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Short Running Title: Advanced Background Modeling: A Systematic Survey

Abstract: Background modeling is currently used to detect imgpwbjects in video acquired from static cameNwsmerous
statistical methods have been developed over tbenteyears. The aim of this paper is firstly toyide an extended and
updated survey of the recent researches and patbith concern statistical background modeling sedondly to achieve a
comparative evaluation. For this, we firstly cléissi the statistical methods in term of categorye, the original methods are
reminded and discussed following the challengesimeideo sequences. We classified their respedtiy@govements in term
of strategies used. Furthermore, we discussed theerm of the critical situations they claim tonldée. Finally, we conclude
with several promising directions for future res#arThe survey also discussed relevant patents.

Keywords: Background modeling, Kernel Density EstimationxiMrie of Gaussians, Single Gaussian, Subspaceibgarn

1. INTRODUCTION -

Different applications such as video surveillaridg,

Background Clustering: The background model
supposes that each pixel in the frame can be rexptiexs

optical motion capture [2-4] and multimedia [5-7¢ed
firstty to model the background and then to detdwt
moving objects. One way to obtain the backgroundois
acquire a background image which doesn't includg an
moving object but in some environment the backgdoism
not available. Furthermore, it can always be chdngeder
critical situations like illumination changes, otig being -
introduced or removed from the scene. To take aumount
these problems, many background modeling methods ha
been developed [8, 9] and these methods can b&fiddsin
the following categories:

- Basic Background Modding: In this case, the
background is modeled using the average [10] or the
median [11] or the histogram analysis over timg.[12

- Statistical Background Maodeling: The background is
modeled using a single Gaussian [13] or a Mixture o
Gaussians [14] or a Kernel Density Estimation [15].
Statistical variables are used to classify the Ipixas
foreground or background.

- Fuzzy Background Modding: The background is
modeled using a fuzzy running average [16] or Tgpe-
fuzzy mixture of Gaussians [17]. Foreground detecti

temporally by clusters. Incoming pixels are matched
against the corresponding cluster group and are
classified according to whether the matching cluge
considered part of the background. The clustering
approach consists in using K-mean algorithm [361] o
using Codebook [362].

Neural Network Background Modeling: The
background is represented tmean of the weights of a
neural network suitably trained on N clean franTdse
network learns how to classify each pixel as bamlgd

or foreground [332][333].

Wavelet Background Modeling: The background model

is defined in the temporal domain, utilizing the
coefficients of discrete wavelet transform (DWT3§3.
Background Estimation: The background is estimated
using a filter. Any pixel of the current image that
deviates significantly from its predicted value is
declared foreground. This filter may be a Wienéefi
[20], a Kalman filter [21] or a Tchebychev filte2d].

Table 1 shows an overview of this classification. Thetfirs
column indicates the category and the second coltlran

name of each method. The number of papers coumted f
each method is indicated in the parenthesis. Thel th
column gives the name of the authors who have ntlagle
main publication for the corresponding method drel date

of the related publication. Other classificatioms te found

in term of prediction [23], recursion [1], adapteti[24], or
modality [25].

is made using the Sugeno integral [18] or the Chbqu
integral [19]. The foreground detection can be
performed by fuzzy inferences [335].

*Address correspondence to these authors at theradyy de Mathematics
Image and Applications (LMIA), Pble Science, Unsit¥ de La Rochelle,
17000 La Rochelle, France; E-mailouwman@univ-Ir.fr



Table 1. Background Modeling Methods: An Overview

Category Methods Authors - Dates
Basic Background Modeling Mean (11) Leeet al.(2002) [10]
Median (13) Mac Farlaneet al.(1995) [11]
Histogram over time (13) Zhenget al.(2006) [12]
Statistical Background Modeling Single GaussiaB) (3 Wrenet al.(1997) [13]
Mixture of Gaussians (217) Stauffer and Grimson (1999) [14]
Kernel Density Estimation (5) Elgammalet al.(2000) [15]
Fuzzy Background Modeling Fuzzy Running Average (5) Sigariet al.(2008) [16]
Type-2 Fuzzy Mixture of Gaussians (3)El Baf et al.(2008) [17]
Background Clustering K-Means (11) Butleret al.(2003) [361]
Codebook (35) Kim et al.(2005) [362]
Neural Network Background Modeling General Regmssieural Network (1) Culibrk et al.(2006) [332]
Self Organizing Neural Netwol(9) Maddalena anPetrosino (200" [333]
Wavelet Background Modeling Discrete Wavelet Transform Biswas et al. [336]
Background Estimation Wiener Filter (1) Toyamaet al.(1999) [20]
Kalman Filter (19) Messelodiet al.(2005) [21]
Tchebychev Filter (3) Changet al.(2004) [22]

All these modeling approaches are used in backgroun Fig. (1). The first column presents original scenes contginin
subtraction context which presents the followingpstand dynamic backgrounds. The second column shows the
issues: background modeling, background initialimgt  foreground masks obtained by the MOG [14].

background maintenance, foreground detection, ehwiiche
feature size (pixel, a block or a cluster), chat¢he feature
type (color features, edge features, stereo femtummtion
features and texture features). Developing a backgt
subtraction method, all these choices determine the
robustness of the method to the critical situatiomst in
video sequence [5, 20]: Noise image due to a poality
image source (NI), Camera jitter (CJ), Camera aat@m
adjustments (CA), Time of the day (TD), Light switfL.S), a) Sequence Camera jitter from [229]
Bootstrapping (B), Camouflage (C), Foreground apert
(FA), Moved background objects (MO), Inserted baokad
(IB), Waking foreground object (WFO), Sleeping foreund
object (SFO) and Shadows (S). The main difficultesne
from the dynamic backgrounds and illumination clemng

- Dynamic backgrounds often appear in outdoor scenes.
Fig. (1). presents four typical examples: Camettarji
waving trees, water rippling and water surface. Teie
column shows the original images and the right the
foreground mask obtained by the MOG [14]. In each
case, there is a big amount of false detections.

- IHlumination changes appear in indoor and outdoor
scenes. Fig. (2). shows an indoor scene in whiclcame
observe a gradual illumination change. This cataes c) Sequence Water rippling from [34]
detections in several parts of the foreground mask -
obtained by the MOG [14]. Fig. (3). illustrates ttese g
of sudden illumination change due to a light on/off !
Every pixel in the images is affected by this chang :
which generates a large amount of false detecises
Fig. 3c).

d) Sequence Water surface from [34]



Fig. (2). From left to right: The first image presents andodscene with low illumination. The second imagesents the same
scene with a moderate illumination while the thitthge shows the scene with a high illumination. fidheth image shows the
foreground mask obtained with MOG [14]. This sequeecalled “Time of Day” comes from the Wallfloweatdset [20].

a) Low b) Moderate

c) High d) Foregroundsin

Fig. (3). From left to right: The first image presents andodscene with light-on. The second image showss#ime scene
with light-off. The third image shows the foregraumask obtained with MOG [14]. This sequence caflédht Switch”

comes from the Wallflower dataset [20].

) Light-on

b)

Different datasets benchmarks are available [26-81]
evaluate the robustness of the background suldracti
methods against these critical situations whicrehdifferent
spatial and temporal characteristics which mustalie into
account to obtain a good segmentation. This chgdlenust
be made in the context of real-time application alihiuns
on common PC and so two constraints are introdulesg:
computation time (CT) and less memory requiremstiRR)
as possible. The performance is evaluated usingRE
analysis [32] or the PDR Analysis [33] or the samity
measure [34]. Others performance evaluation metlawds
proposed and compared in [35, 36]. Reading theatitiee,
two main remarks can be made: (1) The most frequent
used models are the statistical ones due to thkirstness to
the critical situations. (2) There are many recent
developments regarding statistical models as casebe for
the MOG model with the acronyms found like GMM [37]
TLGMM [38], STGMM [39], SKMGM [40], TAPPMOG
[41] and S-TAPPMOG [42]. The objective is then to
categorize the statistical models in one paper @assify
their recent improvements following the strategised. We
also discuss them following the challenges met itew
sequences and evaluate some of them in term & &dsms
using the Wallflower dataset [20]

This paper is an extended and updated paper oftineeys
on Mixture of Gaussians for background modeling] [48d
Subspace Learning for background modeling [334].

The rest of this paper is organized as followsSétction 2,
we firstly provide a background on the statistizatkground
models and a classification of these models. IniGe8, we
survey the first generation models and their rethpec
improvements. In Section 4, we classified the sdcon
generation models. In Section 5, the third genemathnodels
are reviewed. In Section 6, we firstly investigatdie
performance in term of robustness on dynamic backgis

x.lﬂ\

Light-off c) Foreground mask

and illumination changes and secondly in terms empjixel
complexity. Then, a comparative evaluation is pfed in
Section 7. Finally, conclusion and future developtaeare
given.

2. STATISTICAL BACKGROUND MODELING: AN
OVERVIEW

The statistical tools provide a good framework todel the
background and so many methods have been develdfed.
classified them in term of category as follows:

- First category: The first way to represent statistically the
background is to assume that the history over tihe
intensity values of a pixel can be modeled by alsin
Gaussian (SG) [13]. However, a unimodal model
cannot handle dynamic backgrounds when there are
waving trees, water rippling or moving algae. Tdveo
this problem, the Mixture of Gaussians (MOG) hasrbe
used to model dynamic backgrounds [14]. This model
has some disadvantages. Background having fast
variations cannot be accurately modeled with jufgva
Gaussians (usually 3 to 5), causing problems for
sensitive detection. So, a non-parametric technigag
developed for estimating background probabilities a
each pixel from many recent samples over time using
Kernel density estimation (KDE) [15] but it is time
consuming. In [165], Subspace Learning using Ppiici
Component Analysis (SL-PCA) is applied on N images
to construct a background model, which is represent
by the mean image and the projection matrix conmgis
the first p significant eigenvectors of PCA. Inghiay,
foreground segmentation is accomplished by comgutin
the difference between the input image and its
reconstruction.



Table 2. Advanced Statistical Background ModelingAn Overview

Category Methods Authors - Dates
First Category | Single Gaussian (SG) (33) Wrenet al.(1997) [13]
Mixture of Gaussians (MOG) (217) Stauffer and Grimson (1999) [14]
Kernel Density Estimation (KDE) (55) Elgammalet al.(2000) [15]
Principal Components Analysis (SL-PCA) (25) Oliver et al. et al.(1999) [165]
Second Category Support Vector Machine (SVM) (9) Lin et al.(2002) [180]
Support Vector Regression (SVR) (3) Wanget al.(2006) [183]
Support Vector Data Description (SVDD) (6) Tavakkoliet al.(2006) [186]
Third Category Single General Gaussian (SGG) (3) Kim et al.(2007) [190]
Mixture of General Gaussians (MOGG) (3) Allili et al.(2007) [194]
Independent Component Analysis (SL-ICA) (3) Yamazakiet al.(2006) [198]
Incremental Non Negative Matrix Factorization (SUMF) (3) | Bucaket al.(2007) [202]
Incremental RanR1,R»,R3) Tensor (SL-IRT) (2) Li et al.(2008) [204]

extrinsic improvements which consist in using exéitools
- Second category: This second category uses support to perform the results.

vector models. The objective is different followitige
models used. Liret al.[180] used a SVM algorithm to 3. FIRST CATEGORY
initialize the background in outdoor scene. Wangil. 3.1 Single Gaussian (SG)
[183, 184] modeled the background by using SVRhen t
case of traffic surveillance scene where illumiomti
changes (TD) appear. Tavakketial.[186-189] applied
SVDD to deal with dynamic backgrounds (MB).

Wren et al. [I3] proposed to model the background
independently at each pixel location (i,j). The relod based
on ideally fitting a Gaussian probability densityn€tion on
the last n pixel's values. In order to avoid figithe pdf from

- Third category: These models generalize the first
generation model as the single general Gaussia)SG
[190-192], the mixture of general Gaussians (MOGG)
[193-195] and subspace learning using Independent M :(7_a)/'1;+a-X;+1
Component Analysis (SL-ICA) [198, 200], Incremental
Non-negative Matrix Factorization (SL-INMF) [202,
203] or Incremental Rank-(fR,,R;) Tensor (SL-IRT)
[204, 205]. The single general Gaussian (SGG)
alleviates the constraint of a strict Gaussian #reh ~ where X, is the pixel's current valui £, is the previous
shows better performance in the case of illumimatio average 0, is the previous variance ad is the learning
changes (TD) and shadow (S). The MOGG have been 7
developed to be more robust to dynamic backgroundgate. The foreground detection is made as follows:
(MB). Subspace learning methods are more robust to
illumination changes (LS). if |’u[+7 -X,,,

variance are updated as follows:

0-;‘2+7 = (7 - O')Uf + a(XtH - ﬂt+7)(Xf+7 - lut+7)’1‘

<T, the pixel is classified as background

Table 2 shows an overview of the statistical background otherwise the pixel is classified as foreground.

modeling. The first column indicates the generation the
second column the name of each method. Their
corresponding acronym is indicated in the firstepdinesis
and the number of papers counted for each methdtiein
second parenthesis. The third column gives the nafntiee
authors who have made the main publication for the
corresponding method and the date of the relatbtiqation.
We can see that the MOG with 217 papers is the mos
modified and improved because it is the most usedtd a
good compromise between robustness.

In the following sections, we remind the origina¢thods
for each generation and we have classify theirtedla
improvements in the following way: intrinsic impmewents
which concern the modification made in the initiation,
the maintenance and the foreground detection stepd,

Improvements: Medioni et al. [43] operated in the Hue-
Saturation-Value (HSV) color space instead of ti&BRone.
The advantage is that the HSV color model is mobaist to
gradual illumination changes (TD) because it separ¢he
intensity and chromatic information. FurthermoreS\H
permits to eliminate partially camouflage. Zhetoal. [44]
sed HSV too remarking that the respective distidmg of
and S vary naturally a lot and that the distiidnutof V is
the most stable. So, the component H and S are usdy
when they are stable. Results [44] show betterop@idnce
in presence of gradual illumination changes (TD)X an
shadows (S).

Discussion: The single Gaussian (SG) is suited for indoor
scenes where there are moderate illumination clsange

scratch at each new frame time t+1, the mean aed th



3.2 Mixture of Gaussians (MOG)

In the context of a traffic surveillance systemigBman and
Russel [45] proposed to model each background pisiglg

a mixture of three Gaussians corresponding to reekicle
and shadows. This model is initialized using an EM
algorithm. Then, the Gaussians are manually labaied
heuristic manner as follows: the darkest componient
labeled as shadow; in the remaining two componehts,
one with the largest variance is labeled as velaclé the
other one as road. This remains fixed for all tlecpss
giving lack of adaptation to changes over time. Hug
foreground detection, each pixel is compared wittthe
Gaussian and is classified according to it corredpm
Gaussian. The maintenance is made using an inctamen
EM algorithm for real time consideration. Stauffand
Grimson [14] generalized this idea by modeling theent

history of the color features of each pi>{é(1,...,Xt} by a
mixture of K Gaussians. We remind below the aldponit

Principle

First, each pixel is characterized by its intengitfhe RGB
color space. Then, the probability of observing therent
pixel value is considered given by the followingrfaula in
the multidimensional case:

P(X,)= @, 7(X, f4. %)

i=1

)

where the parameters are K is the number of digtdbs,
@ (is a weight associated to tH Gaussian at time t with

mean 4  and standard deviatic}., . /7 is a Gaussian
probability density function:

_
(27'[)”/2|Z|112

XWX )

n(Xo,u,2) = @

For computational reasons, Stauffer and Grimson] [14
assumed that the RGB color components are independe
and have the same variances. So, the covariancé fisabf

the form:

— 2
zi,t - Ji,tl 3
So, each pixel is characterized by a mixture of &&sians.
Once the background model is defined, the different
parameters of the mixture of Gaussians must ba&lizid.
The parameters of the MOG’s model are the number of

Gaussians K, the weig « , associated to th& iGaussian at

time t, the mea 4, and the covariance matt ¥, , .

Remarks:
- K determined the multimodality of the backgroundl an
by the available memory and computational power.
Stauffer and Grimson [14] proposed to set K froto 3.
The initialization of the weight, the mean and the
covariance matrix is made using an EM algorithm.
Stauffer and Grimson [14] used the K-mean algorithm
for real time consideration.

Once the parameters initialization is made, a fostground
detection can be made and then the parametergdeted.
Firstly, Stauffer and Grimson [14] used as critertbe ratio

I :a)j/aj and ordered the K Gaussians following this

ratio. This ordering supposes that a backgroundelpix
corresponds to a high weight with a weak variangetd the
fact that the background is more present than ngoebjects
and that its value is practically constant. Thetf8 Gaussian
distributions which exceed certain threshdldare retained
for a background distribution:

B=argmin, (Zibzl% >T) 4)

The other distributions are considered to represent
foreground distribution. Then, when the new frameomes
at times t+1, a match test is made for each pikepixel
matches a Gaussian distribution if:

Sqrt((xtﬂ ~Hiy )Tzu_tl '(xt+l ~Hy )) <ka, (5) where

K is a constant threshold equal to 2.5. Then, tveesaan
occur:

Case 1: A match is found with one of the K
Gaussians. In this case, if the Gaussian distohulti

is identified as a background one, the pixel is
classified as background else the pixel is claifi
as foreground.

Case 2: No match is found with any of the K
Gaussians. In this case, the pixel is classified as
foreground.

At this step, a binary mask is obtained. Then, &kenthe
next foreground detection, the parameters mustpoated.
Using the match test (5), two cases can occur ilikéhe
foreground detection:

Case 1: A match is found with one of the K Gaussian

For the matched component, the update is done as
follows:

Wi = (1_ a)a)l,t ta (6)
where @ is a constant learning rate.

HMiga = (1_:0)1”i,t + ,O-XHJ_ (1)



Olva = A= P)T7 + P(X oy = My pa)- Ko = )" ®)

where p = af?(xt+11ll'1i 'Zi)

- For the unmatched componen y and 2 are
unchanged, only the weight is replaced by:

W, = 1-a)w;, 9)

Case 2: No match is found with any of the K Gaussidn
this case, the least probable distribution k idaegd with a
new one with parameters:

w, 1+, = Low Prior Weidit  (10)
iuk,t+l = Xt+l (11)
o¢. = Large Initial Variance(12)

Once the parameters maintenance is made, foreground
detection can be made and so on. Complete studig¢heo
signification and the setting of the parameters learfound

in [46, 47][218][289].

Improvements: The original MOG presents several
advantages. Indeed, it can work without havingttyesan
important set of input data in the running processhe
multimodality of the model allows dealing with muaibdal -
backgrounds and gradual illumination changes. Despi

this model present some disadvantages: the number o
Gaussians must be predetermined, the need for good
initializations, the dependence of the results ba true
distribution law which can be non-Gaussian and slow
recovery from failures. Others limitations are tiezds for a
series of training frames absent of moving objectd the
amount of memory required in this step. To allevititese
limitations, numerous improvements (217 paperseHzeen
proposed over the recent years. All the developed
improvements can be classified following the styse and

a complete survey over 100 papers in the perio®-2a®7

can be found in [48]. We have summarized and ugdate
them in the following classification:

- Intrinsic improvements. These strategies (Tabl8)
consist to be more rigorous in the statistical semsto
introduce spatial and/or temporal constraint in the
different step of the model. For example, some @msth
[49-53] propose to determine automatically and
dynamically the number of Gaussians to be moresiobu
to dynamic backgrounds. Other approaches use anothe
algorithm for the initialization [54, 55] and allow
presence of foreground objects in the training eaqa
[56, 57, 58]. For the maintenance, the learningsratre
better set [66, 67] or adapt over time [60-62, 8R-For
the foreground detection, the improvement founthim
literature are made using a different measure fier t
matching test [53, 79-82], using a Pixel Persisteiep

(PPM) [75, 76, 83], using the probabilities [84,],85
using a foreground model [61, 63, 86], using some
matching tests [39, 60] and using the most dontinan
background model [87, 88, 89]. For the feature,size
block wise [90, 91] or cluster wise [92] approaclaes
more robust than the pixel one. For the features,typ
several features are used instead of the RGB djk&ce
different color features [93-99], edge featureQ[1001],
texture features [102], stereo feature [103, 16g4tial
features [105], motion features [40] and video deas
[106]. Zheng et al. [267, 268] combined multiple
features such as brightness, chromaticity and
neighborhood information. Recent patettsicern block
wise approaches [352], texture features [353], omoti
features [354] and spatial features [355]. An oi@wof

the different features used in the literature isvah in
Tableb.

Extrinsic improvements. Another way to improve the
efficiency and robustness of the original GMM cahsi

in using external strategies (Tab#. Some authors
used Markov Random Fields [107-109], hierarchical
approaches [110-113], multi-level approaches [100,
114-118], multiple backgrounds [119, 121], graplscu
[81], multi-layer approaches [122, 123], tracking
feedback [128, 129] or specific post-processing0f13
131]. Recent patents concern graph cuts approaches
[3576, 357].

Reducing the computation time: All the intrinsic and
extrinsic improvements concern the quality of the
foreground detection but there is another manner to
improve the original MOG which consists in reducing
the computation time. It achieved by using regidn o
interest [132] [287], by using a variable adaptiaite
[133], by switching the background model [134] [B71
by using space sampling strategies [135][216][238]

or by using hardware implementation [136, 137] [271

Enhancing the foreground detection: All the previous
improvements concern directly the original MOG and
the foreground detection results only from it. Amat
way to improve this method is to enhance the resfit
the foreground detection by using cooperation with
another segmentation method. It achieved by
cooperation with a statistical background distudean
technique [138], with color segmentation [139], and
with a region based motion detection [140]. Other
authors used a cooperation with optical flow [217],
block matching [247-248], predictive models [249],
texture models [251][303], consecutive frame ddfere
[258][261-262][279-280][282] and basic background
subtraction [304-305][330]. A recent patent condire
cooperation with histogram statistics [358].

Table 6 and Table7 show respectively an overview of the
critical situations and the real-time constraintyr fthe
different MOG versions that can tackle them betitan the
original one.



Table 3. Intrinsic improvements of the MOG

Background Step| Parameters Authors - References
Background Variable K Zivkovic [49], Chengt al.[50], Shimadeet al.[51], Tanet al.[52], Carminatiet
Initialization al. [53], Klare and Sarka [230], Shimaeal.[237], Shahickt al.[240], Singh
and Mitra [248], Wanet al.[278], Huanget al.[288], Wanget al.[307], Zhouet
al. [317]
Variables 4, 0, G Another algorithmMorellaset al.[54], Lee [55], Jwet al. [241], Singhet al.
[245], Singhet al.[246], Wang and Dai [252], Het al. [259], Guoet al.[270],
Molin [285], Qinet al.[286], Li et al.[315], Wang and Miller [331]
Allowing presence of moving objecBhanget al.[56], Amintoosiet al.[57],
Lepisk [58], Leeet al.[273], Wanget al.[307]
Background Variable K Zivkovic [49], Chengt al.[50], Shimadeet al.[51], Tanet al.[52], Klare and
Maintenance Sarka [230], Shimadet al.[237], Singh and Mitra [248], Wangf al.[278],
Zhouet al.[317]
Variables l{, 0, & Maintenance rulesHan and Li [59], Park and Buyn [266]
Maintenance mechanism&hanget al.[56], Wang and Suter [60], Lindstroet
al. [61], Li et al.[269], Leeet al.[273]
Selective maintenanc8tauffer and Grimson [62], Landabaso and Pardzis [6
Parket al.[64], Mittal and Huttenlocher [65], Salas al.[215], Wang and Dai
[252], Huet al.[259], Li et al.[265], Liu and Zhang [276], Yat al.[290]
Learning ratest , O Better settings:Zang and Klette [66], White and Shah [67]
Adaptive learning ratestVang and Suter [60], Lindstroet al.[61], Stauffer and
Grimson [62], KaewTraKulPong and Bowden [68-70] [7d¢, Harville et al.
[72], Porikli [73], Liu et al.[74], Pnevmatikaki®t al.[75, 76], Poweet al.[77],
Leottaet al.[78], Sheng and Cui [272], Quasttal.[284], Molin [285], Qinet al.
[286], Shatet al.[298], Kanet al.[302], Quaskt al.[308], Lin et al.[309], Bin
and Liu [320], Zhao and He [322], Et al.[323]
Foreground Different measure for the | Carminatiet al.[53], Ren at al. [79], Lee [80], Sun [81], Morellessal. [82],
Detection matching test Xuehuaet al.[261], Ruiet al.[262]
Pixel Persistence Map Pnevmatikaki®t al.[75, 76], Landabaso and Pardas [83]
(PPM)
Probabilities Yang and Hsu [84], Lee [85], Lienal.[251], Zhang and Zhou [21]
Foreground model Lindstroet al.[61], Landabaset al.[63], Withagenet al.[86], Landabaset
al. [263], Feldmaret al.[313], Feldman [314], Tian and Wang [3
Some matching tests Zhaatal.[39], Wang and Suter [60]
Fusion rule Lien et al.[251]
Most dominant background| Haqekal.[87, 88, 89]

Table 4.Extrinsic improvements of the MOG

Methods

Authors - References

Markov Random Fields

Kumar and Sengupta [107], Zowdi Zhang [108], Schindler and Wang [109], Landaba
et al.[263], Li et al [291], Dickinsoret al.[316], Zhang and Zhou [327], Warg al.[328]

Hierarchical approaches

Sun and Yuan [110], eagd.[111], Chenet al.[112], Zhouet al.[113], Zhonget al.
[242], Zhonget al.[264], Li et al.[265]

Multi-level approaches

Javed al.[100], Zang and Klette [114], Zhored al.[115], Cristaniet al.[116-118],
Yanget al.[325]

Multiple backgrounc

Su and Hu [119, 120], Porikli [121Qi et al.[31(], Qi et al.[311]

Graph cuts

Sun [81], Chang and Hsu [257ftal.[269], Li et al.[291]

Multi-layer approacht

Yanget al.[122], Porikli and Tuzel [123Park and Buyn [2€], Huang and Wu [29:

Features-Cameras strategies

Xu and Ellis [124]jiNieghd Bhanu [125, 126], Conaie¢ al.[127]

Tracking feedback

Harville [128], Taychetral.[129], Wanget al.[275], Heet al.[301], Yuanet al.[344],
Shacet al.[326]

Post-processing

Turdu and Erdogan [130], Parks=ai&i[131], Fazlet al.[306]




Table 5. Features improvements of the MOG

Size/Type Authors - References
Feature Size Block Fareg al.[90], Pokrajac and Latecki [91], Warg al.[275], Zhonget al.
[281], Zhanget al.[294], Wanget al.[329]
Cluster Bhaskaet al.[92], Caiet al.[243]

Feature Type

Color features
Normalized RGB
YUV

HSV

HSI

Luv

Improved HLS
YCrCb

Stijmanet al.[93], Xu et Ellis [94]

Harville et al.[72], Sun [81], Fangt al.[90] , Guoet al.[270], Feldmaret al.
[313], Feldman [314]

Sun [81], Xuehuat al.[261], Ruiet al.[262], Wang and Tang [274]
Wang and Wu [95]

Yang and Hsu [96]

Setiawaret al.[97]

Kristenseret al.[98], Ribeiroet al.[99]

Edge feature

Javecet al.[100], Jainet al.[101], Klare and Sarka [203], let al.[253]

Texture features

Tian and Hampapur [102], ShinzadhTaniguchi [250], Huanet al.[255]

Stereo features
Disparity
Depth

Gordonet al. [103]
Harville et al.[72], Silvestre [104]

Spatial features

Yang and Hsu [84], Dickingtral.[105], Klare and Sarka [230], Wet al.
[231]

Motion features

Tangt al.[40]

Phase featur

Xueet al.[312]

Video features

Wangt al.[106], Wanget al.[239]

Entropy features

Pawt al.[295], Parket al.[296]

Bayer features

Sulat al.[297]

HOG features

Fabian [299], Hat al.[300]

Table 6. Challenges and MOG Versions

Critical Situation

Authors- Reference

CS 1 - Noise Image

Xu [221], Teixeiedal.[222], Li et al.[265]

CS 2-1 - Camera jitter

Campbell-Westet al. [219], Xu [221], Achkar
and Amer [223], Raet al.[224], Li et al.[265]

CS 2- 2 - Camera Adjustements

Zen and Lai [225)lilM285]

CS 3 - Gradual lllumination Changes Tian et al.[234], Huanget al.[254], Wanget al.
[277], Baloch [283], Huangt al.[288], Lin et
al. [309]

CS 4 - Sudden lllumination Changes Tietnal. [234], Li et al. [253], Baloch [283],
Lin et al.[309], Xueet al.[312], Li et al.[323]

CS5-1 - Bootstrapping during initializatic Gaoet al.[220]

CS £-2 - Bootstrapping during maintenar Lindstromet al.[61]

CS 6 - Camouflage

Guat al.[270]

CS7- Foreground Apertur

Utasi and Czuni [22f

CS 8 - Moved background objects

Teixadtal.[222]

CS 9- Inserted background objec

Teixeiraet al.[222]

CS 10 - Multimodal background

Dalley al.[227], Li et al.[265]

CS 11 - Waking foreground object

Su and Hu [119],aAd Su [120]

CS 12 - Sleeping foreground objects Chenget al. [229], Caiet al. [256], Hu et al.

[259]

CS 13 - Shadows Detection

Xu [221], Huang and B8a], Zhanget al
[233], Tian et al. [234], Izadi et al. [235],
Rahman [236], Chest al.[260], Landabaset
al. [263], Li et al. [265], Quastet al. [284],
Molin [285], Huanget al. [288], Forczmanski
and Seweryn [293], Tian and Wang [318], |Li
and Xu [319], Bin and Liu [320], Liu and Bi
[321], Lai et al.[324], Wanget al.[328]

=)




Table 7. Real Time Constraints and MOG Versions

Real-Time Constraints Authors - References

Cuevaset al.[228], Chang and Hsu [257],
Krishnaet al.[271]

Memory Requirement Krishnaet al.[271]

Computation Time

Discussion:The Mixture of Gaussians (MOG) is adapted for
outdoor scene where there are slow multimodal tiaria in
the backgrounds. For the dynamic backgrounds ldmera
jitter, waving trees and water rippling, this modeluses
false detections If P(Xt)<T then the pixel classified as foreground

3.3 Kernel Density Estimation (KDE) else the pixel is classified as background17)

To deal with dynar_nic_backgrounds like camera jittemving At this step, a binary mask is obtained. Then, tkenthe
trees and water rippling, Elgammed al. [15] proposed 10 eyt foreground detection, the parameters mustpiaiated.
estimate the probability density function for egqikel using For this, Elgammaét al.[15] used two background models:

the k;rnel ?(St}r?:ligﬁf?:glr:lsfgli?\}eslar?nplg (t)ifrr?;tes?zs(letyvx\//iﬁg(?vs\/ a short term one and a long term one. These twoelsnod
X, XXy y achieve different objectives:

W as follows:

Elgammal et al. [15] detected the foreground using the
probabilities and a threshold T as follows:

- The short term model adapts quickly to allow very
sensitive detection. This model consists of the tmos

1& recent N background sample values. The sample is
P(Xt)=—z K(X1 —Xi) (13) updated using a selective maintenance mechanism,
N = where the decision is based on the foreground
classification.
- The long term model captures a more stable
where K() is the kernel estimator function whichaken as a representation of the scene background and adapts t
Normal Gaussian functioN (0,Z) . So, the probability changes slowly. This model consists of N samplelpix
density function is determined as follows: taken from a much larger window in time. The sanigle
updated using a non selective maintenance mechanism
1N 1 So, to combine the advantage of each model ankininate
|:>(Xt):_2“—1/2 1270 =) T (5 %) (14) their disadvantages, the next foreground detectisn
N = (277)d'2|Z| obtained by taking the intersection of the two fwoaind

detection coming from the short term model and ltrgy
term model. This intersection eliminates the péssise false
positives detection from the short term model axtdaefalse
positives detection that occur in the long term sladsults.
The only false positives detection that will remaifll be
rare events not represented in either model. f thie event

012 0O 0 persists over time in the scene then the long taodel will
s=l 0 o 0 (15) adapt to it, and it will be suppressed from theultekater.

2 Taking the intersection will, unfortunately, supgsetrue

0 0 032 positives in the first model result that are fatsgatives in
the second, because the long term model adapts to
foreground as well if they are stationary or movaigwly.
To address this problem, all pixels detected bysti@t term
model that are adjacent to pixels detected by tinebination
are included in the final foreground detection.

Elgammal et al. [15] assumed that the different color
channels are independent with different kernel lkaditths,
then the kernel function bandwidth is as follows:

So, the probability density function can be writenfollows:

18 d 1 /2% %, -%. )T 102
- i )
P(x)= N Zl:!_:ll > > (16) Improvements: The original KDE present several
= T

j advantages. The multimodality of the model alloveslohg
with multimodal backgrounds particularly in fastaclyes
(waving trees, water rippling, etc...). Despite Hist model



present some disadvantages:
memory during the entire detection process whichorstly
memory wise when N is large. The algorithm is time
consuming too due the complexity in O(N*N). To slv
these problems, different improvements have beepgsed:

N frames need to fieirke

Intrinsic improvements. These strategies consist in
changing the kernel function [141-149] as shown in
Table 8. For the training, some authors propose to
decrease the number of samples by determining@epro
size of the frame buffer [143], by using a diversit
sampling scheme [150,151] or by using a sequential

Extrinsic improvements. Some authors (Tablg) used
Markov Random Fields [155, 159], hierarchical
approaches [160], multiple backgrounds [161] arapigr
cuts [162].

Enhancing the foreground detection: Another way to
improve this method is to enhance the results ef th
foreground detection by using cooperation with haot
segmentation method. It achieved by cooperatioh wit
the consecutive frame difference [163] or using a
subspace learning approach using PCA [164].

Monte Carlo sampling scheme [152]. A recent patentThe Table8 and 9 give respectively an overview of the
concern the sequential kernel density approximationintrinsic and extrinsic improvements. Taldleé and Tablell

through mode propagation [359]. Furthermore, réeers

show respectively an overview of the critical sitolas and

maintenance [143-145,153, 154, 159] can be addpted the real-time constraints for the different KDE siens that

Table 8.

reduce the computation time. For the foreground can tackle them better than the original one.

detection, different scheme can be used as in [148,
147, 153-155]. For the feature type, several festare

used instead of the RGB space like the edge fesature
[156] and motion features [157]. To choose which

features to use, Parag al.[158] proposed a framework
for feature selection.

Intrinsic improvements of the KDE

Background Step Improvements

Authors - References

Background Model Gaussian Kernel Function

Automatic selection of kernel band widifavakkoliet al.
[141, 142]

Rectangular Kernel Function

Constant kernel band widthanasiet al.[143], Tanakeaet al.
[144, 145]
Variable kernel band widthZivkovic [146]

Derivaive Kernel Functior

Cvetkovicet al.[147]

Negative coefficient
polynomial kernel functic

Witherspoon and Zhang [148]

Cauchy Kernel Functic

Ramezanet al.[149]

Background Initialization Decreasing the number of

samples

Adopting the proper size of frame buffnasiet al.[143]
Diversity samples schemigtao and Shi [150, 151]
Sequential Monte Carlo sampli: Tanget al. [152]

Background Maintenance Background image

laebal.[143]

Recursive Maintenance

Recursive maintenance of the PDFavakkoliet al.[153],
Tanakeet al.[144, 145], Ramezarmt al. [149]

Recursive maintenance of the background PDF and
foreground PDF Tavakkoliet al.[154]

Recursive maintenance of the PDF and the background
image lanasiet al.[143]

Number of samples

Zivkovic [146]

Selective Maintenance

Tavakkelial.[141, 142], Mao and Shi [151]

Foreground Detection Dissimilarity measure

lamasil. [143]

Probability

Zivkovic [146], Tavakkoliet al.[153]

Foreground model

Tavakkadt al.[153, 154]

Two threshold

Cvetkovicet al.[147]

Table 9. Extrinsic improvements of the KDE

Method:

Authors- Reference

Markov Random Fields

Pahalawadtzal. [159]

Hierarchical approach

Ortenet al.[160]

Multiples backgrounds

Tanale al. [161]

Graphcuts

Mahamud [162




Table 10. Challenges and KDE Versions

Critical Situations

Authors - References

CS 1- Noise Imag

Mao and Shi [15, 1E1]

CS 2-1 - Camera jitter

Sheihk and Shah [155]

CS Zz- 2 - Camera Adjustemen

Cvetkovicet al.[147], Sunget al.[347], Hwanget al.[348]

CS 3 - Gradual lllumination Changes

Sheihk anch3h85]

CS 4 - Sudden lllumination Changes

Sengl.[48], Hwanget al.[49]

CS5-1 - Bootstrapping during initializatic

Martel-Brisson and Zaccarir346]

CS 5-2 - Bootstrapping during maintenance

SheiltkStmah [155]

CS 6- Camouflag

Tavakkoliet al.[142], Guet al.[345]

CS7 - Foreground Aperture

CS 8 - Moved background objects

Elgammiadl.[15], Cvetkovicet al.[147]

CS 9- Inserte(background object:

CS 10 - Multimodal background

CS 11- Waking foreground obje

CS 12 - Sleeping foreground objects

CS 13 - Shadows Detection

Elgamrethl.[15], Cvetkovicet al.[147], Mao and Shi [150 , 151]

Table 11. Real Time Constraints and KDE Versions

Real-Time Constraints

Authors - References

Computation Time

Elgammal [349], Sadeglei al.[350]

Memory Requirement

Elgammal [349], Sadeglei al.[350]

Discussion: The KDE is more adapted for outdoor scene
where dynamic backgrounds appear but less suited fo

illumination changes.

Once the eigenbackground images stored in thex’rﬁ?tl;\';1

are obtained and the meg# too, the input imagd, can

3.4 Subspace Learning using PCA (SL-PCA) be approximated by the mean background and weighted

Subspace learning offer a good framework to deah wi

of the eigenbackground®,, .

illumination changes as it allows taking into accospatial The coordinate in eigenbackground space of inpag'mit

information. Oliver et al. [165] proposed to model each
background pixel using an eigenbackground model.

can be computed as follows:

— T
This model consists in taking a sample of N images W =(l, — ) Py (19
{Il, (P N} and computing the mean background image

Mg and its covariance matriC .

When w is back projected onto the image space, a
reconstructed background image is created as fellow

This covariance matrix is then diagonalized using a B, =®, W + /4y (20)

eigenvalue decomposition as follows:

LB = CDBCBCDTE-”

(18)

Then, the foreground object detection is made kmifs:

I, -B|>T (21)

where (DBis the eigenvector matrix of the covariance of the where T is a constant threshold.

data andLB is the corresponding diagonal matrix of its

eigenvalues.

In order to reduce, the dimensionality of the spacdy M
eigenvectors (M<N) are kept in a principal compdnen
analysis (PCA). The M largest eigenvalues are coathin

Improvements: The eigenbackground model which we have
called SL-PCA provides a robust model of the prdkgb
distribution function of the background, but not tife
moving objects while they do not have a significant
contribution to the model. So, the first limitatiaf this
model is that the size of the foreground object tnyessmall

the matrix L,\,I and the M vectors correspond to these M and don't appear in the same location during a joeripd in

largest eigenvalues in the matﬂRM .

the training sequence. The second limitation appéarthe
background maintenance. Indeed, it is computatipnal
intensive to perform model updating using the bataide



PCA. Moreover without a mechanism of robust analytie
outliers or foreground objects may be absorbed th®
background model. The third limitation is that the
application of this model is mostly limited to tgeay-scale
images since the integration of multi-channel distanot
straightforward. It involves much higher dimensibepace
and causes additionalfficulty to manage data in general.
Another limitation is that the representation ist no
multimodal so various illumination changes canna b
handled correctly. To alleviate these limitationsimerous
improvements (25 papers) have been proposed ower th
recent years. A survey over 15 papers in the petiegd-
2009 can be found in [334]. Thus, the different
improvements which attempt to solve these fourtitions
are summarized in the following classification withe
recent advances:

- Alleviate the limitation of the size of the foreground
object: Xu et al. [166, 167] proposed to apply
recursively an error compensation process which
reduces the influence of foreground moving objects
the eigenbackground model. An adaptive threshold
method is also introduced for background subtractio
where the threshold is determined by combiningcadfi
global threshold and a variable local thresholdsuRe
show more robustness in presence of moving objects.
Another approach developed by Kawabataal. [168]
consists in an iterative optimal projection methind
estimate a varied background in real time from a
dynamic scene with foreground. Firstly, background
images are collected for a while and then the

background images are compressed using eigenspace

method to form a database. After this initializati@a
new image is taken and projected onto the eigeesizac
estimate the background. As the estimated image is
much affected by the foreground, the foregroundoreg

is calculated by using background subtraction with
former estimated background to exclude the regiomf

the projection. Thus the image whose foregrounibreg
is replaced by the former background is projecied t
eigenspace and then the background is updated.
Kawabataet al.[25] proved that the cycle converges to
a correct background image. Recently, Quivy and
Kumazawa [351] proposed to generate the background
images using the Nelder-Mead Simplex algorithm and
dynamic masking procedure. This paper presents an
original method that replaces the
projection/reconstruction step of the SL-PCA byiract
background image generation. The experiments proved
that the proposed method performs better then tihen
SL-PCA [165], SL-REC [166, 167], and SL-IOP [168]
for large and fast moving objects.

- Dealing with the time requirement and the robustness:
For the maintenance, some authors [169-177] prapose
different algorithms of incremental PCA. The
incremental PCA proposed by [169] need less
computation but the background image is contamimed
the foreground object. To solve this, étial.[170, 171]

proposed an incremental PCA which is robust in
presence of outliers. However, when keeping the
background model updated incrementally, it assigned
the same weights to the different frames. Thusarcle
frames and frames which contain foreground objects
have the same contribution. The consequence is a
relative pollution of the background model. In this
context, Skocajet al. [172, 173] used a weighted
incremental and robust. The weights are different
following the frame and this method achieved adrett
background model. However, the weights were applied
to the whole frame without considering the conthidou

of different image parts to building the background
model. To achieve a pixel-wise precision for theghts,
Zhang and Zhuang [174] proposed an adaptive weighte
selection for an incremental PCA. This method genfo

a better model by assigning a weight to each patel
each new frame during the update. Experiments [174]
show that this method achieves better results than
SL-IRPCA [170, 171]. Wanget al. [175, 176] used a
similar approach using the sequential Karhunen-eoev
algorithm. Recently, Zhangt al. [209] improved this
approach with an adaptive scheme. All these
incremental methods avoid the eigen-decomposition o
the high dimensional covariance matrix using
approximation of it and so a low decomposition is
allowed at the maintenance step with less compmutatki
load. However, these incremental methods maintan t
whole eigenstructure including both the eigenvaked

the exact matrix®P,, .To address this problem, Et al.

[177] proposed a fast recursive and robust
eigenbackground  maintenance  avoiding  eigen-
decomposition. This method achieves similar results
than the SL-IPCA [169] and the SL-IRPCA [170, 171]
at better frames rates. Fig. (4). shows a clasgifin of
these algorithms following their robustness andirthe
adaptivity.

Dealing with the grey scale and the pixe-wise
limitations: Recently, Wuet al. [207] proposed to
combine the PCA model with single gaussian model.
PCA allow the robustness to illumination changed an
the single gaussian to describe color information f
each pixel. So, it can detect the chroma changes an
remove shadow pixels. An adaptively strategy igluse
integrate the two models. A binary graph cut isnthe
used to perform the foreground/background
segmentation. In another way, Han and Jain [178]
proposed an féicient algorithm using a weighted
incremental  2-Dimensional Principal Component
Analysis. It is shown that the principal componeints
2DPCA are computedfféciently by transformation to
standard PCA. To perform the computational timen Ha
and Jain [178] used an incremental algorithm toatgd
eigenvectors to handle temporal variations of
background. The proposed algorithm was applied-to 3
channel (RGB) and 4-channel (RGB+IR) data.



Ldaptivity

SL-PCA [165] SL-IPCA [169]

SL-IRPCS [170,171]

Fig. (4): Adaptivity of the SL-PCA Algorithms

SL-WIRPCA [172, 173]

-
o

SL-AWIRPCA
(174]

Results show noticeable improvements in presence offable 13. Time requirement and the robustness

multimodal background (MB) and shadows (S). To edhe
pixel-wise limitation, Zhacet al.[206] used spatio-temporal
block instead of pixel. Furthermore, their methachgist in
applying the candid covariance free incrementahgpial
components analysis algorithm (CCIPCA) which ist fias
convergence rate and low in computational comptekian
classical IPCA algorithms. Results show more rabesst
robust to noise and fast lighting changes.

Dealing with multimodal illumination changes. Recently,
Donget al.[211] proposed to use a multi-subspace learning
to handle different illumination changes. The featspace is
organized into clusters which represent the diffetighting
conditions. A Local Principle Component AnalysisPCA)
transformation is used to learn separately an esgéispace
for each cluster. When a current image arrivesatgerithm
selects the learned subspace which shares theshikghting
condition. The results [211] show that the LPCAacaithm
outperforms the original PCA [165] algorithm and KBQ14]
especially under sudden illumination changes. Isinailar
way, Kawanishiet al. [213-214] generated the background
image which well expresses the weather and theirigh
condition of the scene. This method collects a hugmber
of images by super long term surveillance, classifihem
according to their time in the day, and appliesRI@A so as
to reconstructhe background image.

A recent patent concern a method based on spaeeviidro
block and online subspace learning [360]. This meth
allows a robust incremental update and allevigtespixel-
wise limitations.

The Tablel2, Tablel13, Table14 and Tablel5 group by
type the different improvements of the SL-PCA.

Table 12. Influence of the foreground objects

Method:
Recursive Error

Authors- Dates
Xu et al.(2006) [166, 167]

Methods Authors - Dates
Incremental PCA Rymelet al.(2004)
(SL-IPCA) [169]

Incremental and robust PCA Li etal.(2003) [170,
(SL-IRPCA) 171]

Weighted Incremental and Robust | Skocajet al.(2003)
PCA (SL-WIRPCA) [172,173

Adaptive Weight Selection for

Incremental PCA (SL-AWIPCA)

Zhang and Zhuang
(2007) [174]

Sequential Karhunen-Loeve
algorithm (SL-SKL)

Wanget al.(2006)
[175, 176]

Adaptive Sequential Karhunen-

Loeve algorithm (SL-ASKL)

Zhanget al.[209]

Fast Recursive Maintenance
(SL-FRM)

Li et al.(2006) [177]

Table 14. Dealing with the grey scale and the pixelise

limitations
Method: Authors- Datet
PCA - Single Gaussian Wau et al.(2009) [207, 208]
(SL-PCA-SG;

T

Weighted Incremental 2PCA
(SL-WI2DPCA)

Han and Jain (2007) [178]

Candid Covariance
Incremental PCA

(SL-CCIPCA)

Zhaoet al.(2008) [206]

able 15. Dealing with multimodal illumination charges

Method:

Authors- Date:

Local Principle Component
Analysis on Clusters
(LPCA-C)

Donget al.(2010) [211,
212]

Local Principle Component
Analysis on Separated
Sequences

(LPCA-SS)

Kawanishiet al.(2009)
[213-214]

Compensation
(SL-REC)

Iterative Optimal
Projection
(SL-IOP)

Kawabateet al.(2006) [168]

Simplex Algorithm
(SL-SA)

Quivy and Kumazawa (2011) [351

3.5. Discussion
In Section 3, we surveyed the models of the fiegegory
and their related improvements. These improvements

perform each original algorithm for specified ati
situations. However, some authors have recentlgqeed to
use more advanced statistical models as SupportoVec
models to deal more accurately with dynamics bamkgd.



4. SECOND CATEGORY

When an image block p(b)>T is classified as

The second category models use more sophisticateddackground for M consecutive times, the Fisher dine

statistical model as support vector machine (SVadpport
vector regression (SVR) and support vector datargsmon
(SVDD).

4.1 Support Vector Machine (SVM)

Support Vector Machines were introduced by Vapetilal.
[179]. For classification, SVMs work by determining
hyperplane in a high dimensional feature spacecfarate
the training data into two classes. The best hypegcan be
derived by minimizing the margin which represeihs least
distance from the hyperplane to the data. Using thi
classification aspect, Lirt al. [180] proposed to use the
SVMs for background modeling. Particularly, Leéhal.[180]
used a PSVM with probabilistic outputs because Shé/
gives only binary ouputs. A sigmoid model is used t
convert binary SVM scores into posterior probaieiit

1
=1f) = 22
Pl ]4 ) 1+exp(Af + B) (22)

where vy is binary class label and f is an outparesof the
SVM decision function. The two parameters A and B a
fitted using maximum likelihood estimation from raihing

set( /., »,), and derived by minimizing the negative log-
likelihood function:

min=Y t.log(p,)+(1=1,)log(1= p,) (23)

where
+17
;i = _)’,

nd p, (24)

:7+exp(/lfl. +B)

To avoid overfitting and to derive unbiased tragnifior the
minimization, a hold-out set is generated from tlata by
dividing each training set of 80% and 20% respetyivThe
large subset is used for SVM training, and the Bnake is
used for the two parameter minimization. In thisteat, Lin
et al. [180] used 100 images of size 160*120 with known
background. Each image is divided into blocks atsi*4
and considering two features for each block: optftawv
value and consecutive image difference. For eachkblits
label is defined as +1 for background and -1 otisgwThe
background initialization starts with the first igeaand each
block are tested by the PSVM. An image block issified
as background if its probability output is largdran a
threshold T:

p(b)>T (25)

distance is used:

(/’Iz _ /’I/J{mé)z

d(bi’baf ) =
(o -a,)

(26)

where 4 and 0’ are the mean and the variance of the

intensity distribution of a block.

When the distance between the two blocks is latge,
possible conditions appear. The current block lmarither
part of a uniform region of a moving object or awne
background just revealed. The averaging PSVM pritibab
for the current block over the past M frames is pamad
with the PSVM probability of the background. If timew
average PSVM probability is larger, then the backgd is
replaced by the current block.

Continuing this way, the initialization process Iwibe
terminated when replacement events do not occurafor
consecutive M frames. When the initialization isighed,
the foreground detection is made by thresholding th
difference between the background model and theestr
image.

4.2 Support Vector Regression (SVR)

Given a set of training data, SVR fits a function b
specifying an upper bound on a fraction of trainitata
allowed to lie outside of a distaneefrom the regression
estimate. This type of SVR is usually referred ® ea
insensitive SVR [181]. For each pixel belonging ttee
background, a separate SVR is used to model itfasction
of intensity. To classify a given pixel as backgrdwor not,
Wanget al.[183] [184] feed its intensity value to the SVR
associated it and threshold the output of the SUBL
assume a set of training data for some pixel piobthfrom
several frames {(X y1),...,(4, Yn)}, Where x corresponds to
the intensity value of pixel p at frame i, anatgrresponds to
the confidence of pixel p being a background pigaice the
SVR has been trained, the confidence of the pixelgpnew
frame i, f(X), is computed using the following linear
regression function:

F(x)=S (0, =a" Jh(x,x, )+ & (27)

J=1

where &(x,,x ;) is a kernel function. The parameters

4 and &, called Lagrange multipliers, are obtained by

solving an optimization problem using the methodtlod
Lagrange multipliers. Given the SVR-based backgdoun
model, the intensity of each pixel in a new fraroerfs the
input to the SVR. The output of the SVR represehts
confidence that a given pixel belongs to the bawkgd.
Eventually, a pixel is labelled as background if it



confidence is between a low threshold &d a high

When a new sample satisfies the inequality3a), then its

threshold & Specifically, a binary foreground detection map ¢qrresponding Lagrange multipliers a =0, otherwise

is formed at frame t as follows:

Mi, =0if S, < [f(x;)<S,

M =1 otherwise (28)

where f(x; ) is the SVR output and’ :{5,,5,]} are the

initial thresholds. Then, for each region in thadry map,
the SVR-based background model is update usingnbineo
SVR learning algorithm [182].

4.3 Support Vector Data Description (SVDD)

Tavakkoli et al. [186] proposed to model the background
using support vector data description (SVDD) ineds with
quasi-stationary backgrounds. Data domain desonipti
concerns the characteristics of a data set [18%.Boundary
of the dataset can be used to detect novel datatbers. A
normal data description gives a closed boundaryratdhe
data. The simplest boundary can be representedhyper-
sphere. The volume of this hyper-sphere with ceatend
radius R should be minimized while containing all the

training samplesx,. To allow the possibility of outliers in

the training set, slack variables = 0 are introduced. The
error function to be minimized is defined as:

F(R,a)=R*+C) ¢, 29)
Subjects to the contraints:
|, —a|" <R +€, i (30)

In equation (1), C is a trade-off between simpjiaif the
system and its error and is called confidence petam
After incorporating the constraint$30) into the error
function(29) by Lagrange multipliers we have:

L(Ra@,y,£) =R +C & =D a (R +& ~(

- )-2ye,
(31)

L should be maximized with respect to Lagrange ipligtrs
a;,20and y, 20 and minimized with respect to R;

and & . Lagrange multipliers), can be removed if the

constraint 0 <@, <C is imposed. After solving the
optimization problem we have:

L=Ya,(x)-Yaa (x )
i iy

Ua :0<a <C (32)

they are zero.

Therefore we have:

e ~d <R~ @ =0, =0

|x, =d)" >R* = @, =C,y, >0 (33)

From the above, we can remark that only samples mon-
zero '; are needed in the description of the data set,

therefore they are called support vectors of thecidetion.
To test a new samplg, its distance to the center of the

hyper-sphere is calculated and tested against ¥aKkali et

al. [186] used this methodology to built a descriptive
boundary for each pixel in the background trairfiragmes to
generate its model for the background. Then, these
boundaries are used to classify their correspongirels in
new frames as background and foreground pixelprdntice,
for each pixel in the scene a single class classidi trained
by using its values in the background training fesmThis
classifier consists of the description boundary aogport
vectors, as well as a threshold used to describeldta. For
the foreground detection, each pixel in the newnés is
classified as background or foreground using itsevand its
corresponding classifier from the training stageatkre
vectors ¥ used in the current implementation afe=XC;;
Cyl, where G and G are the red and green chrominance
values for pixel (i,).

Improvements: This model presents several advantages:
The accuracy is not bounded to the accuracy oésienated
probability density functions and the memory reguient is
less than non-parametric techniques. Because dupgator
data description explicitly models the decision fubary of
the known class, it is suitable for novelty detectivithout
the need to use thresholds. Furthermore, the filssi
performance in terms of false positive is contebixplicitly.
The main disadvantage is that the training of S\MieQuires

a Lagrange optimization which is computationallteirsive.
For the maintenance, all the SVDD must be recontpule
perform the training, Tavakkodit al.[187] proposed to use a
genetic approach to solve the Lagrange optimizairoblem.
The Genetic Algorithm (GA) starts with the initigliess and
solves the optimization problem iteratively. In §{89],
Tavakkoli et al. proposed to use an incremental SVDD. In
this way, the maintenance is performed too.

4.4 Discussion

Support vector models offer a nice framework for
background modeling specifically in presence of
illumination changes and dynamic backgrounds. Aeoth
way to model the background is to perform the fietegory
by using a more adaptive model.



5. THIRD CATEGORY

The third category models generalize the first gaitg
model as the single general Gaussian (SGG), theureif
general Gaussians (MOGG) and subspace learningy usi
Incremental Component Analysis (SL-ICA), Increménta
Non-negative  Matrix  Factorization  (SL-INMF) or
Incremental Rank-(RR,,Rs) Tensor (SL-IRT).

5.1 Single General Gaussian (SGG)

Kim et al. [190-192] proposed to model the background
using a generalised Gaussian family (GGF) model of

distributions to cope with problems from variousebes in
background and shadows. The idea is that pixelamad
fitted sometimes a Laplace one or a Gaussian édndeed,
pixel variance in a static scene over time in imdscenes

where I(x, y) and B(x, y) correspond respectively to

the luminance of the current frame and the backgtou
model. Then, pixels are classified into three catieg using
two thresholds as follows:

background pixel ifD(x, y) <T,k(x, y)
suspicious pixel ifl,&(x, y)< D(x, y)<T,k(x, y)

foreground pixel if,&(x, y)<D(x, y) (37)

where £(x, y) is a scale parameter. The thresholdsT,

and T3 are determined using the training frames. The SGG

shows better performance than the MOG and the KIDE i
indoor and outdoor scene.

taken with the latest camera is closer to a Laplace

distribution than a Gaussian, but the Laplace mdud
limitation for use in various environments. The gix
variation in a static scene over time is defined as:

Prx, )= —Y 0l itn
= or i)
_1(7(3/p)
4 a[/'(i/p)} 59

where /" (* ) is a gamma function and’ is a variance of
the distribution. In Equation (1)p =7 represents a Laplace
distribution while o = 2 represents a Gaussian distribution.
The models are decided for each pixel by compugixcess

kurtosis g, of the first m frames. The excess kurtosis of

Laplace and Gaussian distributions is respectigbnd O.

5.2. Mixture of General Gaussians (MOGG)

Allili et al. [193-195] proposed a finite mixture model of
general Gaussians for robust segmentation in theepice of
noise and outliers. This model has more flexibitibyadapt
the shape of data and less sensibility for ovéniétthe
number of classes than the mixture of Gaussiarch piel

is characterized by its intensity in the RGB capace. Then,
the probability of observing the current pixel \aluas
considered given by the following formula in the
multidimensional case:

K
PX,)=Y @, 0, 1,.0,,4) @8
i=1
where the parameters are K is the number of digtdbs,
@ (is a weight associated to tHe Gaussian at time t with
=0 if the

distribution is a Gaussian one e A, = 3 if the distribution

mean 4, and standard deviatio}, . A,

The optimal parameters of the background model arés a Laplace one/} is a Gaussian probability density

estimated by the maximization of the likelihood tbfe
observed value:

NY (v, ~ 4’

-3

&> (35)

N

(Z(xi = WT

i=1

In practice, Kimet al.[190-192] modelled the background in
two parts: a luminance component obtained by a hted
mean of RGB channels and a hue component in H$Ir col
space. The maintenance is made using a selectivéngu
average as in [13]. The foreground detection istlfir
performed by subtracting the intensity componeritshe
current frame from the background model:

D(x,y)=|I(x, )= B(x, ) (36)

function:

d X —u. |’
H(Xﬂﬂz‘,/)ai,ﬂ/]i)=/|_|:/A(/‘,/)€‘Xp _B(/‘z)#

J

(F3/2)/r /)" g

where 4(1)= 20l (1/A)
(LGIA)Y ”
B(A) [/—(7//1)J -

The optimal number of Gaussians is computed at tiaeht

by minimizing the criterion Minimum Message Length
(MML). If the number of Gaussians at time t+1 isadler
than at time t, the parameters are updated in dasimay
than in [14]. The same matching test as in [14lised to
check if a pixel matches a Gaussian. For the labelihe
same scheme that Stauffer and Grimson [14] is uSkd.
MOGG show better performance than the MOG in the
presence of shadows (S).



5.3 Subspace Learning

Subspace learning can be made using PCA as sete in
Section 3.4. In the literature [196], there aresotimethods to
reduce the space and these different methods hega b
classified by Skocaj and Leonardis [197] as recongte
methods and discriminative methods:

- Reconstructive subspace learning: The reconstructive

advance and be given once altogether. Howeveryhés of
batch algorithms is not adapted for the application
background modeling in which the data are increaint
received from the camera. Furthermore, when theedgion
of the dataset is high, both the computation armtage
complexity grow dramatically. Thus, incremental huoats
are highly needed to compute in real-time the adapt
subspace for the data arriving sequentially. Falhgwhese
constraints, the reconstructive methods are the autepted
for background modeling. Furthermore, their unsuvised

methods allow a well approximation of data and soaspect allows avoid a manual intervention in theriimg

provide a good reconstruction. Another advantagdbat

step. In the following paragraphs, we survey thbspace

reconstructive methods are unsupervised techniquedeaning methods applied recently to background nirogte

Furthermore, reconstructive methods enable incréshen
updating which is very suitable for real-time apation.
These methods are task-independents.

Principal Components Analysis (PCA) [51],

Independent Component Analysis (ICA) [52] and Non-

negative Matrix Factorization (NMF) [53]. PCA
transforms a number of possibly correlated data t

Independent Component Analysis (ICA), Non-negative
Matrix Factorization (NMF) and Incremental Rank:{&,Rz)

The mostensor.
common reconstructive methods are the following:

5.3.1 Subspace learning using ICA (SL-ICA)

ICA generalizes the technique of PCA. When someungs
of probabilistically independent source signals @eerved,

smaller number of uncorrelated data called priricipa ICA recovers the original source signals from thsearved

components. ICA is a variant of PCA in which the mixtures without knowing how the sources are mixEde
components are assumed to be mutually statisticallygssumption made is that the observation vectors
independent instead of merely uncorrelated. The v = (x,,5,,..,5x, ) can be represented in terms of a
stronger condition allows remove the rotational )
invariance of PCA, i.e. ICA provides a meaningful
unique bilinear decomposition of two-way data tteh

be considered as a linear mixture of a number of
independent source signals. Non-negative matrix
factorization (NMF) finds linear representationsnain-
negative data. Given a non-negative data matrix V,where A is an unknown mixing matrix (MxN). ICA finca
NMF finds an approximate factorization V =WH into  matrix W, so that the resulting vectors:

non-negative factors W and H. The non-negativity

constraints make the representation purely additiee Y = WX (41)

allowing no subtractions, in contrast to principal racovers the independent vectors S, probabiliggical

component analysis (PCA) and independent componenfermyted and rescaled. W is roughly the inverseixnat A.
analysis (ICA). Applying it to background modeling, the ICA modelgiven

- Discriminative subspace learning: The discriminative by:
methods are supervised techniques and allow a well
separation of data and so provide a good classdita
Furthermore, discriminative methods are spatialtig a
computationally efficient. These methods are task- X, = (XB)XF)T is the mixture data matrix of size 2*K in
dependents. The most common discriminative methods ) )
are the following: Linear Discriminant Analysis (&p ~ Which K=M*N. x, = (%115 X 000Xy ) 1S the first frame
[54] and Canonical Correlation Analysis (CCA) [55]. which can contain or not foreground objects and
LDA projects the data onto a lower-dimensional wect X, =(X,,X,,m0X, ) is the second frame which
space such that the ratio of the between-clasandistto
the within-class distance is maximized. The goalois
achieve maximum discrimination. Canonical correlati
analysis (CCA) is a multivariate statistical modet
facilitates the study of interrelationships amoegs sof
multiple dependent variables and multiple indepehde
variables. Canonical correlation simultaneouslydpts
multiple dependent variables from multiple indepsmtd
variables.

All these methods are originally implemented witatdh

algorithms which require that the data must belalbbd in

linear superposition of unknown

S = (y7,J2,...,JM)T :

independent vectors

X = AS (40)

Y =X, (42)

contain foreground objectsl” = (w,,w,)" is the de-

mixing matrix, in which w, =(w,,w,,) with i=1,2.

Y =(, J/z)T
9 =( Y5 V20 )y ) . Several ICA algorithms can be

used to determine W. Yamazaéd al. [198] used a neural
learning algorithm [199]. In another way, Tsai drad [200]
used a Particle Swarm Algorithm (PSO) [201]. OnceisW

is the estimated source signals in which



determined, there are two ways in the literaturgeoerate 5.3.3 Subspace learning using Incremental Rank-
the background and the foreground mask images: (R1,R2, R3) Tensor (SL-IRT)

- The first case whichy, contains foreground object like The different previous subspace learning considerege

. . as a vector. So, the local spatial informationlimcet lost.
in Yamazakiet al.[198]. Then, the foreground mask for Li et al. [204, 205] proposed to use a high-order tensor

the framesx;, and x, is obtained by thresholding |earning algorithm called incremental rank:(R,Rs) tensor
respectively y, and y, . The background image is based subspace learning to take into account théabkp

obtained by replacing regions representing foregou informati.on. This online glgorithm constructs a lowder
. . . . . tensor eigenspace model in which the sample medrthen
objects inx, by the corresponding regions representing eigenbasis are updated adaptively. Denote

background inx . G = {BM DRMXN}
- The second case whiclk, contains no foreground ! !
object like in Tsai and Lai [200]. Then, the foregnd
mask for the frames, is obtained by thresholding , . Denote P,y as the x-th and the y-th pixel of the scene. The
The background image i, . tensor-based eigenspace model for an existing
A= {Bquy 0 R'lx'zxt} ,; (i=12=5 corresponding to

., 6 a a scene’s background

appearance sequence with the g-th frame bdidd .-

The ICA model was tested on traffic scenes by Y akieet =t

al. [198] and show robustness in changing backgroukel li @ K neigborhood ofp,, with K= 1,1-1=24") consists of the
illumination changes. In [200], the algorithm wasted on  maintained eigenspace dimensions,RRR;) corresponding
indoor scenes where sudden illumination changesaxpp to the three tensor unfolding modes, the mode-mnenl

projection matricesU” OR"™® | the mode-3 row

projection matrix]”” OR™"2”® | the column means
The non-negative matrix factorization (NMF), witank r, " and L'? of the mode-(1,2) unfolding matriceél(,)
decomposes the data matfix JR” into two matrices

5.3.2 Subspace learning using INMF (SL-INMF)

and .4 and the row mead.'”’ of the mode-3 unfolding

(2)”

which are W OR”" called the mixing matrix, and
matrix A4

H OR"™ named as the encoding matrix: Given the K-neighbor image region

(3)
I OR"™=* centered at the x-th and y-th pixg), of the

1+
L, DR the distance

So, NMF aims to find an approximate factorizatidratt ~ RM  (determined by the three reconstruction error sorm
minimizes the reconstruction error. Different céstctions

based on the reconstruction error have been defingde  Of the three modes) betwedrf; and the learned tensor-
literature, but because of its simplicity and efifeeness, the  based eigenspace model is computed. Then, therdaoned
squared error is the most used: detection is defined as follows:

V' =WH (43
(43) current incoming frame]

RM?
LI is classified as backgroundéXxp( )y>T
— 2 _ 2 Py ISC g P 2
F=V=wH[" =22 (v, ~(WH),)* @44) 20
== p,, is classified as foreground otherwise (45)
where g is a scaling factor and T denotes a thresholdsThu

where subscription ij stands for the™ijmatrix entity.  the new background moddBM,,, (X, y) at time t+1 is
Applying it to background modelling, Bucat al.[202, 203]  defined as:
proposed an incremental NMF algorithm. The backgdou

initialization is made using N training frames. $as vector BM .., (% y) = H
column corresponding to a matrix of sizeX ¢ )X N . The e X
matrices W and H are updated incrementally. The BMui(XY) =1.,(XY) otherwise (46)
foreground detection is made by thresholding thedral where H = (L-a)MB, (x, y) +al ... (xy), MB, is
error which correspond to the deviations betweea th Xy e R !
background model and the projection of the curfeatne the mean matrix o8/, , at time t anda is a learning rate

onto the background model. The INMF has similar tactor. Then, the tensor eigenspace model is ugdate
performance to dynamic background and illumination jhcrementally and so on. The IRT show more robusstrie
changes than the IRPCA proposed byt al.[170]. noise than the IRPCA proposed bystial.[170].

y It p,, is classified as foreground



Table 16. Performance evaluation on dynamic backgrmnds and illumination changes

Method Dynamic backgrounds lllumination changesidobr/outdoor scene Applications
SG [13] - Slow changes Indoor scene Motion Capture
MOG [14] Slow movement Slow changes Outdoor scene Video Surveillance
KDE [15] Yes Slow changes Outdoor scene Video Surveillance
SL-PCA[165] | - Yes Outdoor scene (small objects)Video Surveillance|
SVM [180] - Slow changes Outdoor scene Video Surveillance
SVR [183] Slow movement Slow changes Outdoor scene Video Surveillance
SVDD [189] Yes Yes Outdoor scene Video Surveillance|
SGG [190] - Slow changes Indoor scene Motion Capture
MOGG [194] Slow movement Slow changes Outdoor scene Video Surveillance
SL-ICA [200] - Yes Outdoor scene (small objects)Video Surveillance|
SL-INMF [202] | - Yes Outdoor scene (small objects)Video Surveillance|
SL-IRT [205] - Yes Outdoor scene (small objects)Video Surveillance|
Table 17. Computational complexity

Methoc Background Initializatio Background Maintenan Foregroun Detectior

SG [13] O(N) 0o(1) 0O(1)

MOG [14] O(NK) O(K) O(K)

KDE [15] O(N) Oo(n) 0O(1)

SL-PCA [165] O(N) O(N+M) o(P)

SVM [180] O(N) O(N+t) 0O(1)

SVR [183] O(N) 0O(1) 0O(1)

SVDD [189] O(N) 0(1) 0(1)

SGG [190] O(N) 0(1) O(1)

MOGG [194] O(NK) O(K) O(K)

SL-ICA [200] O(N) Oo(M) O(P)

SL-INMF [202] O(N) Oo(M) O(P)

SL-IRT [205] O(N) o(M) O(P)

6 . PERFORMANCE EVALUATION

We have firstly evaluated the ability of each metto deal
with dynamics backgrounds and illumination chandé®en,
the evaluation is conducted of per-pixel computstlo
complexity and memory requirements.

6.1 Challenges

Table 16 groups the ability of each method to deal with

dynamics backgrounds and illumination changes. thire
column indicates in which type of scene the metisodell
suited. The related applications are indicatedhie fourth
column.

6.2 Computational complexity
The SG is the fastest method because the clagkifida just

made using a threshold and the background mainterjast
adapts the mean and the variance. Its complexjtgmtts on

N for the initialization. The MOG method has O(NK)

complexity with K the number of Gaussian distribas
used, typically between 3 and 5. For maintenariee KDE
computes its value in the Gaussian kernels centenethe
past n frames, thus raising O(n) complexity, wittypically
as high as 100. For the reconstructive subspacairga
their computational complexities are related todperations
needed to compute the elements stored and updaettie

principal matrix or the eigenstructures. For examnphe
incremental tensor subspace learning required ARl +R,
+R3)) operations [205]. For the foreground detectitime
reconstructive subspace learning methods have tanated
complexity per pixel of O(P), where P is the humb&the
best eigenvectors. For the background maintenatiesy,
complexity is related to M which is the number afrples
used to update the model. M=1 if the model is updatery
frame. Table 17 shows the per-pixel
complexity of each algorithm at each stage. Moreaitie
about the complexity of each algorithm can be foumtheir
corresponding papers.

6.3 Memory requirements

For the statistical methods, the memory complepéyy pixel
is the same as the computational complexity.
classification time, reconstructive approaches irequa
memory complexity per pixel O(P), with P the numbgthe
best eigenvectors. However, at training time thesthods
require allocation of all the N training imagestiwan O(N)
complexity. For the reconstructive subspace legrnihe
memory requirements are related to the elementedstand
updated, i.e the principal matrix or the eigendtres. For
example, the incremental tensor subspace learmiqgires
O(11R1+15R+(14115)R3) memory units [205].

computational

At



7. COMPARISON

We have chosen to compare different improvementhef
MOG for dynamic backgrounds and the subspace kegrni
models (SL-PCA, SL-ICA, SL-INMF and SL-IRT) for
illumination changes. Results on the Wallflowertadat
provided by Toyamat al.[20] are presented. We collected
these results because of how frequent its use tisisrfield.
This frequency is due to its faithful representatid real-life
situations typical of scenes susceptible to vidaweillance.
Moreover, it consists of seven video sequences hichw
each sequence presenting one of the difficultiggaatical
task is likely to encounter (i.e illumination chasgdynamic
backgrounds). The size of the images is 160*12@IpixA
brief description of the Wallflower image sequencas be
made as follows:

- Moved Object (MO): A person enters into a room,
makes a phone call, and leaves. The phone anchdie c
are left in a different position. This video comt®il747
images

- Time of Day (TOD): The light in a room gradually
changes from dark to bright. Then, a person eritexs
room and sits down. This video contains 5890 images

- Light Switch (LS): A room scene begins with the lights

on. Then a person enters the room and turns off the

lights for a long period. Later, a person walkstie
room, switches on the light, and moves the chaljev
the door is closed. This video contains 2715 images

7.1 MOG and its improvements

For the first category, we compare the MOG withnitain
improvements. Tabl&8 and Fig.(5) group the experimental
results found in the literature for the algorithrososen
which are:

1. Theoriginal algorithm: Stauffer and Grimson [14].

2. Three intrinsic improvements. White et al. [67] which
used a better setting for the learning rates uBiagicle
Swarm Optimization, Wangt al. [60] which modified
the foreground detection step using a mixed cqbecs
i.e a normalized RGB color space for pixels witighhi
intensities and in RGB color space for pixels wiv
intensities and Setiawaat al.[97] which used the IHLS
space.

3. Three extrinsic improvements. Schindleret al. [109]
which used the MRFS to smooth the results spatially
Cristani et al. [117] which proposed the Spatial-Time
Adaptive Per Pixel Mixture Of Gaussian called S-
TAPPMOG and Cristanet al. [118] which used an
adaptive spatio-temporal neighborhood analysisedall
ASTNA. For these two last algorithms, the authas'td
give the result for the following image sequences:
Moved Object, Time of Day and Light Switch. So, we
have indicated for these the Total Error withoutst
image sequences.

- Waving Trees (WT): A tree is swaying and a person From Tablel8, we can see that the original MOG gives the
walks in front of the tree. This video contains 287 bigger total of error. A better setting of the ldag rate and

images.

- Camouflage (C): A person walks in front of a monitor,
which has rolling interference bars on the scréére
bars include similar color to the person’s clothifigis
video contains 353 images.

the threshold T using the PSO [67] divides appraxéety by
2 the number of total errors. The use of the IHb®Kcspace
[97] decreases a lot the number TE which becomsst ju
under 10 000. The improvement proposed by Weingl.
[60] gives the better results for the intrinsic nmpements.

- Bootstrapping (B): The image sequence shows a busy For the extrinsic improvements, the best resuksadtained

cafeteria and each frame contains people. Thisovide

contains 3055 images.

- Foreground Aperture (FA): A person with uniformly
colored shirt wakes up and begins to move slowhis T
video contains 2113 images.

For each sequence, the ground truth is providedofw
image when the algorithm has to show its robusthess
specific change in the scene. Thus, the performaace
evaluated against hand-segmented ground trutheTterens
are used in the evaluation: False Positive (FByesnumber
of background pixels that are wrongly marked asdoound,;
False Negative (FN) is the number of foregrouncelgixhat
are wrongly marked as background; Total Error (ilEd)he
sum of FP and FN.

by MOG using MRF proposed by Schindlet al. [109]
followed by S-TAPPMOG [117] and ASTNA [118]. Fot al
the methods, the image sequences Light Switch {i&)s
the larger amount of false positive. Here, the bestilt is
obtained by the method proposed by Schindteal. [109].
The use of IHLS [97] gives it best improvement tbe

image sequences Camouflage (C) and for the method

proposed by Wangt al. [30], it is the image sequences
Waving Trees (WT). In conclusion, this performance
evaluation shows that taking into account spatiab a
temporal consistency improves the results in aifsogmt
way. Fig. (6) presents the overall performance for the five
first algorithms. It is not intended to be a defiré ranking
of these algorithms. Such a ranking is necessaabk-,
sequence-, and application dependent.



Fig. (5). Results on the Wallflower dataset [26] fothe MOG and its improvements.

Table 18. Comparison on the Wallflower dataset [26for the MOG and its improvements.

Sequence

Test image

Ground Truth

MOG
Staufferet al.[14]

MOG with PSO
Whiteet al.[67]

MOG using IHLS
Setiawaret al.[97]

Improved MOG
Wanget al.[60]

MOG with MRF
Schindleret al.[109]

S-TAPMOG
Cristaniet al.[117]

MO

TD

ASTNA
Cristaniet al.[118]

Problem Type
Algorithm MO TD LS WT C B FA TE

MOG [14] FN 0 1008 1633 1323 398 1874 2442

FP 0 20| 14169 341 3098 217 530| 27053
MOG with PSO [67] FN 0 807| 1716 43 2386 1551 2392

FP 0 6 772 1689 1463 519 572| 13916
MOG-IHLS [97] FN 0 379| 1146 31 188 1647 2327

FP 0 99| 2298 270 467 333 554| 9739
Improved MOG - FD EN
[60] 0 597| 1481 44 106 1176 1274

FP 0 358 669 288 413 134 541| 7081
MOG with MRF [109] FN 0 a7 204 15 16 1060 34

FP 0 402 546 311 467 102 604| 3808
S-TAPPMOG [117] FN - - - 153 643 1414 1912

FP - - - 1152 1382 811 377| 7844
ASTNA [118] FN - - - 253 823 2349 1900

FP - - - 100 1173 73 360| 7031




Fig. (7). Resultson the Wallflower dataset [26] for the subspace leaing models.

Sequence

Test image

Ground truth

SL-PCA
Oliver et al.[165]

SL-ICA
Tsai and Lai [200]

SL-INMF
Bucaket al.[202]

SL-IRT
Li et al.[204]

Table 19. Comparison orthe Wallflower dataset [26 for the subspace learning mode.

Problem Type
Algorithm MO TD LS WT C B FA TE
SL-PCA [165] EN 0 879 962| 1027 350 304 2441] 17677
FP 1065 16 362| 2057 1548 6129 537
SL-ICA [200] FN 0 1199 1557| 3372 3054 2560 2721| 15308
FP 0 0 21(C 14¢€ 43 16 42¢
SL-INMF [202] |FN 0 724 1593| 3317 6626 1401 3412| 19098
FP 0 481 303 652 234 190 165
SL-IRT [204] FN 0 1282 2822 4525 1491 1734 2438| 17053
FP 0 159 389 7 114 2080 12

7.2 Subspace learning models

SL-PCA which is from the first category is comparedhv
the subspace learning models from the third caje(SL-
IRT, SL-PCA and SL-INMF. Tabl&9 and Fig.(7) group the
experimental results found in the literature fog subspace
learning algorithms. From Tabl®, we can see that “ICA
gives the smallest TE followed I8L-IRT, SL-PCA and SL-
INMF. Fig. (8) shows the overall performanc This ranking
has to be taken with precaution because a pooompeahce
on one video influences the TE and then modifiesrnk.
The main interpretation is thall the models are robust
illumination changes as can be seen on the sequstiesl
“Time of Day” (TD) and “Light Switch’ (LS). Otherwise,
the subspace learning algorithare more or less adapted
specific situations. For example, onSL-PCA gives FP in
the sequence called “Moved Objects1O) due the fact that
the model is not update aviene. In the same way, &
INMF gives the biggest total error due to its résun the
sequence called “Camouflage” (CThis is confirmed by th
Fig. (9). which shows thperformance without this sequen
In this case, SINMF is the second in term (performance.
SL-ACA has globally good performance except for
sequence called “Bootstrap” (By giving less true detectio

SL-IRT seems to be more efficient in the case of cdlage.
SL-PCA gives less FN than FP. FSL-ICA, SL-INMF and
SL-IRT, it is the contrary. We can remark thSL-ICA
provides very less FP than FN. It is interestingvidec-
surveillance because it decreases false al

Fig. (6). Overall performance on the Wallflower datasei
[26] for the MOG and its improvements

MOG with MRF [109]

Improved MOG -...

MOG-IHLS [97] =FEN
MOG with PSO [67] FP
MOG [14] | |
0 10000 20000 30000




Fig. (8). Overall performance on the Wallflower daaset Furthermore, two main investigations seem to bey ver
[26] for the subspace learning models. promising:

- For dynamic backgrounds, combination between SG,
MOG and KDE [337-339] which allows to gives more

SL-IRT [204] robustness when there are waving trees, watercasafa
and water rippling in the scene.

- For illumination changes, robust PCA [340-344] in
which the background is modeled by a low rank

EFN subspace that can gradually change over time, wide

SL-ICA [200] Ep moving foreground objects are considered as the

correlated sparse outliers.

SL-INMF [202]

SL-PCA [165]

In conclusion, this paper allows the reader to eymecent
advances on statistical background modeling andait
10000 20000 30000 effectively guide him to select the best improvetrfen his
specific application. Particularly, this survey papllows: 1)
) Developers to choose the appropriate improvemetadkie
Fig. (9). Overall performance on the Wallflower daaset  tne critical situations met in their applicatior). Researchers
[26] without the sequence called “Camouflage” fortte  to have a recent state-of-the-art and so easilgtiigenew

subspace learning models. ideas. 3) Reviewers to verify quickly the origimgliof a
paper.
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