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Short Running Title:  Advanced Background Modeling: A Systematic Survey 

Abstract: Background modeling is currently used to detect moving objects in video acquired from static cameras. Numerous 
statistical methods have been developed over the recent years. The aim of this paper is firstly to provide an extended and 
updated survey of the recent researches and patents which concern statistical background modeling and secondly to achieve a 
comparative evaluation. For this, we firstly classified the statistical methods in term of category. Then, the original methods are 
reminded and discussed following the challenges met in video sequences. We classified their respective improvements in term 
of strategies used. Furthermore, we discussed them in term of the critical situations they claim to handle. Finally, we conclude 
with several promising directions for future research. The survey also discussed relevant patents. 
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1. INTRODUCTION 

 Different applications such as video surveillance [1], 
optical motion capture [2-4] and multimedia [5-7] need 
firstly to model the background and then to detect the 
moving objects. One way to obtain the background is to 
acquire a background image which doesn't include any 
moving object but in some environment the background is 
not available. Furthermore, it can always be changed under 
critical situations like illumination changes, objects being 
introduced or removed from the scene. To take into account 
these problems, many background modeling methods have 
been developed [8, 9] and these methods can be classified in 
the following categories:  

- Basic Background Modeling: In this case, the 
background is modeled using the average [10] or the 
median [11] or the histogram analysis over time [12].  

- Statistical Background Modeling: The background is 
modeled using a single Gaussian [13] or a Mixture of 
Gaussians [14] or a Kernel Density Estimation [15]. 
Statistical variables are used to classify the pixels as 
foreground or background.  

- Fuzzy Background Modeling: The background is 
modeled using a fuzzy running average [16] or Type-2 
fuzzy mixture of Gaussians [17]. Foreground detection 
is made using the Sugeno integral [18] or the Choquet 
integral [19]. The foreground detection can be 
performed by fuzzy inferences [335]. 
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- Background Clustering: The background model 
supposes that each pixel in the frame can be represented 
temporally by clusters. Incoming pixels are matched 
against the corresponding cluster group and are 
classified according to whether the matching cluster is 
considered part of the background. The clustering 
approach consists in using K-mean algorithm [361] or 
using Codebook [362]. 

- Neural Network Background Modeling: The 
background is represented by mean of the weights of a 
neural network suitably trained on N clean frames. The 
network learns how to classify each pixel as background 
or foreground [332][333].  

- Wavelet Background Modeling: The background model 
is defined in the temporal domain, utilizing the 
coefficients of discrete wavelet transform (DWT) [336]. 

- Background Estimation: The background is estimated 
using a filter. Any pixel of the current image that 
deviates significantly from its predicted value is 
declared foreground. This filter may be a Wiener filter 
[20], a Kalman filter [21] or a Tchebychev filter [22]. 

 
Table 1 shows an overview of this classification. The first 
column indicates the category and the second column the 
name of each method. The number of papers counted for 
each method is indicated in the parenthesis. The third 
column gives the name of the authors who have made the 
main publication for the corresponding method and the date 
of the related publication. Other classifications can be found 
in term of prediction [23], recursion [1], adaptation [24], or 
modality [25].  

 



Table 1.  Background Modeling Methods: An Overview 
 

Category Methods   Authors - Dates 
Basic Background Modeling  Mean (11) 

Median (13) 
Histogram over time (13) 

Lee et al. (2002) [10] 
Mac Farlane et al. (1995) [11] 
Zheng et al. (2006) [12] 

Statistical Background Modeling Single Gaussian  (33) 
Mixture of Gaussians  (217) 
Kernel Density Estimation (5) 

Wren et al. (1997) [13] 
Stauffer and Grimson (1999) [14] 
Elgammal et al. (2000) [15] 

Fuzzy Background Modeling Fuzzy Running Average (5) 
Type-2 Fuzzy Mixture of Gaussians (3) 

Sigari et al. (2008) [16] 
El Baf et al. (2008) [17] 

Background Clustering K-Means (11) 
Codebook (35) 

Butler et al. (2003) [361] 
Kim et al. (2005) [362] 

Neural Network Background Modeling General Regression Neural Network (1) 
Self Organizing Neural Network (9) 

Culibrk et al. (2006) [332] 
Maddalena and Petrosino (2007) [333] 

Wavelet Background Modeling Discrete Wavelet Transform Biswas et al. [336] 
Background Estimation Wiener Filter (1) 

Kalman Filter (19) 
Tchebychev Filter (3) 

Toyama et al. (1999) [20] 
Messelodi et al. (2005) [21] 
Chang et al. (2004) [22] 

All these modeling approaches are used in background 
subtraction context which presents the following steps and 
issues: background modeling, background initialization, 
background maintenance, foreground detection, choice of the 
feature size (pixel, a block or a cluster), choice of the feature 
type (color features, edge features, stereo features, motion 
features and texture features). Developing a background 
subtraction method, all these choices determine the 
robustness of the method to the critical situations met in 
video sequence [5, 20]: Noise image due to a poor quality 
image source (NI), Camera jitter (CJ), Camera automatic 
adjustments (CA), Time of the day (TD), Light switch (LS), 
Bootstrapping (B), Camouflage (C), Foreground aperture  
(FA), Moved background objects (MO), Inserted background 
(IB), Waking foreground object (WFO), Sleeping foreground 
object (SFO) and Shadows (S). The main difficulties come 
from the dynamic backgrounds and illumination changes: 
 
- Dynamic backgrounds often appear in outdoor scenes. 

Fig. (1). presents four typical examples: Camera jitter, 
waving trees, water rippling and water surface. The left 
column shows the original images and the right the 
foreground mask obtained by the MOG [14]. In each 
case, there is a big amount of false detections. 

 
- Illumination changes appear in indoor and outdoor 

scenes. Fig. (2). shows an indoor scene in which we can 
observe a gradual illumination change. This causes false 
detections in several parts of the foreground mask 
obtained by the MOG [14]. Fig. (3). illustrates the case 
of sudden illumination change due to a light on/off.  
Every pixel in the images is affected by this change 
which generates a large amount of false detections (see 
Fig. 3c). 

 

Fig. (1). The first column presents original scenes containing 
dynamic backgrounds. The second column shows the 
foreground masks obtained by the MOG [14]. 
 

 

  
 

a) Sequence Camera jitter from [229] 
 

  
 

b) Sequence Campus from [34] 
 

  
 

c) Sequence Water rippling from [34] 
 

  
 

d) Sequence Water surface from [34]
 
 



Fig. (2). From left to right: The first image presents an indoor scene with low illumination. The second image presents the same 
scene with a moderate illumination while the third image shows the scene with a high illumination. The fourth image shows the 
foreground mask obtained with MOG [14]. This sequence called “Time of Day” comes from the Wallflower dataset [20]. 
 

    
a) Low     b) Moderate   c) High    d) Foreground mask 

 
Fig. (3). From left to right: The first image presents an indoor scene with light-on. The second image shows the same scene 
with light-off. The third image shows the foreground mask obtained with MOG [14]. This sequence called “Light Switch” 
comes from the Wallflower dataset [20]. 
 

     
a) Light-on  b) Light-off  c) Foreground mask 

 
Different datasets benchmarks are available [26-31] to 
evaluate the robustness of the background subtraction 
methods against these critical situations which have different 
spatial and temporal characteristics which must be take into 
account to obtain a good segmentation. This challenge must 
be made in the context of real-time application which runs 
on common PC and so two constraints are introduced: less 
computation time (CT) and less memory requirement (MR) 
as possible. The performance is evaluated using the ROC 
analysis [32] or the PDR Analysis [33] or the similarity 
measure [34]. Others performance evaluation methods are 
proposed and compared in [35, 36]. Reading the literature, 
two main remarks can be made: (1) The most frequently 
used models are the statistical ones due to their robustness to 
the critical situations. (2) There are many recent 
developments regarding statistical models as can be seen for 
the MOG model with the acronyms found like GMM [37], 
TLGMM [38], STGMM [39], SKMGM [40], TAPPMOG 
[41] and S-TAPPMOG [42]. The objective is then to 
categorize the statistical models in one paper and classify 
their recent improvements following the strategies used. We 
also discuss them following the challenges met in video 
sequences and evaluate some of them in term of false alarms 
using the Wallflower dataset [20].   
This paper is an extended and updated paper of the surveys 
on Mixture of Gaussians for background modeling [48] and 
Subspace Learning for background modeling [334].   
The rest of this paper is organized as follows: In Section 2, 
we firstly provide a background on the statistical background 
models and a classification of these models. In Section 3, we 
survey the first generation models and their respective 
improvements. In Section 4, we classified the second 
generation models. In Section 5, the third generation models 
are reviewed. In Section 6, we firstly investigated the 
performance in term of robustness on dynamic backgrounds 

and illumination changes and secondly in terms on per-pixel 
complexity.  Then, a comparative evaluation is provided in 
Section 7. Finally, conclusion and future developments are 
given. 
 

2. STATISTICAL BACKGROUND MODELING: AN 
OVERVIEW 

The statistical tools provide a good framework to model the 
background and so many methods have been developed. We 
classified them in term of category as follows: 
 
- First category: The first way to represent statistically the 

background is to assume that the history over time of 
intensity values of a pixel can be modeled by a single 
Gaussian (SG) [13].  However, a unimodal model 
cannot handle dynamic backgrounds when there are 
waving trees, water rippling or moving algae. To solve 
this problem, the Mixture of Gaussians (MOG) has been 
used to model dynamic backgrounds [14]. This model 
has some disadvantages. Background having fast 
variations cannot be accurately modeled with just a few 
Gaussians (usually 3 to 5), causing problems for 
sensitive detection. So, a non-parametric technique was 
developed for estimating background probabilities at 
each pixel from many recent samples over time using 
Kernel density estimation (KDE) [15] but it is time 
consuming. In [165], Subspace Learning using Principal 
Component Analysis (SL-PCA) is applied on N images 
to construct a background model, which is represented 
by the mean image and the projection matrix comprising 
the first p significant eigenvectors of PCA. In this way, 
foreground segmentation is accomplished by computing 
the difference between the input image and its 
reconstruction.  



  

   

Table 2. Advanced Statistical Background Modeling: An Overview
 

Category Methods   Authors - Dates 

First Category 
 

Single Gaussian (SG) (33) 
Mixture of Gaussians (MOG) (217) 
Kernel Density Estimation (KDE) (55) 
Principal Components Analysis (SL-PCA) (25) 

Wren et al. (1997) [13] 
Stauffer and Grimson (1999) [14]   
Elgammal et al. (2000) [15] 
Oliver et al.  et al. (1999)  [165] 

Second Category Support Vector Machine (SVM) (9) 
Support Vector Regression (SVR) (3) 
Support Vector Data Description (SVDD) (6) 

Lin et al. (2002) [180] 
Wang et al. (2006) [183] 
Tavakkoli et al. (2006) [186] 

Third Category Single General Gaussian (SGG) (3) 
Mixture of General Gaussians (MOGG) (3) 
Independent Component Analysis (SL-ICA) (3) 
Incremental Non Negative Matrix Factorization (SL-INMF) (3) 
Incremental Rank-(R1,R2,R3) Tensor (SL-IRT) (2) 

Kim et al. (2007) [190] 
Allili et al. (2007) [194] 
Yamazaki et al. (2006) [198] 
Bucak et al. (2007) [202] 
Li et al. (2008) [204] 

 

 
- Second category: This second category uses support 

vector models. The objective is different following the 
models used. Lin et al. [180] used a SVM algorithm to 
initialize the background in outdoor scene. Wang et al. 
[183, 184] modeled the background by using SVR in the 
case of traffic surveillance scene where illumination 
changes (TD) appear. Tavakkoli et al. [186-189] applied 
SVDD to deal with dynamic backgrounds (MB). 
 

- Third category: These models generalize the first 
generation model as the single general Gaussian (SGG) 
[190-192], the mixture of general Gaussians (MOGG) 
[193-195] and subspace learning using Independent 
Component Analysis (SL-ICA) [198, 200], Incremental 
Non-negative Matrix Factorization (SL-INMF) [202, 
203] or Incremental Rank-(R1,R2,R3) Tensor (SL-IRT) 
[204, 205]. The single general Gaussian (SGG) 
alleviates the constraint of a strict Gaussian and then 
shows better performance in the case of illumination 
changes (TD) and shadow (S). The MOGG have been 
developed to be more robust to dynamic backgrounds 
(MB). Subspace learning methods are more robust to 
illumination changes (LS). 

 
Table 2 shows an overview of the statistical background 
modeling. The first column indicates the generation and the 
second column the name of each method. Their 
corresponding acronym is indicated in the first parenthesis 
and the number of papers counted for each method in the 
second parenthesis. The third column gives the name of the 
authors who have made the main publication for the 
corresponding method and the date of the related publication. 
We can see that the MOG with 217 papers is the most 
modified and improved because it is the most used due to a 
good compromise between robustness.  
 In the following sections, we remind the original methods 
for each generation and we have classify their related 
improvements in the following way: intrinsic improvements 
which concern the modification made in the initialization, 
the maintenance and the foreground detection steps, and 

extrinsic improvements which consist in using external tools 
to perform the results. 

3. FIRST CATEGORY 

3.1 Single Gaussian (SG) 

Wren et al. [l3] proposed to model the background 
independently at each pixel location (i,j). The model is based 
on ideally fitting a Gaussian probability density function on 
the last n pixel’s values. In order to avoid fitting the pdf from 
scratch at each new frame time t+1, the mean and the 
variance are updated as follows: 
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where 1tX +  is the pixel’s current value, tµ  is the previous 

average, tσ   is the previous variance and α is the learning 

rate.  The foreground detection is made as follows: 
 

if TX 1t1t <− ++µ , the pixel is classified as background 

otherwise the pixel is classified as foreground. 
 
Improvements: Medioni et al. [43] operated in the Hue-
Saturation-Value (HSV) color space instead of the RGB one. 
The advantage is that the HSV color model is more robust to 
gradual illumination changes (TD) because it separates the 
intensity and chromatic information. Furthermore, HSV 
permits to eliminate partially camouflage.  Zhao et al. [44] 
used HSV too remarking that the respective distributions of 
H and S vary naturally a lot and that the distribution of V is 
the most stable. So, the component H and S are only used 
when they are stable. Results [44] show better performance 
in presence of gradual illumination changes (TD) and 
shadows (S). 
 
Discussion: The single Gaussian (SG) is suited for indoor 
scenes where there are moderate illumination changes. 



3.2 Mixture of Gaussians (MOG) 

In the context of a traffic surveillance system, Friedman and 
Russel [45] proposed to model each background pixel using 
a mixture of three Gaussians corresponding to road, vehicle 
and shadows. This model is initialized using an EM 
algorithm. Then, the Gaussians are manually labeled in a 
heuristic manner as follows: the darkest component is 
labeled as shadow; in the remaining two components, the 
one with the largest variance is labeled as vehicle and the 
other one as road. This remains fixed for all the process 
giving lack of adaptation to changes over time. For the 
foreground detection, each pixel is compared with each 
Gaussian and is classified according to it corresponding 
Gaussian. The maintenance is made using an incremental 
EM algorithm for real time consideration. Stauffer and 
Grimson [14] generalized this idea by modeling the recent 

history of the color features of each pixel { }tXX ,...,1  by a 

mixture of K Gaussians. We remind below the algorithm. 
 
Principle 
 
First, each pixel is characterized by its intensity in the RGB 
color space. Then, the probability of observing the current 
pixel value is considered given by the following formula in 
the multidimensional case: 
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where the parameters are K is the number of distributions, 

ti ,ω is a weight associated to the ith Gaussian at time t with 

mean ti ,µ and standard deviation ti ,∑ . η  is a Gaussian 

probability density function: 
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For computational reasons, Stauffer and Grimson [14] 
assumed that the RGB color components are independent 
and have the same variances. So, the covariance matrix is of 
the form: 
 

Ititi
2
,, σ=Σ  (3) 

 
So, each pixel is characterized by a mixture of K Gaussians. 
Once the background model is defined, the different 
parameters of the mixture of Gaussians must be initialized. 
The parameters of the MOG’s model are the number of 
Gaussians K, the weight ti ,ω associated to the ith Gaussian at 

time t, the mean ti ,µ and the covariance matrix ti ,∑ . 

 
 
 

Remarks: 
 
- K determined the multimodality of the background and 

by the available memory and computational power. 
Stauffer and Grimson [14] proposed to set K from 3 to 5. 

- The initialization of the weight, the mean and the 
covariance matrix is made using an EM algorithm. 
Stauffer and Grimson [14] used the K-mean algorithm 
for real time consideration.  

 
Once the parameters initialization is made, a first foreground 
detection can be made and then the parameters are updated. 
Firstly, Stauffer and Grimson [14] used as criterion the ratio 

jjjr σω=  and ordered the K Gaussians following this 

ratio. This ordering supposes that a background pixel 
corresponds to a high weight with a weak variance due to the 
fact that the background is more present than moving objects 
and that its value is practically constant. The first B Gaussian 
distributions which exceed certain threshold T are retained 
for a background distribution: 
 

( )TB
b
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The other distributions are considered to represent a 
foreground distribution. Then, when the new frame incomes 
at times t+1, a match test is made for each pixel. A pixel 
matches a Gaussian distribution if: 

( ) ( )( ) tititti
T

tit kXXsqrt ,,1
1
,,1 .. σµµ <−∑− +

−
+  (5) where 

k  is a constant threshold equal to 2.5. Then, two cases can 
occur: 
 

- Case 1: A match is found with one of the K 
Gaussians. In this case, if the Gaussian distribution 
is identified as a background one, the pixel is 
classified as background else the pixel is classified 
as foreground. 

- Case 2: No match is found with any of the K 
Gaussians. In this case, the pixel is classified as 
foreground. 

 
At this step, a binary mask is obtained. Then, to make the 
next foreground detection, the parameters must be updated. 
Using the match test (5), two cases can occur like in the 
foreground detection:  
 
Case 1: A match is found with one of the K Gaussians.  
 

- For the matched component, the update is done as 
follows:  

 

( ) αωαω +−=+ titi ,1, 1     (6) 

where α is a constant learning rate. 
 

1,1, .)1( ++ +−= ttiti Xρµρµ  (7) 



T
tittittiti XX )).(()1( 1,11,1

2
,

2
1, +++++ −−+−= µµρσρσ (8) 

 

where ( )iitX ∑= + ,,. 1 µηαρ  

 
- For the unmatched components, µ  and ∑ are 

unchanged, only the weight is replaced by: 
 

tjtj ,1, )1( ωαω −=+   (9) 

 
Case 2: No match is found with any of the K Gaussians. In 
this case, the least probable distribution k is replaced with a 
new one with parameters:  
 

htPrior Weig Low1 =+k,tω  (10) 

11, ++ = ttk Xµ    (11) 

Variance Initial Large2
1 =+k,tσ (12) 

 
Once the parameters maintenance is made, foreground 
detection can be made and so on. Complete studies on the 
signification and the setting of the parameters can be found 
in [46, 47][218][289]. 
 
Improvements: The original MOG presents several 
advantages. Indeed, it can work without having to store an 
important set of input data in the running process.  The 
multimodality of the model allows dealing with multimodal 
backgrounds and gradual illumination changes. Despite it, 
this model present some disadvantages: the number of 
Gaussians must be predetermined, the need for good 
initializations, the dependence of the results on the true 
distribution law which can be non-Gaussian and slow 
recovery from failures. Others limitations are the needs for a 
series of training frames absent of moving objects and the 
amount of memory required in this step. To alleviate these 
limitations, numerous improvements (217 papers) have been 
proposed over the recent years. All the developed 
improvements can be classified following the strategies and 
a complete survey over 100 papers in the period 1999-2007 
can be found in [48]. We have summarized and updated 
them in the following classification: 
 
- Intrinsic improvements: These strategies (Table 3) 

consist to be more rigorous in the statistical sense or to 
introduce spatial and/or temporal constraint in the 
different step of the model. For example, some authors 
[49-53] propose to determine automatically and 
dynamically the number of Gaussians to be more robust 
to dynamic backgrounds. Other approaches use another 
algorithm for the initialization [54, 55] and allow 
presence of foreground objects in the training sequence 
[56, 57, 58]. For the maintenance, the learning rates are 
better set [66, 67] or adapt over time [60-62, 68-78]. For 
the foreground detection, the improvement found in the 
literature are made using a different measure for the 
matching test [53, 79-82], using a Pixel Persistence Map 

(PPM) [75, 76, 83], using the probabilities [84, 85], 
using a foreground model [61, 63, 86], using some 
matching tests [39, 60]  and using the most dominant 
background model [87, 88, 89]. For the feature size, 
block wise [90, 91] or cluster wise [92] approaches are 
more robust than the pixel one. For the feature type, 
several features are used instead of the RGB space like 
different color features [93-99], edge features [100, 101], 
texture features [102], stereo feature [103, 104], spatial 
features [105], motion features [40] and video features 
[106]. Zheng et al. [267, 268] combined multiple 
features such as brightness, chromaticity and 
neighborhood information. Recent patents concern block 
wise approaches [352], texture features [353], motion 
features [354] and spatial features [355]. An overview of 
the different features used in the literature is shown in 
Table 5. 

 
- Extrinsic improvements: Another way to improve the 

efficiency and robustness of the original GMM consist 
in using external strategies (Table 4).  Some authors 
used Markov Random Fields [107-109], hierarchical 
approaches [110-113], multi-level approaches [100, 
114-118], multiple backgrounds [119, 121], graph cuts 
[81], multi-layer approaches [122, 123], tracking 
feedback [128, 129] or specific post-processing [130-
131]. Recent patents concern graph cuts approaches 
[3576, 357]. 

 
- Reducing the computation time: All the intrinsic and 

extrinsic improvements concern the quality of the 
foreground detection but there is another manner to 
improve the original MOG which consists in reducing 
the computation time. It achieved by using region of 
interest [132] [287], by using a variable adaption rate 
[133], by switching the background model [134] [271], 
by using space sampling strategies [135][216][238][272] 
or by using hardware implementation [136, 137] [271]. 

 
- Enhancing the foreground detection: All the previous 

improvements concern directly the original MOG and 
the foreground detection results only from it. Another 
way to improve this method is to enhance the results of 
the foreground detection by using cooperation with 
another segmentation method. It achieved by 
cooperation with a statistical background disturbance 
technique [138], with color segmentation [139], and 
with a region based motion detection [140]. Other 
authors used a cooperation with optical flow [217], 
block matching [247-248], predictive models [249], 
texture models [251][303], consecutive frame difference 
[258][261-262][279-280][282] and basic background 
subtraction [304-305][330].  A recent patent concern the 
cooperation with histogram statistics [358]. 

 
Table 6 and Table 7 show respectively an overview of the 
critical situations and the real-time constraints for the 
different MOG versions that can tackle them better than the 
original one. 



  

   

Table 3.  Intrinsic improvements of the MOG 
 

Background Step Parameters Authors - References 
Background 
Initialization 

Variable K Zivkovic [49], Cheng et al. [50], Shimada et al. [51], Tan et al. [52], Carminati et 
al. [53], Klare and Sarka  [230],  Shimada et al. [237], Shahid et al. [240], Singh 
and Mitra [248], Wang et al. [278], Huang et al. [288], Wang et al. [307], Zhou et 
al.  [317] 

Variables µ , σ , ω  Another algorithm: Morellas et al. [54], Lee [55], Ju et al.. [241], Singh et al. 
[245], Singh et al. [246], Wang and Dai [252], Hu et al.. [259], Guo et al. [270], 
Molin [285], Qin et al. [286], Li et al. [315], Wang and Miller [331] 
Allowing presence of moving objects: Zhang et al. [56], Amintoosi et al. [57], 
Lepisk [58], Lee et al. [273], Wang et al. [307] 

Background 
Maintenance 

Variable K Zivkovic [49], Cheng et al. [50], Shimada et al. [51], Tan et al. [52], Klare and 
Sarka  [230],  Shimada et al. [237], Singh and Mitra [248], Wang et al. [278], 
Zhou et al. [317] 

Variables µ , σ , ω  Maintenance rules: Han and Li [59], Park and Buyn [266] 
Maintenance mechanisms: Zhang et al. [56], Wang and Suter [60], Lindstrom et 
al. [61], Li et al. [269], Lee et al. [273] 
Selective maintenance: Stauffer and Grimson [62], Landabaso and Pardas [63], 
Park et al. [64], Mittal and Huttenlocher [65], Salas et al. [215], Wang and Dai 
[252], Hu et al. [259], Li et al. [265], Liu and  Zhang [276], Yu et al. [290] 

Learning rates α , ρ  Better settings:  Zang and Klette [66], White and Shah [67] 
Adaptive learning rates: Wang and Suter [60], Lindstrom et al. [61], Stauffer and 
Grimson [62], KaewTraKulPong and Bowden [68-70] Lee[71], Harville et al. 
[72], Porikli [73], Liu et al. [74], Pnevmatikakis et al. [75, 76], Power et al. [77], 
Leotta et al. [78], Sheng and Cui [272], Quast et al. [284], Molin [285], Qin et al. 
[286], Shah et al. [298], Kan et al. [302], Quast et al. [308], Lin et al. [309], Bin 
and Liu [320], Zhao and He [322], Li et al. [323] 

Foreground 
Detection 

Different measure for the 
matching test 

Carminati et al. [53], Ren at al. [79], Lee [80], Sun [81], Morellas et al.  [82], 
Xuehua et al. [261], Rui et al. [262] 

Pixel Persistence Map 
(PPM) 

Pnevmatikakis et al. [75, 76], Landabaso and Pardas [83] 

Probabilities Yang and Hsu [84], Lee [85], Lien et al. [251], Zhang and Zhou [21] 
Foreground model Lindstrom et al. [61], Landabaso et al. [63], Withagen et al. [86], Landabaso et 

al. [263], Feldman et al. [313], Feldman [314], Tian and  Wang [318] 
Some matching tests Zhang et al. [39], Wang and Suter [60] 
Fusion rules Lien et al. [251] 
Most dominant background  Haque et al. [87, 88, 89] 

 
 
 
Table 4. Extrinsic improvements of the MOG 

 
Methods Authors - References 
Markov Random Fields Kumar and Sengupta [107], Zhou and Zhang [108], Schindler and Wang [109], Landabaso 

et al. [263], Li et al [291], Dickinson et al. [316], Zhang and Zhou [327], Wang et al. [328] 
Hierarchical approaches Sun and Yuan [110], Park et al. [111], Chen et al. [112], Zhou et al. [113], Zhong et al. 

[242], Zhong et al. [264], Li et al. [265] 
Multi-level approaches Javed et al. [100], Zang and Klette [114], Zhong et al. [115], Cristani et al. [116-118], 

Yang et al. [325] 
Multiple backgrounds Su and Hu [119, 120], Porikli [121], Qi et al. [310], Qi et al. [311] 
Graph cuts Sun [81], Chang and Hsu [257], Li et al. [269], Li et al. [291] 
Multi -layer approaches Yang et al. [122], Porikli and Tuzel [123], Park and Buyn [266], Huang and Wu [292] 
Features-Cameras strategies Xu and Ellis [124], Nadimi and Bhanu [125, 126], Conaire et al. [127] 
Tracking feedback Harville [128], Taycher et al. [129], Wang et al. [275], He et al. [301], Yuan et al. [344], 

Shao et al. [326] 
Post-processing Turdu and Erdogan [130], Parks and Fels [131], Fazli et al. [306] 

 
 
 
 
 



 
 
Table 5. Features improvements of the MOG 
 

 Size/Type Authors - References 
Feature Size Block Fang et al. [90], Pokrajac and Latecki [91], Wang et al. [275], Zhong et al. 

[281], Zhang et al. [294], Wang et al. [329] 
Cluster Bhaskar et al. [92], Cai et al. [243] 

Feature Type Color features 
                  Normalized RGB 
                  YUV 
                    
                   HSV 
                   HSI 
                   Luv 
                   Improved HLS 
                   YCrCb 

 
Stijman et al. [93],  Xu et Ellis [94] 
Harville et al.[72], Sun [81], Fang et al. [90] , Guo et al. [270], Feldman et al. 
[313] , Feldman [314] 
Sun [81], Xuehua et al. [261], Rui et al. [262], Wang and Tang [274] 
Wang and Wu [95]  
Yang and Hsu [96] 
Setiawan et al. [97] 
Kristensen et al. [98], Ribeiro et al. [99] 

Edge features Javed et al. [100], Jain et al. [101], Klare and Sarka [203], Li et al. [253] 
Texture features  Tian and Hampapur [102], Shimada and Taniguchi [250], Huang et al. [255] 
Stereo features 
                   Disparity 
                   Depth 

 
Gordon et al.  [103] 
Harville et al. [72], Silvestre [104] 

Spatial features Yang and Hsu [84], Dickinson et al. [105], Klare and Sarka [230], Wei et al. 
[231] 

Motion features Tang et al. [40] 
Phase features Xue et al. [312] 
Video features Wang et al. [106], Wang et al. [239] 
Entropy features Park et al. [295], Park et al. [296] 
Bayer features Suhr et al. [297] 
HOG features Fabian [299], Hu et al. [300] 

 
 

Table 6. Challenges and MOG Versions 

Critical Situations Authors - References 
CS 1 - Noise Image Xu [221], Teixeira et al. [222], Li et al. [265] 
CS 2-1 - Camera jitter  
 

Campbell-West et al. [219], Xu [221], Achkar 
and Amer [223], Rao et al. [224], Li et al. [265] 

CS 2- 2 - Camera Adjustements  Zen and Lai [225], Molin [285] 
CS 3 - Gradual Illumination Changes  
 

Tian et al. [234], Huang et al. [254], Wang et al. 
[277], Baloch [283], Huang et al. [288], Lin et 
al. [309] 

CS 4 - Sudden Illumination Changes Tian et al. [234], Li et al. [253], Baloch [283], 
Lin et al. [309], Xue et al. [312], Li et al. [323]  

CS 5-1 - Bootstrapping during initialization Gao et al. [220] 
CS 5-2 - Bootstrapping during maintenance Lindstrom et al. [61] 
CS 6 - Camouflage Guo et al. [270] 
CS7 - Foreground Aperture  Utasi and Czúni [226] 
CS 8 - Moved background objects Teixeira et al. [222] 
CS 9 - Inserted background objects  Teixeira et al. [222] 
CS 10 - Multimodal background Dalley et al. [227], Li et al. [265] 
CS 11 - Waking foreground object Su and Hu [119], Hu and Su [120] 
CS 12 - Sleeping foreground objects 
 

Cheng et al. [229], Cai et al. [256], Hu et al. 
[259] 

CS 13 - Shadows Detection Xu [221],  Huang and Chen [232], Zhang et al. 
[233], Tian et al. [234], Izadi et al. [235], 
Rahman [236], Chen et al. [260], Landabaso et 
al. [263],  Li et al. [265], Quast et al. [284], 
Molin [285], Huang et al. [288], Forczmanski 
and Seweryn [293], Tian and  Wang [318], Li 
and  Xu [319],  Bin and Liu [320], Liu and  Bin 
[321],  Lai et al. [324], Wang et al. [328] 



 

Table 7. Real Time Constraints and MOG Versions 

Real-Time Constraints Authors - References 

Computation Time  
Cuevas et al. [228], Chang and Hsu [257], 
Krishna et al. [271] 

Memory Requirement  Krishna et al. [271] 

 

Discussion: The Mixture of Gaussians (MOG) is adapted for 
outdoor scene where there are slow multimodal variations in 
the backgrounds. For the dynamic backgrounds like camera 
jitter, waving trees and water rippling, this model causes 
false detections. 

3.3 Kernel Density Estimation (KDE) 

To deal with dynamic backgrounds like camera jitter, waving 
trees and water rippling, Elgammal et al. [15] proposed to 
estimate the probability density function for each pixel using 
the kernel estimator K for N recent sample of intensity values 
{ }Nxxx ,...,, 21 taken consecutively in a time size window 
W as follows:    
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where K() is the kernel estimator function which is taken as a 

Normal Gaussian function ),0( ΣN . So, the probability 

density function is determined as follows: 
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Elgammal et al. [15] assumed that the different color 
channels are independent with different kernel bandwidths, 
then the kernel function bandwidth is as follows: 
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So, the probability density function can be written as follows: 
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Elgammal et al. [15] detected the foreground using the 
probabilities and a threshold T as follows: 
 

If ( ) TxP t <  then the pixel classified as foreground 

 else the pixel is classified as background (17) 
 
At this step, a binary mask is obtained. Then, to make the 
next foreground detection, the parameters must be updated. 
For this, Elgammal et al. [15] used two background models: 
a short term one and a long term one. These two models 
achieve different objectives:  
 
- The short term model adapts quickly to allow very 

sensitive detection. This model consists of the most 
recent N background sample values. The sample is 
updated using a selective maintenance mechanism, 
where the decision is based on the foreground 
classification.  

- The long term model captures a more stable 
representation of the scene background and adapts to 
changes slowly. This model consists of N sample pixels 
taken from a much larger window in time. The sample is 
updated using a non selective maintenance mechanism.  

 
So, to combine the advantage of each model and to eliminate 
their disadvantages, the next foreground detection is 
obtained by taking the intersection of the two foreground 
detection coming from the short term model and the long 
term model. This intersection eliminates the persistence false 
positives detection from the short term model and extra false 
positives detection that occur in the long term model results. 
The only false positives detection that will remain will be 
rare events not represented in either model. If this rare event 
persists over time in the scene then the long term model will 
adapt to it, and it will be suppressed from the result later. 
Taking the intersection will, unfortunately, suppress true 
positives in the first model result that are false negatives in 
the second, because the long term model adapts to 
foreground as well if they are stationary or moving slowly. 
To address this problem, all pixels detected by the short term 
model that are adjacent to pixels detected by the combination 
are included in the final foreground detection. 
 
Improvements: The original KDE present several 
advantages. The multimodality of the model allows dealing 
with multimodal backgrounds particularly in fast changes 
(waving trees, water rippling, etc…). Despite it, this model 



present some disadvantages:  N frames need to be kept in 
memory during the entire detection process which is costly 
memory wise when N is large. The algorithm is time 
consuming too due the complexity in O(N*N). To solve 
these problems, different improvements have been proposed: 
 
- Intrinsic improvements: These strategies consist in 

changing the kernel function [141-149] as shown in 
Table 8. For the training, some authors propose to 
decrease the number of samples by determining a proper 
size of the frame buffer [143], by using a diversity 
sampling scheme [150,151] or by using a sequential 
Monte Carlo sampling scheme [152]. A recent patent 
concern the sequential kernel density approximation 
through mode propagation [359]. Furthermore, recursive 
maintenance [143-145,153, 154, 159] can be adopted to 
reduce the computation time. For the foreground 
detection, different scheme can be used as in [143, 146, 
147, 153-155]. For the feature type, several features are 
used instead of the RGB space like the edge features 
[156] and motion features [157]. To choose which 
features to use, Parag et al. [158] proposed a framework 
for feature selection. 

 

- Extrinsic improvements: Some authors (Table 9) used 
Markov Random Fields [155, 159], hierarchical 
approaches [160], multiple backgrounds [161] and graph 
cuts [162].  

 
- Enhancing the foreground detection: Another way to 

improve this method is to enhance the results of the 
foreground detection by using cooperation with another 
segmentation method. It achieved by cooperation with 
the consecutive frame difference [163] or using a 
subspace learning approach using PCA [164]. 

 
The Table 8 and 9 give respectively an overview of the 
intrinsic and extrinsic improvements. Table 10 and Table 11 
show respectively an overview of the critical situations and 
the real-time constraints for the different KDE versions that 
can tackle them better than the original one. 
 
 
 
 
 
 

 
Table 8.  Intrinsic improvements of the KDE 
 

Background Step Improvements Authors - References 
Background Model Gaussian Kernel Function Automatic selection of kernel band width: Tavakkoli et al. 

[141, 142] 
Rectangular Kernel Function 
 

Constant kernel band width: Ianasi et al. [143], Tanaka et al. 
[144, 145] 
Variable kernel band width: Zivkovic [146] 

Derivative Kernel Function  Cvetkovic et al. [147] 
Negative coefficient 
polynomial kernel function 

Witherspoon and Zhang [148] 

Cauchy Kernel Function Ramezani et al. [149] 
Background Initialization Decreasing the number of 

samples 
 

Adopting the proper size of frame buffer: Ianasi et al. [143] 
Diversity samples scheme: Mao and Shi  [150, 151] 
Sequential Monte Carlo sampling: Tang et al.  [152] 

Background Maintenance Background image  Ianasi et al. [143] 
Recursive Maintenance 

 
 

Recursive maintenance of the PDF: Tavakkoli et al. [153], 
Tanaka et al. [144, 145], Ramezani et al.  [149] 
Recursive maintenance of the background PDF and 
foreground PDF:  Tavakkoli et al. [154] 
Recursive maintenance of the PDF and the background 
image: Ianasi et al. [143] 

Number of samples Zivkovic [146] 
Selective Maintenance  Tavakkoli et al. [141, 142], Mao and Shi [151] 

Foreground Detection Dissimilarity measure Ianasi et al. [143] 
Probability Zivkovic [146], Tavakkoli et al. [153] 
Foreground model Tavakkoli et al. [153, 154] 
Two thresholds Cvetkovic et al. [147] 

 
Table 9. Extrinsic improvements of the KDE 
 

Methods Authors - References 
Markov Random Fields Pahalawatta et al.  [159] 
Hierarchical approaches Orten et al. [160] 
Multiples backgrounds Tanaka et al.  [161] 
Graph cuts Mahamud [162] 



Table 10. Challenges and KDE Versions 
 

Critical Situations Authors - References 
CS 1 - Noise Image Mao and Shi [150 , 151] 
CS 2-1 - Camera jitter  Sheihk and Shah [155] 
CS 2- 2 - Camera Adjustements  Cvetkovic et al. [147], Sung et al. [347], Hwang et al. [348]  
CS 3 - Gradual Illumination Changes  Sheihk and Shah [155] 
CS 4 - Sudden Illumination Changes Sung et al. [48], Hwang et al. [49] 
CS 5-1 - Bootstrapping during initialization Martel-Brisson and Zaccarin [346] 
CS 5-2 - Bootstrapping during maintenance Sheihk and Shah [155] 
CS 6 - Camouflage Tavakkoli et al. [142], Gu et al. [345] 
CS7 - Foreground Aperture   
CS 8 - Moved background objects Elgammal et al. [15], Cvetkovic et al. [147] 
CS 9 - Inserted background objects   
CS 10 - Multimodal background  
CS 11 - Waking foreground object  
CS 12 - Sleeping foreground objects  
CS 13 - Shadows Detection Elgammal et al. [15], Cvetkovic et al. [147], Mao and Shi [150 , 151]  

 
Table 11. Real Time Constraints and KDE Versions 
 

Real-Time Constraints Authors - References 

Computation Time  Elgammal [349], Sadeghi et al. [350] 

Memory Requirement  Elgammal [349], Sadeghi et al. [350] 

 
Discussion: The KDE is more adapted for outdoor scene 
where dynamic backgrounds appear but less suited for 
illumination changes.  

3.4 Subspace Learning using PCA (SL-PCA) 

Subspace learning offer a good framework to deal with 
illumination changes as it allows taking into account spatial 
information. Oliver et al. [165] proposed to model each 
background pixel using an eigenbackground model.  
 
This model consists in taking a sample of N images 

{ }NIII ,...,, 21  and computing the mean background image 

Bµ and its covariance matrix BC .  

 
This covariance matrix is then diagonalized using an 
eigenvalue decomposition as follows: 
 

T
BBBB CL ΦΦ=   (18) 

 

where BΦ is the eigenvector matrix of the covariance of the 

data and BL is the corresponding diagonal matrix of its 

eigenvalues.  
 
In order to reduce, the dimensionality of the space, only M 
eigenvectors (M<N) are kept in a principal component 
analysis (PCA). The M largest eigenvalues are contained in 

the matrix ML  and the M vectors correspond to these M 

largest eigenvalues in the matrix MΦ .  

 

Once the eigenbackground images stored in the matrix MΦ  

are obtained and the mean Bµ  too, the input image tI  can 

be approximated by the mean background and weighted sum 

of the eigenbackgrounds.MΦ .  

The coordinate in eigenbackground space of input image tI  

can be computed as follows: 
 

M
T

Btt Iw Φ−= )( µ  (19) 

 
When w is back projected onto the image space, a 
reconstructed background image is created as follows: 
 

B
T
tMt wB µ+Φ=  (20) 

Then, the foreground object detection is made as follows: 
 

TBI tt >−   (21) 

 
where T is a constant threshold. 
 
Improvements: The eigenbackground model which we have 
called SL-PCA provides a robust model of the probability 
distribution function of the background, but not of the 
moving objects while they do not have a significant 
contribution to the model. So, the first limitation of this 
model is that the size of the foreground object must be small 
and don’t appear in the same location during a long period in 
the training sequence. The second limitation appears for the 
background maintenance. Indeed, it is computationally 
intensive to perform model updating using the batch mode 



PCA. Moreover without a mechanism of robust analysis, the 
outliers or foreground objects may be absorbed into the 
background model. The third limitation is that the 
application of this model is mostly limited to the gray-scale 
images since the integration of multi-channel data is not 
straightforward.  It involves much higher dimensional space 
and causes additional difficulty to manage data in general. 
Another limitation is that the representation is not 
multimodal so various illumination changes cannot be 
handled correctly. To alleviate these limitations, numerous 
improvements (25 papers) have been proposed over the 
recent years. A survey over 15 papers in the period 1999-
2009 can be found in [334].  Thus, the different 
improvements which attempt to solve these four limitations 
are summarized in the following classification with the 
recent advances: 
 
- Alleviate the limitation of the size of the foreground 

object: Xu et al. [166, 167] proposed to apply 
recursively an error compensation process which 
reduces the influence of foreground moving objects on 
the eigenbackground model. An adaptive threshold 
method is also introduced for background subtraction, 
where the threshold is determined by combining a fixed 
global threshold and a variable local threshold. Results 
show more robustness in presence of moving objects. 
Another approach developed by Kawabata et al. [168] 
consists in an iterative optimal projection method to 
estimate a varied background in real time from a 
dynamic scene with foreground. Firstly, background 
images are collected for a while and then the 
background images are compressed using eigenspace 
method to form a database. After this initialization, a 
new image is taken and projected onto the eigenspace to 
estimate the background. As the estimated image is 
much affected by the foreground, the foreground region 
is calculated by using background subtraction with 
former estimated background to exclude the region from 
the projection. Thus the image whose foreground region 
is replaced by the former background is projected to 
eigenspace and then the background is updated. 
Kawabata et al. [25] proved that the cycle converges to 
a correct background image. Recently, Quivy and 
Kumazawa [351] proposed to generate the background 
images using the Nelder-Mead Simplex algorithm and a 
dynamic masking procedure. This paper presents an 
original method that replaces the 
projection/reconstruction step of the SL-PCA by a direct 
background image generation. The experiments proved 
that the proposed method performs better then than the 
SL-PCA [165], SL-REC [166, 167], and SL-IOP [168] 
for large and fast moving objects. 

 
- Dealing with the time requirement and the robustness: 

For the maintenance, some authors [169-177] proposed 
different algorithms of incremental PCA. The 
incremental PCA proposed by [169] need less 
computation but the background image is contamined by 
the foreground object. To solve this, Li et al. [170, 171] 

proposed an incremental PCA which is robust in 
presence of outliers.  However, when keeping the 
background model updated incrementally, it assigned 
the same weights to the different frames. Thus, clean 
frames and frames which contain foreground objects 
have the same contribution. The consequence is a 
relative pollution of the background model. In this 
context, Skocaj et al. [172, 173] used a weighted 
incremental and robust. The weights are different 
following the frame and this method achieved a better 
background model. However, the weights were applied 
to the whole frame without considering the contribution 
of different image parts to building the background 
model. To achieve a pixel-wise precision for the weights, 
Zhang and Zhuang [174] proposed an adaptive weighted 
selection for an incremental PCA. This method performs 
a better model by assigning a weight to each pixel at 
each new frame during the update. Experiments [174] 
show that this method achieves better results than the 
SL-IRPCA [170, 171]. Wang et al. [175, 176] used a 
similar approach using the sequential Karhunen-Loeve 
algorithm. Recently, Zhang et al. [209] improved this 
approach with an adaptive scheme. All these 
incremental methods avoid the eigen-decomposition of 
the high dimensional covariance matrix using 
approximation of it and so a low decomposition is 
allowed at the maintenance step with less computational 
load. However, these incremental methods maintain the 
whole eigenstructure including both the eigenvalues and 

the exact matrix MΦ .To address this problem, Li et al. 

[177] proposed a fast recursive and robust 
eigenbackground maintenance avoiding eigen-
decomposition. This method achieves similar results 
than the SL-IPCA [169] and the SL-IRPCA [170, 171] 
at better frames rates. Fig. (4). shows a classification of 
these algorithms following their robustness and their 
adaptivity. 

 
- Dealing with the grey scale and the pixel-wise 

limitations: Recently, Wu et al. [207] proposed to 
combine the PCA model with single gaussian model. 
PCA allow the robustness to illumination changes and 
the single gaussian to describe color information for 
each pixel. So, it can detect the chroma changes and 
remove shadow pixels. An adaptively strategy is used to 
integrate the two models. A binary graph cut is then 
used to perform the foreground/background 
segmentation. In another way, Han and Jain [178] 
proposed an efficient algorithm using a weighted 
incremental 2-Dimensional Principal Component 
Analysis. It is shown that the principal components in 
2DPCA are computed efficiently by transformation to 
standard PCA. To perform the computational time, Han 
and Jain [178] used an incremental algorithm to update 
eigenvectors to handle temporal variations of 
background. The proposed algorithm was applied to 3-
channel (RGB) and 4-channel (RGB+IR) data.  

 



  

   

 
Fig. (4): Adaptivity of the SL-PCA Algorithms 

 
Results show noticeable improvements in presence of 
multimodal background (MB) and shadows (S). To solve the 
pixel-wise limitation, Zhao et al. [206] used spatio-temporal 
block instead of pixel. Furthermore, their method consist in 
applying the candid covariance free incremental principal 
components analysis algorithm (CCIPCA) which is fast in 
convergence rate and low in computational complexity than 
classical IPCA algorithms. Results show more robustness 
robust to noise and fast lighting changes. 
 

- Dealing with multimodal illumination changes: Recently, 
Dong et al. [211] proposed to use a multi-subspace learning 
to handle different illumination changes. The feature space is 
organized into clusters which represent the different lighting 
conditions. A Local Principle Component Analysis (LPCA) 
transformation is used to learn separately an eigen-subspace 
for each cluster. When a current image arrives, the algorithm 
selects the learned subspace which shares the nearest lighting 
condition. The results [211] show that the LPCA algorithm 
outperforms the original PCA [165] algorithm and MOG [14] 
especially under sudden illumination changes. In a similar 
way, Kawanishi et al. [213-214] generated the background 
image which well expresses the weather and the lighting 
condition of the scene. This method collects a huge number 
of images by super long term surveillance, classifies them 
according to their time in the day, and applies the PCA so as 
to reconstruct the background image. 
 
A recent patent concern a method based on space-time video 
block and online subspace learning [360]. This method 
allows a robust incremental update and alleviates the pixel-
wise limitations. 
 
The Table 12, Table 13, Table 14 and Table 15 group by 
type the different improvements of the SL-PCA.  
 
Table 12. Influence of the foreground objects 
 

Methods Authors - Dates 
Recursive Error 
Compensation  
(SL-REC) 

Xu et al. (2006) [166, 167] 

Iterative Optimal 
Projection  
(SL-IOP) 

Kawabata et al. (2006) [168] 

Simplex Algorithm 
(SL-SA) 

Quivy and  Kumazawa (2011) [351] 

 

 

 

Table 13. Time requirement and the robustness 

Methods Authors - Dates 
Incremental PCA 
 (SL-IPCA) 

Rymel et al. (2004) 
[169] 

Incremental and robust PCA  
(SL-IRPCA) 

Li et al. (2003) [170, 
171] 

Weighted Incremental and Robust 
PCA (SL-WIRPCA) 

Skocaj et al. (2003) 
[172, 173] 

Adaptive Weight Selection for 
Incremental PCA (SL-AWIPCA) 

Zhang and Zhuang 
(2007) [174] 

Sequential Karhunen-Loeve 
algorithm (SL-SKL) 

Wang et al. (2006) 
[175, 176] 

Adaptive Sequential Karhunen-
Loeve algorithm (SL-ASKL) 

Zhang et al. [209] 

Fast Recursive Maintenance  
(SL-FRM) 

Li et al. (2006) [177] 

 

Table 14. Dealing with the grey scale and the pixel-wise 
limitations 

Methods Authors - Dates 
PCA - Single Gaussian 
(SL-PCA-SG) 

Wu et al. (2009) [207, 208] 

Weighted Incremental 2PCA 
(SL-WI2DPCA) 

Han and Jain (2007) [178] 

Candid Covariance 
Incremental PCA 
(SL-CCIPCA) 

Zhao et al. (2008) [206] 

Table 15. Dealing with multimodal illumination changes 

Methods Authors - Dates 
Local Principle Component 
Analysis on Clusters  
(LPCA-C) 

Dong et al. (2010) [211, 
212] 

Local Principle Component 
Analysis on Separated 
Sequences 
(LPCA-SS) 

Kawanishi et al. (2009) 
[213-214] 

 

3.5. Discussion 

In Section 3, we surveyed the models of the first category 
and their related improvements. These improvements 
perform each original algorithm for specified critical 
situations. However, some authors have recently proposed to 
use more advanced statistical models as Support Vector 
models to deal more accurately with dynamics background. 

 

 

 



4. SECOND CATEGORY 

The second category models use more sophisticated 
statistical model as support vector machine (SVM), support 
vector regression (SVR) and support vector data description 
(SVDD). 

4.1 Support Vector Machine (SVM) 

Support Vector Machines were introduced by Vapnik et al. 
[179]. For classification, SVMs work by determining a 
hyperplane in a high dimensional feature space to separate 
the training data into two classes. The best hyperplane can be 
derived by minimizing the margin which represents the least 
distance from the hyperplane to the data. Using this 
classification aspect, Lin et al. [180] proposed to use the 
SVMs for background modeling. Particularly, Lin et al. [180] 
used a PSVM with probabilistic outputs because the SVM 
gives only binary ouputs. A sigmoid model is used to 
convert binary SVM scores into posterior probabilities:  
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where y is binary class label and f is an output score of the 
SVM decision function. The two parameters A and B are 
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To avoid overfitting and to derive unbiased training for the 
minimization, a hold-out set is generated from the data by 
dividing each training set of 80% and 20% respectively. The 
large subset is used for SVM training, and the smaller one is 
used for the two parameter minimization. In this context, Lin 
et al. [180] used 100 images of size 160*120 with known 
background. Each image is divided into blocks of size 4*4 
and considering two features for each block: optical flow 
value and consecutive image difference. For each block, its 
label is defined as +1 for background and -1 otherwise. The 
background initialization starts with the first image and each 
block are tested by the PSVM. An image block is classified 
as background if its probability output is larger than a 
threshold T: 
 

T)b(p i >  (25) 

When an image block Tbp i >)( is classified as 

background for M consecutive times, the Fisher linear 
distance is used: 
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where µ  and 
2σ  are the mean and the variance of the 

intensity distribution of a block. 
When the distance between the two blocks is large, two 
possible conditions appear.  The current block can be either 
part of a uniform region of a moving object or a new 
background just revealed. The averaging PSVM probability 
for the current block over the past M frames is compared 
with the PSVM probability of the background. If the new 
average PSVM probability is larger, then the background is 
replaced by the current block. 
Continuing this way, the initialization process will be 
terminated when replacement events do not occur for a 
consecutive M frames. When the initialization is finished, 
the foreground detection is made by thresholding the 
difference between the background model and the current 
image.  
 

4.2 Support Vector Regression (SVR) 

Given a set of training data, SVR fits a function by 
specifying an upper bound on a fraction of training data 
allowed to lie outside of a distance ε from the regression 
estimate. This type of SVR is usually referred to as ε-
insensitive SVR [181]. For each pixel belonging to the 
background, a separate SVR is used to model it as a function 
of intensity. To classify a given pixel as background or not, 
Wang et al. [183] [184] feed its intensity value to the SVR 
associated it and threshold the output of the SVR. Let 
assume a set of training data for some pixel p obtained from 
several frames {(x1, y1),...,(xN, yN)}, where xi corresponds to 
the intensity value of pixel p at frame i, and yi corresponds to 
the confidence of pixel p being a background pixel. Once the 
SVR has been trained, the confidence of the pixel p in a new 
frame i, f(xi), is computed using the following linear 
regression function: 
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where )x,x(k ji  is a kernel function. The parameters a , 

*a  and ξ , called Lagrange multipliers, are obtained by 

solving an optimization problem using the method of the 
Lagrange multipliers. Given the SVR-based background 
model, the intensity of each pixel in a new frame forms the 
input to the SVR. The output of the SVR represents the 
confidence that a given pixel belongs to the background. 
Eventually, a pixel is labelled as background if its 



confidence is between a low threshold Sl and a high 
threshold Sh. Specifically, a binary foreground detection map 
is formed at frame t as follows: 
 

0M t

x i
=  if hil S)x(fS <<  

1M t

x i
=  otherwise    (28) 

 

where )x(f i  is the SVR output and { }hl S,SS =  are the 

initial thresholds. Then, for each region in the binary map, 
the SVR-based background model is update using an online 
SVR learning algorithm [182]. 
 

4.3  Support Vector Data Description (SVDD) 

Tavakkoli et al. [186] proposed to model the background 
using support vector data description (SVDD) in videos with 
quasi-stationary backgrounds. Data domain description 
concerns the characteristics of a data set [185]. The boundary 
of the dataset can be used to detect novel data or outliers. A 
normal data description gives a closed boundary around the 
data. The simplest boundary can be represented by a hyper-
sphere. The volume of this hyper-sphere with center a  and 
radius R  should be minimized while containing all the 

training samples ix . To allow the possibility of outliers in 

the training set, slack variables 0i ≥ε  are introduced. The 

error function to be minimized is defined as: 
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Subjects to the contraints: 
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In equation (1), C is a trade-off between simplicity of the 
system and its error and is called confidence parameter. 
After incorporating the constraints (30) into the error 
function (29) by Lagrange multipliers we have: 
 

i

i

i

2

ii

2

i

i

i

2

iii ))ax(R(CR),,,a,R(L εγεαεεγα ∑∑∑ −−−+−+=
 

(31) 
 
L should be maximized with respect to Lagrange multipliers 

0i ≥α and 0i ≥γ  and minimized with respect to R, a  

and iε . Lagrange multipliers iγ can be removed if the 

constraint C0 i ≤≤α  is imposed. After solving the 

optimization problem we have: 
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C0: ii ≤≤∀ αα     (32) 

When a new sample satisfies the inequality in (30), then its 

corresponding Lagrange multipliers are 0i ≥α , otherwise 

they are zero.  
 
Therefore we have: 
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From the above, we can remark that only samples with non-

zero iα are needed in the description of the data set, 

therefore they are called support vectors of the description.  
To test a new sampley , its distance to the center of the 

hyper-sphere is calculated and tested against R. Tavakkoli et 
al. [186] used this methodology to built a descriptive 
boundary for each pixel in the background training frames to 
generate its model for the background. Then, these 
boundaries are used to classify their corresponding pixels in 
new frames as background and foreground pixels. In practice, 
for each pixel in the scene a single class classifier is trained 
by using its values in the background training frames. This 
classifier consists of the description boundary and support 
vectors, as well as a threshold used to describe the data. For 
the foreground detection, each pixel in the new frames is 
classified as background or foreground using its value and its 
corresponding classifier from the training stage. Feature 
vectors xij used in the current implementation are xij = [Cr; 
Cg], where Cr and Cg are the red and green chrominance 
values for pixel (i,j). 
 
Improvements: This model presents several advantages: 
The accuracy is not bounded to the accuracy of the estimated 
probability density functions and the memory requirement is 
less than non-parametric techniques. Because support vector 
data description explicitly models the decision boundary of 
the known class, it is suitable for novelty detection without 
the need to use thresholds. Furthermore, the classifier 
performance in terms of false positive is controlled explicitly. 
The main disadvantage is that the training of SVDD requires 
a Lagrange optimization which is computationally intensive. 
For the maintenance, all the SVDD must be recomputed. To 
perform the training, Tavakkoli et al. [187] proposed to use a 
genetic approach to solve the Lagrange optimization problem. 
The Genetic Algorithm (GA) starts with the initial guess and 
solves the optimization problem iteratively. In [188][189], 
Tavakkoli et al. proposed to use an incremental SVDD. In 
this way, the maintenance is performed too. 
 

4.4 Discussion 

Support vector models offer a nice framework for 
background modeling specifically in presence of 
illumination changes and dynamic backgrounds. Another 
way to model the background is to perform the first category 
by using a more adaptive model. 

 



5. THIRD CATEGORY 

The third category models generalize the first category 
model as the single general Gaussian (SGG), the mixture of 
general Gaussians (MOGG)  and subspace learning using 
Incremental Component Analysis (SL-ICA), Incremental 
Non-negative Matrix Factorization (SL-INMF) or 
Incremental Rank-(R1,R2,R3) Tensor (SL-IRT). 
 

5.1 Single General Gaussian (SGG) 

Kim et al. [190-192] proposed to model the background 
using a generalised Gaussian family (GGF) model of 
distributions to cope with problems from various changes in 
background and shadows. The idea is that pixel variance 
fitted sometimes a Laplace one or a Gaussian one.  Indeed, 
pixel variance in a static scene over time in indoor scenes 
taken with the latest camera is closer to a Laplace 
distribution than a Gaussian, but the Laplace model has 
limitation for use in various environments. The pixel 
variation in a static scene over time is defined as: 
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where )( •Γ  is a gamma function and 
2σ  is a variance of 

the distribution. In Equation (1), 1=ρ  represents a Laplace 

distribution while 2=ρ  represents a Gaussian distribution. 

The models are decided for each pixel by computing excess 

kurtosis 2g  of the first m frames. The excess kurtosis of 

Laplace and Gaussian distributions is respectively 3 and 0. 
The optimal parameters of the background model are 
estimated by the maximization of the likelihood of the 
observed value: 
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In practice, Kim et al. [190-192] modelled the background in 
two parts: a luminance component obtained by a weighted 
mean of RGB channels and a hue component in HSI color 
space. The maintenance is made using a selective running 
average as in [13]. The foreground detection is firstly 
performed by subtracting the intensity components of the 
current frame from the background model: 
 

)y,x(B)y,x(I)y,x(D −=  (36) 

 

where )y,x(I  and )y,x(B  correspond respectively to 

the luminance of the current frame and the background 
model. Then, pixels are classified into three categories using 
two thresholds as follows: 
 

background pixel if )y,x(kT)y,x(D 1<  

suspicious pixel  if )y,x(kT)y,x(D)y,x(kT 21 ≤≤  

foreground pixel if )y,x(D)y,x(kT2 <   (37) 
 

where )y,x(k  is a scale parameter. The thresholds 1T , 2T  

and 3T are determined using the training frames. The SGG 

shows better performance than the MOG and the KDE in 
indoor and outdoor scene. 
 

5.2. Mixture of General Gaussians (MOGG) 

Allili et al. [193-195] proposed a finite mixture model of 
general Gaussians for robust segmentation in the presence of 
noise and outliers. This model has more flexibility to adapt 
the shape of data and less sensibility for over-fitting the 
number of classes than the mixture of Gaussians. Each pixel 
is characterized by its intensity in the RGB color space. Then, 
the probability of observing the current pixel value is 
considered given by the following formula in the 
multidimensional case: 
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where the parameters are K is the number of distributions, 

ti ,ω is a weight associated to the ith Gaussian at time t with 

mean ti ,µ and standard deviation ti ,∑ . 0i =λ  if the 

distribution is a Gaussian one and 3i =λ  if the distribution 

is a Laplace one. η  is a Gaussian probability density 

function: 
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The optimal number of Gaussians is computed at each time t 
by minimizing the criterion Minimum Message Length 
(MML). If the number of Gaussians at time t+1 is smaller 
than at time t, the parameters are updated in a similar way 
than in [14]. The same matching test as in [14] is used to 
check if a pixel matches a Gaussian. For the labeling, the 
same scheme that Stauffer and Grimson [14] is used. The 
MOGG show better performance than the MOG in the 
presence of shadows (S). 



 
5.3 Subspace Learning  
 
Subspace learning can be made using PCA as seen in the 
Section 3.4. In the literature [196], there are other methods to 
reduce the space and these different methods have been 
classified by Skocaj and Leonardis [197] as reconstructive 
methods and discriminative methods: 
 
- Reconstructive subspace learning: The reconstructive 

methods allow a well approximation of data and so 
provide a good reconstruction. Another advantage is that 
reconstructive methods are unsupervised techniques. 
Furthermore, reconstructive methods enable incremental 
updating which is very suitable for real-time application. 
These methods are task-independents. The most 
common reconstructive methods are the following: 
Principal Components Analysis (PCA) [51], 
Independent Component Analysis (ICA) [52] and Non-
negative Matrix Factorization (NMF) [53]. PCA 
transforms a number of possibly correlated data into a 
smaller number of uncorrelated data called principal 
components. ICA is a variant of PCA in which the 
components are assumed to be mutually statistically 
independent instead of merely uncorrelated. The 
stronger condition allows remove the rotational 
invariance of PCA, i.e. ICA provides a meaningful 
unique bilinear decomposition of two-way data that can 
be considered as a linear mixture of a number of 
independent source signals. Non-negative matrix 
factorization (NMF) finds linear representations of non-
negative data. Given a non-negative data matrix V, 
NMF finds an approximate factorization V =WH into 
non-negative factors W and H. The non-negativity 
constraints make the representation purely additive, i.e 
allowing no subtractions, in contrast to principal 
component analysis (PCA) and independent component 
analysis (ICA). 

 
- Discriminative subspace learning: The discriminative 

methods are supervised techniques and allow a well 
separation of data and so provide a good classification. 
Furthermore, discriminative methods are spatially and 
computationally efficient. These methods are task-
dependents. The most common discriminative methods 
are the following: Linear Discriminant Analysis (LDA) 
[54] and Canonical Correlation Analysis (CCA) [55]. 
LDA projects the data onto a lower-dimensional vector 
space such that the ratio of the between-class distance to 
the within-class distance is maximized. The goal is to 
achieve maximum discrimination. Canonical correlation 
analysis (CCA) is a multivariate statistical model that 
facilitates the study of interrelationships among sets of 
multiple dependent variables and multiple independent 
variables. Canonical correlation simultaneously predicts 
multiple dependent variables from multiple independent 
variables. 

All these methods are originally implemented with batch 
algorithms which require that the data must be available in 

advance and be given once altogether. However, this type of 
batch algorithms is not adapted for the application of 
background modeling in which the data are incrementally 
received from the camera. Furthermore, when the dimension 
of the dataset is high, both the computation and storage 
complexity grow dramatically. Thus, incremental methods 
are highly needed to compute in real-time the adaptive 
subspace for the data arriving sequentially. Following these 
constraints, the reconstructive methods are the most adapted 
for background modeling. Furthermore, their unsupervised 
aspect allows avoid a manual intervention in the learning 
step.  In the following paragraphs, we survey the subspace 
leaning methods applied recently to background modeling: 
Independent Component Analysis (ICA), Non-negative 
Matrix Factorization (NMF) and Incremental Rank-(R1,R2,R3) 
Tensor. 
 
5.3.1 Subspace learning using ICA (SL-ICA) 
 
ICA generalizes the technique of PCA. When some mixtures 
of probabilistically independent source signals are observed, 
ICA recovers the original source signals from the observed 
mixtures without knowing how the sources are mixed. The 
assumption made is that the observation vectors 

T
M21 )x,...,x,x(X = can be represented in terms of a 

linear superposition of unknown independent vectors 
T

M21 )s,...,s,s(S = : 

 
ASX = (40) 
 

where A is an unknown mixing matrix (M×N). ICA finds a 
matrix W, so that the resulting vectors: 
 

WXY =  (41) 
recovers the independent vectors S, probabilistically 
permuted and rescaled. W is roughly the inverse matrix of A. 
Applying it to background modeling, the ICA model is given 
by: 
 

tWXY =  (42) 

 

 T

FBt )x,x(X =  is the mixture data matrix of size 2*K in 

which K=M*N. )x,...,x,x(x K112111 =  is the first frame 

which can contain or not foreground objects and 

)x,...,x,x(x K2221é2 =  is the second frame which 

contain foreground objects. T

21 )w,w(W =  is the de-

mixing matrix, in which )w,w(w 2i1ii =  with i=1,2. 
T

21 )y,y(Y =  is the estimated source signals in which 

)y,...,y,y(y ik2i1ii = . Several ICA algorithms can be 

used to determine W. Yamazaki et al. [198] used a neural 
learning algorithm [199]. In another way, Tsai and Lai [200] 
used a Particle Swarm Algorithm (PSO) [201]. Once W is 



determined, there are two ways in the literature to generate 
the background and the foreground mask images: 
 

- The first case which 1x  contains foreground object like 

in Yamazaki et al. [198]. Then, the foreground mask for 

the frames 1x  and 2x  is obtained by thresholding 

respectively 1y  and 2y . The background image is 

obtained by replacing regions representing foreground 

objects in 1x  by the corresponding regions representing 

background in 2x . 

- The second case which 1x  contains no foreground 
object like in Tsai and Lai [200]. Then, the foreground 

mask for the frames2x  is obtained by thresholding 2y . 

The background image is1y . 

 
The ICA model was tested on traffic scenes by Yamazaki et 
al. [198] and show robustness in changing background like 
illumination changes. In [200], the algorithm was tested on 
indoor scenes where sudden illumination changes appear. 
 

5.3.2 Subspace learning using INMF (SL-INMF) 
 
The non-negative matrix factorization (NMF), with rank r, 

decomposes the data matrix 
qpRV ×∈  into two matrices 

which are 
rpRW ×∈  called the mixing matrix, and 

qrRH ×∈ named as the encoding matrix: 
 

WHV ≈  (43) 
 

So, NMF aims to find an approximate factorization that 
minimizes the reconstruction error. Different cost functions 
based on the reconstruction error have been defined in the 
literature, but because of its simplicity and effectiveness, the 
squared error is the most used: 
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where subscription ij stands for the ijth matrix entity. 
Applying it to background modelling, Bucak et al. [202, 203] 
proposed an incremental NMF algorithm. The background 
initialization is made using N training frames. So, V is vector 
column corresponding to a matrix of size N)qp( ×× .  The 

matrices W and H are updated incrementally. The 
foreground detection is made by thresholding the residual 
error which correspond to the deviations between the 
background model and the projection of the current frame 
onto the background model. The INMF has similar 
performance to dynamic background and illumination 
changes than the IRPCA proposed by Li et al. [170]. 
 

5.3.3 Subspace learning using Incremental Rank-
(R1,R2, R3) Tensor (SL-IRT) 

 
The different previous subspace learning considered image 
as a vector. So, the local spatial information is almost lost.  
Li et al. [204, 205] proposed to use a high-order tensor 
learning algorithm called incremental rank-(R1,R2,R3) tensor 
based subspace learning to take into account the spatial 
information. This online algorithm constructs a low-order 
tensor eigenspace model in which the sample mean and the 
eigenbasis are updated adaptively. Denote 

{ }
t,...,2,1q

NM

q RBMG
=

×∈=  as a scene’s background 

appearance sequence with the q-th frame being qBM .  

Denote xyp  as the x-th and the y-th pixel of the scene. The 

tensor-based eigenspace model for an existing 
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tq

tIIxy
q RBMA

,...,2,1
21

=
××∈=  (I1=I2=5  corresponding to 

a K neigborhood of uvp  with K= I1I2-1=24 ) consists of the 

maintained eigenspace dimensions (R1,R2,R3) corresponding 
to the three tensor unfolding modes, the mode-n column 

projection matrices nn RI)n( RU ×∈ , the mode-3 row 

projection matrix 32n R)I.I()3( RV ×∈ , the column means 
)1(L  and )2(L  of the mode-(1,2) unfolding matrices )1(A  

and )2(A , and the row mean )3(L  of the mode-3 unfolding 

matrix )3(A . Given the K-neighbor image region 

1IIuv
1t

21RI ××
+ ∈  centered at the x-th and y-th pixelxyp  of the 

current incoming frame 1NM
1t RI ××

+ ∈ , the distance 

xyRM  (determined by the three reconstruction error norms 

of the three modes) between xy
tI 1+  and the learned tensor-

based eigenspace model is computed. Then, the foreground 
detection is defined as follows: 

xyp  is classified as background if T
RMxy >− )
2

exp(
2

2

σ
 

xyp  is classified as foreground otherwise  (45) 

where σ  is a scaling factor and T denotes a threshold. Thus, 

the new background model ),(1 yxBM t+  at time t+1 is 

defined as: 
 

xyt HyxBM =+ ),(1   if xyp  is classified as foreground 

),(),( 11 yxIyxBM tt ++ =  otherwise  (46) 

where ),(),()1( 1 yxIyxMBH ttxy ++−= αα , tMB is 

the mean matrix of t:1BM  at time t and α  is a learning rate 

factor. Then, the tensor eigenspace model is updated 
incrementally and so on. The IRT show more robustness to 
noise than the IRPCA proposed by Li et al. [170]. 
  



  

   

Table 16. Performance evaluation on dynamic backgrounds and illumination changes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 17. Computational complexity 

Method Background Initialization Background Maintenance Foreground Detection 
SG [13] 
MOG [14] 
KDE [15] 
SL-PCA [165] 

O(N) 
O(NK) 
O(N) 
O(N) 

O(1) 
O(K) 
O(n) 
O(N+M) 

O(1) 
O(K) 
O(1) 
O(P) 

SVM [180] 
SVR [183] 
SVDD [189] 

O(N) 
O(N) 
O(N) 

O(N+t) 
O(1) 
O(1) 

O(1) 
O(1) 
O(1) 

SGG [190] 
MOGG [194] 
SL-ICA [200] 
SL-INMF [202] 
SL-IRT [205] 

O(N) 
O(NK) 
O(N) 
O(N) 
O(N) 

O(1) 
O(K) 
O(M) 
O(M) 
O(M) 

O(1) 
O(K) 
O(P) 
O(P) 
O(P) 

 
6 . PERFORMANCE EVALUATION 
 
We have firstly evaluated the ability of each method to deal 
with dynamics backgrounds and illumination changes. Then, 
the evaluation is conducted of per-pixel computational 
complexity and memory requirements. 
 
6.1 Challenges 
 
Table 16 groups the ability of each method to deal with 
dynamics backgrounds and illumination changes. The third 
column indicates in which type of scene the method is well 
suited. The related applications are indicated in the fourth 
column. 
 
6.2 Computational complexity 
 
The SG is the fastest method because the classification is just 
made using a threshold and the background maintenance just 
adapts the mean and the variance. Its complexity depends on 
N for the initialization. The MOG method has O(NK) 
complexity with K the number of Gaussian distributions 
used, typically between 3 and 5. For maintenance, the KDE 
computes its value in the Gaussian kernels centered on the 
past n frames, thus raising O(n) complexity, with n typically 
as high as 100. For the reconstructive subspace learning, 
their computational complexities are related to the operations 
needed to compute the elements stored and updated, i.e the 

principal matrix or the eigenstructures. For example, the 
incremental tensor subspace learning requires O(I1I2(R1 +R2 
+R3)) operations [205]. For the foreground detection, the 
reconstructive subspace learning methods have an estimated 
complexity per pixel of O(P), where P is the number of the 
best eigenvectors. For the background maintenance, their 
complexity is related to M which is the number of samples 
used to update the model. M=1 if the model is update every 
frame. Table 17 shows the per-pixel computational 
complexity of each algorithm at each stage. More details 
about the complexity of each algorithm can be found in their 
corresponding papers. 
 
6.3 Memory requirements 
 
For the statistical methods, the memory complexity per pixel 
is the same as the computational complexity. At 
classification time, reconstructive approaches require a 
memory complexity per pixel O(P), with P the number of the 
best eigenvectors. However, at training time these methods 
require allocation of all the N training images, with an O(N) 
complexity. For the reconstructive subspace learning, the 
memory requirements are related to the elements stored and 
updated, i.e the principal matrix or the eigenstructures. For 
example, the incremental tensor subspace learning requires 
O(I1R1+I2R2+(I1I2)R3) memory units [205]. 
 
 
 

Method   Dynamic backgrounds Illumination changes Indoor/outdoor scene Applications 

 SG [13] 
MOG [14] 
KDE [15] 
SL-PCA [165] 

- 
Slow movement 
Yes 
- 

Slow changes 
Slow changes 
Slow changes 
Yes 

Indoor scene 
Outdoor scene 
Outdoor scene 
Outdoor scene (small objects) 

Motion Capture 
Video Surveillance 
Video Surveillance 
Video Surveillance 

SVM [180] 
SVR [183] 
SVDD [189] 

- 
Slow movement 
Yes 

Slow changes 
Slow changes 
Yes 

Outdoor scene 
Outdoor scene 
Outdoor scene 

Video Surveillance 
Video Surveillance 
Video Surveillance 

SGG [190] 
MOGG [194] 
SL-ICA [200] 
SL-INMF [202] 
SL-IRT [205] 

- 
Slow movement 
- 
- 
- 

Slow changes 
Slow changes 
Yes 
Yes 
Yes 

Indoor scene 
Outdoor scene 
Outdoor scene (small objects) 
Outdoor scene (small objects) 
Outdoor scene (small objects) 

Motion Capture 
Video Surveillance 
Video Surveillance 
Video Surveillance 
Video Surveillance 



7. COMPARISON 
  
We have chosen to compare different improvements of the 
MOG for dynamic backgrounds and the subspace learning 
models (SL-PCA, SL-ICA, SL-INMF and SL-IRT) for 
illumination changes.  Results on the Wallflower dataset 
provided by Toyama et al. [20] are presented. We collected 
these results because of how frequent its use is in this field. 
This frequency is due to its faithful representation of real-life 
situations typical of scenes susceptible to video surveillance. 
Moreover, it consists of seven video sequences in which 
each sequence presenting one of the difficulties a practical 
task is likely to encounter (i.e illumination changes, dynamic 
backgrounds). The size of the images is 160*120 pixels. A 
brief description of the Wallflower image sequences can be 
made as follows: 
 
- Moved Object (MO): A person enters into a room, 

makes a phone call, and leaves. The phone and the chair 
are left in a different position. This video contains 1747 
images 

- Time of Day (TOD): The light in a room gradually 
changes from dark to bright. Then, a person enters the 
room and sits down. This video contains 5890 images 

- Light Switch (LS): A room scene begins with the lights 
on. Then a person enters the room and turns off the 
lights for a long period. Later, a person walks in the 
room, switches on the light, and moves the chair, while 
the door is closed. This video contains 2715 images. 

- Waving Trees (WT): A tree is swaying and a person 
walks in front of the tree. This video contains 287 
images. 

- Camouflage (C): A person walks in front of a monitor, 
which has rolling interference bars on the screen. The 
bars include similar color to the person’s clothing. This 
video contains 353 images. 

- Bootstrapping (B): The image sequence shows a busy 
cafeteria and each frame contains people. This video 
contains 3055 images. 

- Foreground Aperture (FA): A person with uniformly 
colored shirt wakes up and begins to move slowly. This 
video contains 2113 images. 

 
For each sequence, the ground truth is provided for one 
image when the algorithm has to show its robustness to a 
specific change in the scene. Thus, the performance is 
evaluated against hand-segmented ground truth. Three terms 
are used in the evaluation: False Positive (FP) is the number 
of background pixels that are wrongly marked as foreground; 
False Negative (FN) is the number of foreground pixels that 
are wrongly marked as background; Total Error (TE) is the 
sum of FP and FN.   
 
 
 
 

7.1 MOG and its improvements 
For the first category, we compare the MOG with its main 
improvements. Table 18 and Fig. (5) group the experimental 
results found in the literature for the algorithms chosen 
which are: 
 
1. The original algorithm: Stauffer and Grimson [14].  
 
2. Three intrinsic improvements: White et al. [67] which 

used a better setting for the learning rates using Particle 
Swarm Optimization, Wang et al. [60] which modified 
the foreground detection step using a mixed color space 
i.e a normalized RGB color space for pixels with high 
intensities and in RGB color space for pixels with low 
intensities and Setiawan et al. [97] which used the IHLS 
space.  

 
3. Three extrinsic improvements: Schindler et al. [109] 

which used the MRFS to smooth the results spatially, 
Cristani et al. [117] which proposed the Spatial-Time 
Adaptive Per Pixel Mixture Of Gaussian called S-
TAPPMOG and Cristani et al. [118] which used an 
adaptive spatio-temporal neighborhood analysis called 
ASTNA. For these two last algorithms, the authors don’t 
give the result for the following image sequences: 
Moved Object, Time of Day and Light Switch. So, we 
have indicated for these the Total Error without these 
image sequences. 
 

From Table 18, we can see that the original MOG gives the 
bigger total of error. A better setting of the learning rate   and 
the threshold T using the PSO [67] divides approximately by 
2 the number of total errors. The use of the IHLS color space 
[97] decreases a lot the number TE which becomes just 
under 10 000.  The improvement proposed by Wang et al. 
[60] gives the better results for the intrinsic improvements. 
For the extrinsic improvements, the best results are obtained 
by MOG using MRF proposed by Schindler et al. [109] 
followed by S-TAPPMOG [117] and ASTNA [118]. For all 
the methods, the image sequences Light Switch (LS) gives 
the larger amount of false positive. Here, the best result is 
obtained by the method proposed by Schindler et al. [109]. 
The use of IHLS [97] gives it best improvement for the 
image sequences Camouflage (C) and for the method 
proposed by Wang et al. [30],  it is the image sequences 
Waving Trees (WT). In conclusion, this performance 
evaluation shows that taking into account spatial and 
temporal consistency improves the results in a significant 
way. Fig. (6) presents the overall performance for the five 
first algorithms. It is not intended to be a definitive ranking 
of these algorithms. Such a ranking is necessarily task-, 
sequence-, and application dependent. 

 
 
 
 

 
 
 



Fig. (5). Results on the Wallflower dataset [26] for the MOG and its improvements.  
 

Sequence MO TD LS WT  C B FA 
Test image 

       
Ground Truth 

       
MOG  
Stauffer et al. [14] 

       
MOG with PSO 
White et al. [67] 

       
MOG using IHLS  
Setiawan et al. [97] 

       
Improved MOG  
Wang et al. [60] 

       
MOG with MRF  
Schindler et al. [109] 

       
S-TAPMOG 
Cristani et al. [117] 

- - - 

    
ASTNA 
Cristani et al. [118] 

- - - 

    
 
Table 18. Comparison on the Wallflower dataset [26] for the MOG and its improvements. 
 

    Problem Type   
 Algorithm  MO TD LS WT  C B FA TE 

           
MOG [14] FN 0 1008 1633 1323 398 1874 2442   
 FP 0 20 14169 341 3098 217 530 27053  
MOG  with PSO [67] FN 0 807 1716 43 2386 1551 2392   
 FP  0  6  772  1689  1463  519  572 13916  
MOG-IHLS [97]  FN 0 379 1146 31 188 1647 2327  
 FP 0 99 2298 270 467 333 554 9739 
Improved MOG – FD 
[60] 

FN 
0 597 1481 44 106 1176 1274   

 FP  0  358  669  288  413  134  541  7081  
MOG with MRF [109] FN 0 47 204 15 16 1060 34   
 FP  0  402  546  311  467  102  604  3808  
S-TAPPMOG [117] FN - - - 153 643 1414 1912  
 FP - - - 1152 1382 811 377 7844 
ASTNA [118] FN - - - 253 823 2349 1900  
 FP - - - 100 1173 73 360 7031 

 

 

 

 

 

 

 

 



Fig. (7). Results on the Wallflower dataset [26] for the subspace learning models. 

 
Sequence MO

Test image 

Ground truth 

SL-PCA 
Oliver et al. [165] 

SL-ICA 
Tsai and Lai [200] 

SL-INMF 
Bucak et al. [202] 

SL-IRT 
Li et al. [204] 

 
Table 19. Comparison on the Wallflower dataset [26]
 

    
 Algorithm  

   
SL-PCA [165] FN 
 FP 
 SL-ICA [200] FN 
 FP 
 SL-INMF [202]  FN 
 FP 
SL-IRT [204] FN 
 FP 

 
7.2 Subspace learning models 
 
SL-PCA which is from the first category is compared with 
the subspace learning models from the third category: 
IRT, SL-PCA and SL-INMF. Table 19
experimental results found in the literature for the
learning algorithms. From Table 19, we can see that SL
gives the smallest TE followed by SL
INMF. Fig. (8) shows the overall performance.
has to be taken with precaution because a poor performance 
on one video influences the TE and then modifies the rank. 
The main interpretation is that all the models are robust to 
illumination changes as can be seen on the sequence called 
“Time of Day” (TD) and “Light Switch”
the subspace learning algorithms are more or less adapted for 
specific situations. For example, only 
the sequence called “Moved Objects” (MO)
the model is not update overtime. In the same way, SL
INMF gives the biggest total error due to its results on the 
sequence called “Camouflage” (C).  This is confirmed by the 
Fig. (9). which shows the performance without this sequence. 
In this case, SL-INMF is the second in term of 
SL-ICA has globally good performance except for the 
sequence called “Bootstrap” (B) by giving less true detection. 

on the Wallflower dataset [26] for the subspace learning models.  
 

MO TD LS WT  C 

     

     

     

     

     

     

the Wallflower dataset [26] for the subspace learning models

Problem Type 
MO TD LS WT  C 

     
0 879 962 1027 350 

1065 16 362 2057 1548 

0 1199 1557 3372 3054 

0 0 210 148 43 

0 724 1593 3317 6626 

0 481 303 652 234 

0 1282 2822 4525 1491 

0 159 389 7 114 

PCA which is from the first category is compared with 
the subspace learning models from the third category: SL-

9 and Fig. (7) group the 
experimental results found in the literature for the subspace 

we can see that SL-ICA 
SL-IRT, SL-PCA and SL-

s the overall performance. This ranking 
has to be taken with precaution because a poor performance 
on one video influences the TE and then modifies the rank. 

all the models are robust to 
illumination changes as can be seen on the sequence called 

and “Light Switch” (LS). Otherwise, 
are more or less adapted for 

situations. For example, only SL-PCA gives FP in 
” (MO) due the fact that 

rtime. In the same way, SL-
INMF gives the biggest total error due to its results on the 

.  This is confirmed by the 
performance without this sequence. 

INMF is the second in term of performance. 
ICA has globally good performance except for the 

by giving less true detection. 

SL-IRT seems to be more efficient in the case of camouflage. 
SL-PCA gives less FN than FP. For 
SL-IRT, it is the contrary. We can remark that 
provides very less FP than FN. It is interesting in video
surveillance because it decreases false alarms.
 
Fig. (6). Overall performance on the Wallflower dataset 
[26] for the MOG and its improvements.
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PCA gives less FN than FP. For SL-ICA, SL-INMF and 
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surveillance because it decreases false alarms.  
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Fig. (8). Overall performance on the Wallflower dataset 
[26] for the subspace learning models. 
 

 
 
Fig. (9). Overall performance on the Wallflower dataset 
[26] without the sequence called “Camouflage” for the 
subspace learning models. 

 

8. CURRENT & FUTURE DEVELOPMENTS 

This paper attempts to provide a comprehensive survey on 
statistical background modeling for foreground detection and 
to provide some structural categories for the strategies 
developed in 300 papers and 10 recent patents. Thus, we 
proposed a classification in term of category. For the MOG 
and KDE, we proposed a classification for their related 
improvements in two classes respectively called intrinsic and 
extrinsic improvements. Strategies adding spatial and 
temporal information in the different steps or in added 
process proved their abilities to improve the robustness of 
the original model to the critical situations. Cooperation with 
other segmentations has shown their interests too. Methods 
which reduce the computation time permit to deal with the 
constraints of real-time application. Although significant 
progress has been made, there is still work to be done and we 
believe that a systematic comparative evaluation must be 
made and thus determine the best combination of strategies. 
In this context, we encourage the evaluation using the 
Wallflower dataset like in [60, 67, 97, 109].  

 

 

Furthermore, two main investigations seem to be very 
promising:  

- For dynamic backgrounds, combination between SG, 
MOG and KDE [337-339] which allows to gives more 
robustness when there are waving trees, water surfaces 
and water rippling in the scene. 

- For illumination changes, robust PCA [340-344] in 
which the background is modeled by a low rank 
subspace that can gradually change over time, while the 
moving foreground objects are considered as the 
correlated sparse outliers. 
 

In conclusion, this paper allows the reader to survey recent 
advances on statistical background modeling and it can 
effectively guide him to select the best improvement for his 
specific application. Particularly, this survey paper allows: 1) 
Developers to choose the appropriate improvement to tackle 
the critical situations met in their application. 2) Researchers 
to have a recent state-of-the-art and so easily identify new 
ideas. 3) Reviewers to verify quickly the originality of a 
paper.  
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