it would be worth it to

learn it.”



  

“I really want to have a portfolio before my 
senior year and am seriously thinking of 
taking a gap year to really 'find myself' 

with computer science. Do you recommend 
this? How can I best utilize a gap year?”



  

“I find it very hard to engage with the 
material. Can you give some words of 

inspiration to make me excited about sets, 
induction, graphs, etc?”



  

Back to CS103!



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

“I won't see the lunar 
eclipse if I don't get up 

early this morning.”

“I won't see the lunar 
eclipse if I don't get up 

early this morning.”

¬a → ¬d

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse



  

“p if q”

translates to

q → p

It does not translate to

p → q



  

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

“If I get up early this 
morning, but it's cloudy 
outside, I won't see the 

lunar eclipse.

“If I get up early this 
morning, but it's cloudy 
outside, I won't see the 

lunar eclipse.

a ∧ ¬c → ¬d



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!

● Many prepositional phrases lead to 
counterintuitive translations; make sure 
to double-check yourself!



  

Propositional Equivalences



  

Quick Question

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q  
● These two equivalences are called De Morgan's 

Laws.



  

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth 
tables, we say that they're equivalent to one 
another.

● We denote this by writing

 ¬(p ∧ q)  ≡  ¬p ∨ ¬q  
● The ≡ symbol is not a connective. It's related to ↔, 

but it's not the same:
● The statement ¬(p ∧ q)  ≡  ¬p ∨ ¬q means “these 

formulas are equivalent.”
● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional 

formula. If you plug in different values of p and q, it will 
evaluate to a truth value. It just happens to evaluate to 
true every time.



  

An Important Equivalence

● Earlier, we talked about the truth table 
for p → q. We chose it so that

    p → q    ≡    ¬(p ∧ ¬q)
● Later on, this equivalence will be 

incredibly useful:

¬(p → q)    ≡    p ∧ ¬q      



  

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q    ≡    ¬(p ∧ ¬q)
● By De Morgan's laws:

       p → q ≡ ¬(p ∧ ¬q)

       p → q ≡ ¬p ∨ ¬¬q

       p → q ≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q



  

Another Important Equivalence

● Here's a useful equivalence. Start with

p → q    ≡    ¬(p ∧ ¬q)
● By De Morgan's laws:

       p → q ≡ ¬(p ∧ ¬q)

       p → q ≡ ¬p ∨ ¬¬q

       p → q ≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

Next Time

● First-Order Logic
● Translating into Logic
● Manipulating Logical Statements
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