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Abstract

This paper proposes a new statistical technique for deciding which of two theories is better supported
by a given set of data while allowing for the possibility of drawing no conclusion at all. Procedurally
similar to the classical hypothesis test, the proposed technique features three, as opposed to two,
mutually exclusive data classifications: reject the null, reject the alternative, and no decision. Referred
to as No-decision classification (NDC), this technique requires users to supply a simple null and
a simple alternative hypothesis based on judgments concerning the smallest difference that can be
regarded as an economically substantive departure from the null. In contrast to the classical hypothesis
test, NDC allows users to control both Type I and Type II errors by specifying desired probabilities
for each. Thus, NDC integrates judgments about the economic significance of estimated magnitudes
and the shape of the loss function into a familiar procedural form.
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1. Introduction

A common goal of economic analysis is to determine which of two theories is better
supported by available data. In such cases, the significance test is commonly applied—
and commonly misused(Ziliak and McCloskey, 2005). Hardly surprising, such misuse of
statistical significance follows from well known problems rooted in the construction of the
hypothesis test which lead, as a matter of routine, to strong interpretations based on weak
evidence(McCloskey, 1998; McAleer, 1995; McCloskey, 1985; Arrow, 1959). 1

A key problem with the significance test (referred to alternatively as the hypothesis test,
or the standard technique2) is its necessity of choice, whereby a binary decision (reject,
not reject) must be taken no matter how weak the evidence or small the sample. A second
problem with the standard test is its asymmetric treatment of Type I and Type II errors. As is
well known, the significance test fixes the probability of Type I error with virtually no regard
for the probability of correct rejection (i.e., the test’s power). Fixing the probability of Type
I error, and accepting whatever probabilities of Type II error are implied by the sample size
and assumed density, is nearly always suboptimal once the costs and benefits of false versus
correct rejection are considered. A third issue, perhaps the most serious, is that by focus-
ing on the probability of extreme observations under the null hypothesis (i.e., statistical
significance), the thoughtful analysis of magnitudes, for example, whether a regression co-
efficient is large enough to be considered important, tends to get crowded out of the analysis.
This paper attempts to respond constructively to these frequently remarked upon problems
by proposing an alternative statistical technique, referred to as no-decision classification
(NDC), that deals directly with the standard procedure’s limitations and pitfalls.3

One may question whether, despite the limitations and pitfalls, a new statistical procedure
is really needed, or rather, whether improved training in the use of the standard technique
would suffice. Indeed, it should be acknowledged, with appreciation, that sophisticated
users of the hypothesis test are keenly sensitive to its power properties, the role sample size
plays, and the importance of considering magnitudes—that is, economic, and not merely

1 The broad philosophical dimensions of misuse of significance testing, stemming from the application of
classical hypothesis testing to pursue analytical goals that are fundamentally Bayesian, is not the focus of this
paper. Those issues arise whenever economists draw inferences about hypotheses conditional on data using classical
statistics, in spite of the classical perspective’s insistence that only probabilistic statements about datagiven a
hypothesisare meaningful. This paper holds that contemporary statistical practice in the social sciences incorporates
those philosophical tensions as a regular feature of its normal science, resulting in a methodological standard that
is a de facto Bayesian-classical hybrid(Gigerenzer et al., 1989). Given that hybrid as the contemporary standard
of the economics profession, the statistical decision-making procedure proposed in the present paper aims to
improve the most glaring weaknesses of the standard approach without requiring, and waiting for, a major shift
of methodological paradigm.

2 SeeDudewicz and Mishra (1988)for precise definitions and descriptions of the classical hypothesis test, and
Gigerenzer et al. (1989)for the fascinating story of R.A. Fisher’s role in the decades old codification of statistical
significance.

3 Wald (1947)proposed statistical decision procedures which allowed for no decision within the context of
a sequence of experimental trials. Although Wald’s sequential tests contributed substantially to contemporary
operations research and the management of production processes, it remains unclear how to apply Wald’s ideas
to the secondary analysis of data sets with fixed sample sizes, perhaps the most common task undertaken by
non-experimental empirical economists.
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statistical, significance. However, asZiliak and McCloskey (2005)show, misuse of statistical
significance remained widespread throughout the 1990s, and likely remains so today, despite
rigorous technical training and increased recognition of the distinction between economic
versus statistical significance introduced decades earlier (e.g.,McCloskey (1985).

Furthermore, misuse matters, not only in the abstract, but also in the real world, by way
of policy decisions that too often hinge on little else and carry potentially large social costs.
Ziliak and McCloskey (2005)provide specific examples (with author names and full cita-
tions) of recent policy analyses published in theAmerican Economic Reviewwhere misuse
of statistical significance is implicated in the formulation of errant policy prescriptions.
More general patterns are also recognizable. For example, debates in macroeconomics (in
which the question of permanent versus transitory shocks plays a role) frequently depend on
“confirmation” of the null hypothesis that an autocorrelation coefficient equals 1 to justify
the claim that Gross Domestic Product is a unit root process. Similarly, failure to reject
(over-identifying) parameter restrictions in estimates of vector-auto-regressive models is
frequently put forth to justify the assertion that the predictions of equilibrium theory hold,
or that markets are efficient—or both. Misuse in microeconomics is also common, particu-
larly in the interpretation of statistically insignificant regression coefficients. For example,
prominent segments of the empirical micro literature rely on small t statistics to argue that
class size has nothing to do with academic performance, that race is no longer an important
factor in labor markets, and that political movements cannot explain key features of the
institutional environment such as the enactment of new laws. With serious policy ques-
tions hanging in the balance,Ziliak and McCloskey (2005)deride the widespread practice
of “asterisk economics” (i.e., using the magnitude of t or other test statistics as the sole
basis for evaluating the importance of relationships among economic variables) and “sign
economics” (reporting only the signs of estimated coefficients without analyzing the rea-
sonableness or importance of their magnitudes).

As a remedy,Ziliak and McCloskey (2005)and McCloskey (1998)suggest that
economists include context-specific information to help evaluate the importance of esti-
mated magnitudes, explicitly factoring in their own judgments as a routine component of
data analysis in economics. Explicit articulation of one’s judgment concerning how large
estimated relationships must be in order to count as important, the logic goes, is more trans-
parent than behind-the-scenes incorporation of judgment used in choosing among models,
among statistical tests with different power properties, or among data sets with different
sample sizes. Although not usually emphasized, even standard implementations of the hy-
pothesis test involve, or should involve, judgment—when choosing the level of significance
and, depending on the user’s degree of sophistication, when choosing which test to use, the
modeling strategy, and the analysis of sample size and power. However, the predominant
methodological approach taught in textbooks and practiced by economists does not embrace
these roles for judgment. Instead, judgment is relegated to secondary status by adherence to
theset significance at five percentrule and the (sometimes intentionally) opaque connection
between statistical modeling choices and their influence on the hypothesis test’s ultimate
result.

Ziliak and McCloskey’s suggestion to rely and report more on judgment points to a
potentially difficult trade-off, however, between efficiency in the use of information and
efficiency in the communication of statistical decisions. On the one hand, the significance
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test wastes information by not including expert judgments about the meaning of magnitudes
and the shape of the loss function (i.e., the relative importance of Type I versus Type II
errors). On the other hand, the procedural simplicity of the significance test facilitates a
non-negligible degree of efficiency in communication that also should be acknowledged.
For instance, one thinks of the time and concentration required to read several pages of
descriptive text interpreting estimated parameters from various regression models compared
with the ease of examining a table of starred coefficients. Similarly, one can appreciate
the transactions-cost-reducing value of statistical significance as a useful form of jargon,
evident, for example, in the simplicity of arguing against a theory by reporting rejection of
a parameter restriction at the five percent level.

Even critics acknowledge that statistical significance is not completely without concep-
tual merit. Rather than an absolute ban, critics usually call for a more richly contextualized
and carefully thought out application of statistical significance, balanced by other sources
of information and modes of persuasion. But how to include judgment, achieve the de-
sired balance and contextualization, and still communicate efficiently with the scientific
community?

The proposal offered here is the intermediate approach of NDC, which aims to achieve
better balance between context-specific judgment and procedural efficiency. NDC draws
motivation from the observation that the very existence of a methodological canon implies a
certain degree of uniformity in analytical technique. That uniformity carries both costs (e.g.,
rhetorical constraints, unavoidable methodological prescriptions, and reflexive rituals) and
benefits (e.g., ease of reporting, ease of interpreting others’ reports, and replicability of find-
ings) for participants in a community of science. Thus, the challenge is to salvage value from
the procedural simplicity of the hypothesis test while improving upon its deficiencies. NDC
attempts to do precisely this—to recover information from the user that otherwise would
be lost, while adhering closely to the procedural norm taught in contemporary textbooks as
the hypothesis test.

Rather than obfuscating the role of the user’s opinions about the relative importance
of various patterns in the data, NDC invites the user to make explicit his or her beliefs
concerning magnitudes and the relative costs of Type I and Type II errors. NDC not only
makes these judgments explicit, it utilizes judgments consistently across users, requiring as
user-supplied initial values the acceptable probabilities of Type I and Type II errors, and the
minimum difference in parameter values considered to be economically significant. Thus,
NDC is, in the terminology ofGigerenzer et al. (1989), a modified statistical ritual. By
design, NDC resembles the standard hypothesis test’s algorithmic procedure and therefore
inherits its value as a facilitator of efficient communication and replicability of results. The
differentiating feature of NDC rests in its capacity to transparently map judgments about
magnitudes and the loss function into statistical decisions.

2. Background

Criticism of hypothesis testing is not new.McCloskey (1985)andDenton (1988)cite
admonitions against misuse of statistical significance from critics writing in the early 20th
century. In some ways, criticism was more vigorous then than now.Gigerenzer et al. (1989)
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describe bitter controversies among the originators of hypothesis testing, including Karl
Pearson, Jerzy Neyman, and R.A. Fisher, over the correct interpretation of the hypothesis test
and its inherent drawbacks. Gigerenzer contrasts those pioneers’ interest in the nuances of
statistical interpretation and their intense methodological disagreements with contemporary
textbook treatments, which present hypothesis testing as a unified construct, free of internal
logical tension. Commenting on contemporary practice, Gigerenzer complains that the
teaching of hypothesis testing seems to encourage an attitude of reliance upon automatic
procedures designed to relieve the analyst from the burden of interpretation rather than
attune students to its drawbacks and the debates it sparks. A variety of related observations
animateHarlow et al. (1997)book length coverage of the debate over significance testing,
What If There Were No Significance Tests?.

Among the critiques of significance testing, perhaps the best known is that ofMcCloskey
(1985, 1998). She points out that by relying on statistical significance to answer the question
of how big is big, researchers abdicate an important scientific responsibility. McCloskey’s
claim is not merely that the choice of significance level (e.g.,α = .05) is arbitrary. The real
issue is the importance of thinking through the relative costs of being wrong as a function
of what is actually true. That means specifying a loss function which reflects the context
of each particular problem. In addition to urging more thorough consideration of power
and loss functions, McCloskey asks economists to be more bold in ascribing meaning to
magnitudes, taking a clear position on which ones deserve to be referred to as “significant”
in the substantive sense.

There have been several attempts to incorporate these qualitative criticisms of hypothesis
testing into an improved statistical decision-making procedure.Arrow (1959) proposes
an “equal probability” test that treats Type I and Type II errors symmetrically. Selecting
simple4 null and alternative hypotheses, and imposing equality of Type I and Type II error
probabilities, Arrow’s test allows the magnitude of the error probability (equal to statistical
significance) to vary freely within the unit interval, serving as an index of quality associated
with inferences based upon it. Arrow illustrates the advantages of the equal probability
approach by demonstrating undesirable asymmetries that arise in interpreting regression
coefficients and their t statistics. In small to moderate sized samples,Arrow (1959, p.
73)shows that the t test’s power can be close to zero, making it difficult to interpret “failure to
reject the null.” On the other hand, in very large samples, power is close to 1 and appreciable
reductions in the probability of Type I error are possible with almost no loss of power.
Arrow observes that asymmetric treatment of Type I and Type II errors is, in practice, rarely
motivated by careful consideration of those errors’ relative costs, as would be the case when
using an explicit loss function and decision-theoretic methodology.

Jones and Tukey (2000)discuss a modified test of significance designed to free the
analyst from the necessity of choice by allowing for an “indeterminacy” outcome similar
in spirit to NDC’s possibility of no decision.Wu (1985)proposes a “modified significance

4 Simplehypotheses completely determine the distribution of a random variable, whereascompositehypotheses
refer to a subset of a family of distributions, allowing for a multiplicity of possible theories about the data generating
process. For example, “X is normally distributed with mean 7 and standard deviation 12” is simple, whereas “The
mean ofX is greater than 7” is composite, because the statement leaves open many values for the mean, and
because its standard deviation is not specified.
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test” using a loss-function framework to derive a three-region partition of the space of the
test statistic that allows for a no-decision outcome, again, similar to NDC. In fact, both
these techniques turn out to be special cases of the procedure proposed in this paper.

Among theoretical econometricians working on hypothesis testing, research priorities
appear to be focused largely on extending technical aspects of the standard test rather than
modifying its binary decision outcome or the asymmetry-inducing convention of fixing the
level of significance. For example,Horowitz (2001)andGodfrey and Orme (2000)propose
techniques for adjusting significance levels to reflect differences between finite-sample
distributions and their asymptotic approximations.Andrews (1998, 1994)analyzes large
sample properties of hypothesis tests with different weights placed on nearby alternatives.
Another area of theoretical research on hypothesis testing takes up the question of how to
rank competing tests with power functions that are difficult to compare(Terasvirta, 1996;
Christian et al., 1993). King (1988)andElliott et al. (1988)attempt to improve the shape
of the power function by picking out simple alternative hypotheses that are more important
than others.

At first, these lines of theoretical research seem potentially related to the critiques of
standard hypothesis testing discussed in this paper. However, the connections turn out to
be rather remote. The binary nature of the classical hypothesis test remains unchallenged.
Unmotivated lexicographic prioritization of statistical significance over power also remains.
Those papers that do attempt to deal with the power properties of the hypothesis test set out
to make the selection of tests automatic and applicable across all problems and contexts,
thus missing the essence of Ziliak and McCloskey’s critique. Similarly, the goal of studies
that advocate consideration of specific simple alternative hypotheses have more to do with
defending the selection procedure against the charge of beingad hocthan with encouraging
economists to think about the choice and justify it in the context of a particular economic
problem.

Another area within the econometrics literature with potential links to NDC is non-
nested hypothesis testing(Pesaran, 1974; Ericsson, 1986; Godfrey, 1998; Coulibaly and
Brorsen, 1999). An embarrassing manifestation of the standard procedure’s asymmetry is
the intransitive sequences of inferences that arise from pairwise tests involving three or
more hypotheses. The problem is acute in empirical studies attempting to use a single data
set to falsify one or more theories from a list of several (e.g.,Smith and Smyth (1991). When
hypothesis testing is called upon to distinguish which economic theory is most consistent
with specific data, its inherently asymmetric treatment of Type I and Type II errors winds
up privileging one theory over another, stacking the odds in favor of particular conclusions
without good justification.

The illogic of the hypothesis test’s inflexible prioritization of statistical significance over
the test’s power is especially obvious in the context of audit tasks in accounting(Srivastava,
1997), where Type II errors (undetected cheats) are typically much more serious than Type
I errors (false alarms). In the analysis of data collected from psychological experiments,
Hertwig and Todd (2000)argue that the standard test’s inherent asymmetry permits re-
searchers to escape from having to fully specify alternative theories. Their analysis describes
an unfortunate symbiosis between the hypothesis test’s asymmetry and researchers’ fail-
ure to elaborate precise alternative explanations of why null hypotheses may be inadequate.
Gigerenzer (2000)provides numerous examples in which the asymmetry of hypothesis test-
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ing, rather than any particular characteristic of the data, virtually determines the conclusions
that are drawn.

3. The no-decision classification (NDC) procedure

Let X represent a vector of continuously valued data with a known joint distribution.5

It is natural to think of the vectorX as a random sample, although its elements need not be
independent nor identically distributed. In case the observations are themselves vectors,X

should be thought of as the design matrix stacked into a single vector.
Let t denote the test statistic, a mapping ofX into�t :

t : �X → �t. (1)

The familiar case is whenX is a random sample of lengthn, and the statistict is a scalar
(e.g., the sample mean). Denote the pdf oft(X) asfθ(t), a member of a parametric family
of distributions indexed byθ.6

The no-decision classification procedure is specified below in terms of critical regions,
which correspond to the simple hypotheses:7

H0 : θ = θ0, H1 : θ = θ1, (θ0 �= θ1). (2)

Before specifying the NDC procedure, several auxiliary definitions are required. The
two sets, (C0, C1), Ci ⊂ �t , are said tooverlapif their intersection is a positive probability
event under any value ofθ. In other words, if maxθ Pθ(C0 ∩ C1) > 0, then (C0, C1) are
overlapping, andnon-overlappingotherwise. Also, denote the complement of a setSwith
respect to�t asS. And denote the probability of the event· when the distribution oft is θ
asPθ[·].
Definition 1 (No-decision classification). Given two simple hypothesesH0 andH1, and a
test statistict, the NDC procedure (C0, C1) is a pair of non-overlapping sets said to reject
H0, rejectH0, or make no decision, according the following rule:

• rejectH0 whent ∈ C0
• rejectH1 whent ∈ C1
• make no decision whent ∈ C0 ∪ C1.

5 The assumption that the components ofX are continuous variables helps avoid inconvenient details later on
when expressing equations involving the probability that the test statistic lands in the critical region. In the discrete
case, of course, those probabilities jump discontinuously, implying that solutions to equations in which they appear
may fail to exist. Generalization to the non-continuous case is straightforward, completely analogous to handling
the non-existence of an exact 95for a binomial variable, either with discrete approximation or randomization.

6 The parametric formulation of hypotheses about the distribution oft can be relaxed to include the non-
parametric case in the usual way (seePagan and Ullah, 1999, for details).

7 In the spirit of McCloskey-inspired specificity regarding the description of hypotheses, the proposed classifi-
cation procedure is specified in terms of simple hypotheses, completely determining the distribution oft in each
case. However, the logic of the theorems that follow is compatible with composite hypotheses as well, requiring
only minor modifications.
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Because there are two critical regions, the desired probability of Type II errorβ can be
built into the construction ofC1 without changing the desired level of statistical significance
α built intoC0. In other words, given the density oft and the four user-provided inputsθ0,

θ1, α andβ, NDC can be constructed to satisfy the constraints:

α = Pθ0[t(X) ∈ C0], (3)

β = Pθ1[t(X) ∈ C1]. (4)

The probabilities of Type I and Type II errors,α andβ, are referred to as false-rejection
probabilities. Although the notation for statistical significance,α, is conventional, the no-
tation here for the probability of rejecting the alternative hypothesis when the alternative is
true,β, is not. Unlike the conventional hypothesis test, the power of NDC (i.e., the probability
of rejecting H0 when H1 is true,Pθ1[t(X) ∈ C0]) is not equal to 1− β. Instead, after account-
ing for the probability of the no-decision outcome (C0 ∪ C1), NDC’s power is given by:

Pθ1[t(X) ∈ C0] = 1 − β − Pθ1[t(x) ∈ C0 ∪ C1]. (5)

Critics of the standard hypothesis test cite its automatic or “ritualized” implementation
as a core methodological weakness. In contrast, this paper argues in favor of procedural
automaticity and its transactions-cost-reducing benefits, provided that key analytical judg-
ments are elicited and incorporated into the process. With NDC, the user provides a simple
null, a simple alternative, and desired false-rejection probabilitiesα andβ. With an es-
tablished technique for constructing critical regions given these user-provided values, the
procedure becomes automatic once those values are selected. This raises the question of
how to construct the critical regions, since there is in general an infinite number of pairs
of sets (C0, C1) satisfying the constraints(3) and (4). Fortunately, the question of how to
construct critical regions has a straightforward answer described in the next section.

3.1. Neyman–Pearson construction of critical regions

The need for a method of constructing critical regions arises because, in general, choices
of α andβ do not uniquely determineC0 andC1. There are many ways of choosingC0
andC1 to satisfy(3) and (4).8 The Neyman–Pearson construction defined below pins down
the definitions of the critical regions and provides two key advantages. First, it greatly
simplifies the description of the NDC procedure by mapping user-supplied values ofα and
β into unambiguous definitions of the setsC0 andC1. Therefore, rather than describing the
desired NDC procedure as two sets, the pre-established method of construction allows the
user to describe it with two numbers. Second, the Neyman–Pearson Construction extracts
maximal decisiveness from the data by minimizing the chance of no decision.

Definition 2 (Neyman–Pearson construction of critical regions). Given a test statistic den-
sity function f in the monotone-likelihood-ratio class of densities,9 false-rejection proba-

8 To deal with composite hypotheses, the probabilities on the right hand sides of(3) and (4)would be replaced
with the suprema of those probabilities taken with respect to values ofθ contained, respectively, in H0 and H1.

9 SeeLehmann (1959)for a definition of the “monotone likelihood ratio” class of distributions, and a statement
of the Neyman–Pearson Theorem. Lehman provides examples which show that many common distributions,
including normal, chi-square and exponential, are included in the monotone-likelihood-ratio class.
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bilities α andβ, and simple hypothesesθ0 andθ1, the Neyman–Pearson construction of
(C0, C1) is defined as:

C0(d0) = {t ∈ �t|fθ0(t) ≤ d0fθ1(t)}, (6)

C1(d1) = {t ∈ �t|d1fθ1(t) ≤ fθ0(t)}, (7)

whered0 andd1 are chosen to satisfy the constraints∫
C0(d0)

fθ0(t)dt = α, (8)

∫
C1(d1)

fθ1(t)dt = β. (9)

Whent is scalar-valued andf is in the monotone-likelihood-ratio class of distributions,
there exists a unique pair of numbers (d0, d1) satisfying(6)–(9). This follows from the
Neyman–Pearson Theorem. Thus, the Neyman–Pearson construction provides an unam-
biguous mapping from the four user-provided values (α, β, θ0 andθ1) to the NDC procedure
(C0, C1).

Theorem 1 (Most decisive NDC). Given a density f in the monotone-likelihood-ratio class
of distributions, two simple hypothesesθ0 and θ1, and false-rejection probabilitiesα and
β, the NDC procedure defined byEqs.(6)–(9)maximizes the chance of rejecting eitherθ0
or θ1 among all pairs of critical regions satisfying the false-rejection requirements(3) and
(4).

Proof. The Neyman–Pearson Theorem implies that:

Pθ1(C0) ≥ Pθ1(C′
0)∀C′

0 ⊂ �tsuch thatPθ0(C′
0) = α, (10)

Pθ0(C1) ≥ Pθ0(C′
1)∀C′

1 ⊂ �tsuch thatPθ1(C′
1) = β. (11)

Because the critical regions are (by definition of NDC) non-overlapping, the probability
of their union is the sum of their probabilities:

Pθ0(C0 ∪ C1) = α+ Pθ0(C1), (12)

Pθ1(C0 ∪ C1) = Pθ1(C0) + β. (13)

Eqs.(10) and (12)imply that, whenθ0 is true, no other critical regions satisfying the
false-rejection probability requirements(3) and (4)lead to a larger probability of decision,
Pθ0(C0 ∪ C1). Similarly, Eqs.(11) and (13)show that, whenθ1 is true, the Neyman–Pearson
NDC again maximizes the probability of decision. Thus, regardless of the truth, NDC
with critical regions constructed according to the Neyman–Pearson technique is maximally
decisive. This completes the proof. �

3.2. NDC leads to binary classification when critical regions overlap

By definition, NDC critical regions do not overlap. However, when the user selects
hypotheses that are relatively easy for the data to distinguish (while satisfying the false-
rejection requirements), the critical regions may at first overlap. In this case, adjustments
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must be made before proceeding with NDC. Happily, the adjustments wind up working in
the user’s favor. Both false-rejection probability requirements are to be made more stringent
without increasing the chance of no decision. An algorithm for implementing NDC when
Neyman–Pearson critical regions initially overlap is presented below. The result of the algo-
rithm is binary rather than three-outcome, no-decision classification. The underlying princi-
ple is that when the data are sufficiently decisive (e.g., large sample sizes or other conditions
favoring low variance of the test statistic) there is no need for the no-decision region at all.

To illustrate, consider the problem of deciding which of the following two hypotheses is
true:

X∼N(0,1) versus X∼N(10,1). (14)

A single draw fromX can distinguish which hypothesis is true with almost zero proba-
bility of either Type I or Type II error using the decision rule, “TakeH1 if x ≥ 5, andH0
otherwise.” In contrast, the standard hypothesis test at the 5region [1.645,∞). The problem
is that holding the probability of Type I error constant makes little sense. The critical point
defining the endpoint of the critical region can be shifted to the right, reducing the chance
of Type I error without noticeably sacrificing power. Unless Type I error is costless, the
standard approach cannot be optimal.

Suppose instead the user chooses to implement NDC, attempting to distinguish the
hypotheses above with false-rejection probabilities fixed atα = β = 0.05. In this case, the
critical regions areC0 = [1.645,∞), andC1 = (−∞,8.335]. These sets obviously overlap.
By holding the ratioα

β
constant while reducingα andβ toward zero, the two critical regions

shrink. Eventually whenα andβ are very close to zero (withα = β because their ratio is
held constant at 1), the two critical regions becomeC0 = [5,∞) andC1 = (−∞,5]. This
is the decision rule one derives using the algorithm below.

Theorem 2 (Algorithm for binary classification when NDC critical regions overlap).
Assume the test statistic t is a continuous random variable in the monotone-likelihood-
ratio class with cdfFθ. Suppose, too, that the user-provided simple hypothesesθ = θ0 and
θ = θ1 and false-rejection probabilitiesα0 andβ0 lead to Neyman–Pearson critical regions
that overlap. Then the following algorithm leads to an NDC with lower than required
probabilities of false rejection and zero probability of the no-decision outcome (i.e., NDC
becomes binary classification):

• Fix the ratio of initially-chosen false rejection probabilities atβ0
α0
.

• SolveF−1
θ1

(β0
α0
x) = F−1

θ0
(1 − x) in x and denote the solutionx∗.

• Setα = x∗, β = β0
α0
x∗, and c∗ = F−1

θ0
(1 − x∗). Then classify the data as “rejectθ0” if

t > c∗ and “reject θ1” otherwise.

Proof. Given that the critical regions are the Neyman–Pearson type, and thatf belongs to
the monotone-likelihood-ratio class of distributions, critical regions are connected intervals
which can, without loss of generality, be written:

C0 = [u,∞) and C1 = (−∞, l]. (15)

�
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Thus, critical regions overlap only ifu < l. Implicit differentiation of the false-rejection
probability requirements 1− Fθ0(u) = α, andFθ1(l) = β shows thatu is decreasing inα,
andl is increasing inβ:

du

dα
= − 1

fθ0(u)
< 0 and

dl

dβ
= 1

fθ1(u)
> 0. (16)

The goal, then, is to reduceα andβ, keeping the ratioβ
α

fixed at β0
α0

until the two critical
regions are separated by a single pointu = l ≡ c∗. Given thatF is continuous, the critical
point defining the boundary of the new critical regions exists and is given by the formula:

c∗ ≡ F−1
θ0

(1 − x∗), (17)

wherex∗ is the solution to

F−1
θ1

(
β0

α0
x

)
= F−1

θ0
(1 − x), (18)

which completes the proof.
Four simple examples of NDC are presented below. Example 1 is the standard case with

non-overlapping critical regions. Example 2 demonstrates the algorithm fromTheorem 2for
the overlapping case. Examples 3 and 4 are non-overlapping, providing formulas for NDC
critical regions in the respective cases where the test statistic is normal and exponential.

3.3. Example 1

Suppose the data consist of a single draw from a unit-variance normal distributionX,
and that the statistict is identically t ≡ X. NDC is applied to determine which of two
simple hypotheses regarding the mean (µ) of X is better supported by the data. Setting
α = β = 0.05, the goal is to classifyX as either

H0 : µ = −1 orH0 : µ = 1. (19)

According to the Neyman–Pearson construction, the numbersd0 andd1 which define
the critical regions are chosen so that the following two statements hold:

Pθ0

[
1

(2π)0.5
e1/2(X+1)2 ≤ d0

1

(2π)0.5
e−1/2(X−1)2

]
= 0.05, (20)

Pθ1

[
d1

1

(2π)0.5
e−1/2(X−1)2 ≤ 1

(2π)0.5
e−1/2(X+1)2

]
= 0.05. (21)

These two equations are equivalent to choosingl andu to satisfy:

Pθ0(X > u) = 0.05 and Pθ1(X < l) = 0.05, (22)

which leads to the critical regions

C0 = [0.645,∞) and C1 = (−∞,−0.645], (23)

with no-decision region (−0.645,0.645). The two critical regions do not overlap and, thus,
(C0, C1) satisfies the definition of an NDC procedure.
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3.4. Example 2

Maintaining all other definitions from Example 1, Example 2 applies NDC to distinguish
the following pair of hypotheses, which are farther apart and therefore easier to discriminate:

H0 : µ = −2 versus H1 : µ = 2. (24)

In this case, the critical regions overlap:

C0 = [−0.355,∞), C1 = (−∞,0.355]. (25)

The overlap means thatX is sufficiently informative to make an unambiguous classi-
fication without any need for the no-decision outcome given the required false-rejection
probabilities. The algorithm inTheorem 2is therefore applied withβ0

α0
= 0.05

0.05. Imposing
Pµ=−2(t > c) = Pµ=2(t < c), and denoting the standard normal cdfΦ(.), one solves

1 −Φ(c + 2) = Φ(c − 2), (26)

which has solutionc∗ = 0. The probability of error, whetherθ = θ0 or θ = θ1, is

α∗ = 1 − Fµ=−2(c∗) = Fµ=2(c∗) = 0.0228. (27)

Thus, after applying the algorithm inTheorem 2, NDC specializes to binary classification
according to the decision rule, “µ = −2 is rejected ifx > 0, andµ = 2 is rejected ifx < 0,”
achieving lower false-rejection probabilities than required.

3.5. Example 3

Example 3 returns to the non-overlapping case described in Example 1, this time, doing
away with the assumption of unit variance. Instead, meanµ and standard deviationσ (of
the single observationX) are both unknown, equal to one of two possible values:

H0 : (µ, σ) = (µ0, σ0) or H1 : (µ, σ) = (µ1, σ1). (28)

Without loss of generality, assumeµ0 < µ1. Using the Neyman–Pearson construction, the
critical regions are defined by a pair of (lower and upper) interval endpointsl andu such
that

C0 = [u,∞) and C1 = (−∞, l]. (29)

Givenα andβ, one solves forl andu as solutions to the equations:

1 −Φ

(
u− µ0

σ0

)
= α, (30)

Φ

(
l − µ1

σ1

)
= β. (31)

NDC critical regions are thus described by the formulas:

l = µ1 + σ1Φ
−1(β) and u = µ0 + σ0Φ

−1(1 − α). (32)
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3.6. Example 4

Example 4 is similar to Example 3, except thatX is exponential rather than normal. As
before,t ≡ X is a single draw from an exponential distribution with unknown parameterθ.
The classification problem is to determine which of two simple hypotheses is best supported
by the dataX:

H0 : θ = θ0 or H1 : θ = θ1. (33)

Without loss of generality, assumeθ0 < θ1. The Neyman–Pearson construction leads to
critical regions of the form

C0 = [u,∞) and C1 = (0, l]. (34)

Using the exponential cdf 1− e−x/θ, l andu are computed by imposing the equations:

Pθ0(X ≥ u) = e−u/θ0 = α, (35)

Pθ1(X ≤ l) = 1 − e−l/θ1 = β, (36)

whereα, β ∈ (0,1). Finally,

l = θ1 log

(
1

1 − β

)
andu = θ0 log

(
1

α

)
. (37)

3.7. No decision regions and sample size

Examples 3 and 4 provide explicit formulas for NDC critical regions as functions of the
simple hypotheses and false-rejection probabilities. When the test statistict is based onn
observations instead of the single observation considered in the previous examples, the size
of the critical regions also depends onn. This is particularly easy to see whent is the sample
mean from a normally distributed population:t = ∑n

i=1Xi/n. In this case, the no-decision
region fort is:[

µ1 + σ1

n
Φ−1(β), µ0 + σ0

n
Φ−1(1 − α)

]
. (38)

The no-decision region shrinks to an empty set and eventually becomes an improper
interval (i.e.,u < l) for largen becauseµ0 < µ1.

Similarly in the exponential case, the requirementPθ0(
∑n

i=1Xj/n > u) = α implicitly
definesu by the equationFχ2(2n)(2u/θ0) = 1 − α, whereFχ2(2N) is the chi-square cdf with
2N degrees of freedom. These formulas reveal that large sample sizes shrink the no-decision
region, eventually leading to improper no-decision intervals unlessα andβ are made to
depend onn.

4. Application 1: Do non-white workers earn less than similarly qualified whites?

Among the most common applications of significance testing is the comparison of ex-
pected earnings as a function of demographic traits such as race and gender. Denoting as
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yi the natural logarithm of individuali’s annual income, a standard wage regression model
can be written as:

yi = λ′xi + δdi + εi, (39)

wherexi (including a constant) is a vector ofi’s productivity-related personal characteristics,
anddi is a binary measure of racial/ethnic status:

di =
{

1 if i is white

0 otherwise.
(40)

Given this specification, the hypothesis of no race-based earnings differential is equiva-
lent to H0 : δ = 0.

Using a sample of 2473 full-time workers from the General Social Survey (GSS),
Eq.(39) is estimated by OLS (witht statistics appearing below each estimated coefficient)
as:

ŷ = 9.54 CONSTANT+ 0.38 MALE+ 0.09 MARRIED+ 0.46 COLLEGE

(310.42) 16.87 4.02 19.36

+ 0.90 AGE +−0.74 AGE2 + 0.05 WHITE

14.94 −12.23 1.62

How should the estimated coefficient on the variable WHITE be interpreted? Itst statistic
is strictly less than the one-sided 95% normal ordinate 1.645, but not by much.

In this case, the standard technique dictates that one report failure to reject the null
(regardless of the margin between the test statistic and the critical value) and conclude
that there is no evidence of a racial/ethnic earnings differential. Some may additionally,
or instead, report theP-value 1−Φ(1.62) = 0.0521, perhaps inviting the reader to give
special consideration to the variable WHITE because it is “almost” significant, or because
it is “significant at the 90demonstrates the problems described in earlier sections. Within the
interpretive boundaries of the standard technique, either the null is rejected or not (necessity
of choice). The findings have meaning only under the null (asymmetry with respect to Type I
and Type II errors). And instead of context-driven consideration of the economic importance
of magnitudes, the analysis centers on less important questions concerning the chance that
sampling error could have generated the data were the null true (statistical significance
trumps substantive significance).

NDC achieves improvements over the standard procedure with respect to each of these
problems. With NDC, necessity of choice is no longer a necessity, becauseno decision
is a valid outcome. With regard to Type I and Type II errors, symmetry is restored in the
sense that there is no trade-off required between error probabilities—any degree of relative
importance can be implemented through the selection of the false rejection probabilities
α andβ. Finally, the user-supplied simple hypotheses serve to elicit scientific judgment,
making explicit users’ beliefs about the size of departures from the null that matter. The
cost of these improvements is having to defend one’s specification of the simple alternative
against which NDC is to have the desired power.

Continuing with analysis of the wage regression above, consider the economic
significance of a hypothetical race-based earnings differential of $500. I claim that, over
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the course of a year, an extra $500 will improve the economic well being of a typical
worker in important ways that $50 cannot. $500 can make affordable a short vacation, a
noticeably more stylish wardrobe, higher quality groceries, and other amenities that one
may reasonably argue improve the economic well being of a worker. Upping the magnitude
by a factor of 10 to $5000 clearly reaches the realm of economic significance, in the
sense that the possibility of avoiding such a discrepancy would likely induce behavioral
change (e.g., changing residences or switching professions) and rises to the level that
many lawmakers would consider it a national policy priority. It stretches one’s imagination
to make similar claims for a differential of $50. Thus, $50 is too small, and the $500
differential is still conservative. Selecting $500 instead of $5000 makes it relatively more
difficult for the data to be decisive, illustrating that the smaller the minimally significant
departure from the null, the greater the chance of no decision.

To translate the $500 differential into a simple alternative hypothesis, the following
equation must be solved forδ:

E[ey|d = 1] − E[ey|d = 0] = 500. (41)

Solving(41) for δ, together with the assumption that the regression errorεi is normally
distributed with varianceσ2, leads to the simple alternative hypothesis H1 : δ = δ1, where:

δ1 = log

(
1 + 500

e

λ′x̄+ 1
2σ

2)
(42)

Denoting the OLS estimator ofδ and its standard error asδ̂ and S.E.̂δ, respectively, the
ratio δ̂−δ1

S.E.>̂δ
has a standard normal asymptotic distribution under the alternative hypothesis,

implying:

Pδ1

(
δ̂− δ1

S.E.̂δ
< −1.645

)
= Pδ1

(
δ̂

S.E.̂δ
< −1.645+ δ1

S.E.̂δ

)
= 0.05. (43)

Thus, under the alternative hypothesis, the expression−1.645+ δ1
S.E.̂δ

gives a lower cutoff

point for thet statistict ≡ δ̂
S.E.̂δ

.

Finally, NDC provides statistical decisions according to the following formula:

rejectδ = 0 if t ∈ [1.645,∞), (44)

rejectδ = δ1 if t ∈ (−∞,−1.645+ δ1

S.E.̂δ
] = (∞,−1.008], (45)

and take no decision ift ∈ (−1.008,1.645). (46)

Because the observed valuet = 1.62 is in the interval (−1.008,1.645), NDC makes no
decision in this application. The rather large size of the no-decision region is due to the
large value of S.E.δ̂ and the small minimum significant difference $500.

One may use NDC to investigate the related question of how large a minimum significant
difference would be needed to reach a statistical decision (i.e., rejection of one of the sim-
ple hypotheses). Straightforward algebraic calculations reveal that a minimum significant
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difference of $2675 (or larger) would have led to rejection of H0, since the following upper
bound just exceeds the observed value oft:

−1.645+ log

(
1 + 2675

eδ̂z̄+
1
2 σ̂

2

)
/S.E.̂δ = 1.630. (47)

Another variant of NDC yields Arrow’s equal probability test as a special case. Were
one to eschew the possibility of no decision and implement NDC with symmetric yet
unspecified power (i.e.,α = β), the single critical point that partitions the real line into two
critical regions would be:

c∗ = δ1

2S.E.̂δ
= 0.3184. (48)

This binary version of NDC, which features no possibility of no decision, rejectsδ = 0
at the 1−Φ(0.3184)= 0.3751 level.

5. Application 2: Is U.S. real GDP trend stationary?

Consider the question of permanent versus temporary fluctuations in macroeconomic
variables. If output is non-stationary, then policy intervention today can have permanent
benefits. But if recessions and rallies are driven entirely by temporary fluctuations about a
stable long-run growth path, then policies aimed at controlling output may have a weaker
rationale.

There are a variety of tests available for determining whether or not a time series is
stationary or not(Leybourne and Newbold, 2000; Shively, 1988)from which conflicting
conclusions have been drawn(Shively, 2001). Most tests for stationarity are conducted under
the null hypothesis of non-stationarity and do not have sufficient power to detect nearby al-
ternatives (i.e., variables that exhibit a high degree of persistence but are nevertheless station-
ary). The KPSS test is an exception in this regardKwiatkowski et al. (1992), Charemza and
Syczewska (1998). However, given the frequency with which “null-confirmation” method-
ology is used, the critiques of standard hypothesis testing still apply.

After removing a linear trend from the natural log of output,y, the autocorrelation
coefficientρ is estimated in the following model:

yt = ρyt−1 + ut. (49)

Next consider the one-sided test:

H0 : ρ = 1 versus H1ρ < 1. (50)

Using quarterly U.S. GDP data from 1947:1 through 2000:4, the least-squares estimate
ρ̂ is

ρ̂ = 0.9939 (0.0078), (51)
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with the standard error in parentheses. The correspondingt statistic is

ρ̂ − 1

S.E.̂ρ
= −0.7834. (52)

The 0.05 level left-tail critical point for a sample of approximately this size is−1.95.
Thus, according to the conventional procedure, the null hypothesis of non-stationarity is
not rejected. However, this finding reveals little about the stationarity of the process due to
the test’s low power and highly asymmetric probabilities of Type I and Type II error.

To implement NDC, one must address the question of which simple alternative in the
vicinity of non-stationarity should the data be required to distinguish. One approach is to
use the time frame of 50 quarters (12.5 years) as a proxy for the long run. The assertion is
that if the effect of a shock retains at least half its “oomph” (i.e., magnitude) 50 quarters
hence, then it should be regarded as permanent for many practical applications. Other time
horizons are, of course, possible and the issue deserves to be debated further. Adopting the
50-quarter half-life as one reasonable boundary between stationarity and non-stationarity,
the simple alternative hypothesis becomesρ1 = 0.9862 (because 0.986250 = 0.50). Using
the ratiot ≡ ρ̂−1

S.E.̂ρ
as the test statistic, lower and upper boundsl andu which define the

no-decision region are computed by imposing the conditions:

Pρ=1(t < l) = α and Pρ=0.9862(t > u) = β. (53)

At α = β = 0.05, this yields

l = F−1
ρ=1(0.05) = −1.95, (54)

and

u = Φ−1(1 − 0.05)− 1 − 0.9862

S.E.̂ρ
= −0.1355. (55)

(These computations use the approximationFρ=0.9862 ≡ Φ( ρ̂−0.9862
S.E.̂ρ

), since the ratio
ρ̂−0.9862

S.E.̂ρ
is asymptotically normal underρ = 0.9862). Thus, the no-decision region is

(−1.95,−0.1355), which contains the realized test statistict = −0.7834 and therefore
indicates that no decision is to be taken.

If the binary-classification variant of NDC is desired, then the false-rejection probabilities
are set equal to one another without specifying their exact values. This leads to a partition
of the space of the test statistic with two critical regions and an empty no-decision set. The
critical valuec∗ separating the critical regions satisfies:

Fρ=1(c) = Φ

(
c − 0.9862− 1

S.E.̂ρ

)
. (56)

Interpolating the appropriate tables for the Dickey–Fuller cdfFρ=1 in Hamilton (1994),
one finds an approximate solutionc∗ = −0.95 with approximate levelα = 0.20. In other
words, when the no-decision outcome is unacceptable yet one is committed to the symmetric
treatment of Type I and Type II errors, stationarity can be rejected with 80% confidence,
sincet = −.7834> c∗.
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6. Conclusion

NDC is a quantitative tool for classifying data into one of three categories: reject the
null hypothesis, reject the alternative hypothesis, or no decision, given the user-specified
probabilities of Type I and Type II error. In contrast to the standard hypothesis test, NDC
does not force an inference in favor of one hypothesis or the other, instead providing a
neutral description of data that contain too little information for distinguishing between
two theories. Another advantage is that NDC allows users to control the probabilities of
both Type I and Type II error, unlike the standard hypothesis test which allows only for
control over the probability of Type I error, with sample size and the shape of the data’s
distribution determining the test’s power. Control over the probabilities of Type I and Type
II error provides a means of comparing theories against data in accordance with the desired
weights or a context-appropriate loss function. Perhaps most importantly, NDC incorporates
users’ judgments about the meaning of magnitudes—the question of how big is big. By
inviting users to provide a simple alternative hypothesis representing the minimum departure
from the null that is to be regarded as economically significant, NDC embeds economic
significance into the procedural formalism of the standard hypothesis test. Thus, NDC
represents a middle of the road trade-off between the transactions-cost-reducing benefits
of standard statistical decision-making procedures and the judgment-intensive, context-
specific analysis called for by critics of statistical significance.

Theorem 1shows that the standard Neyman–Pearson construction of critical regions
adapted for use with NDC leads to a statistical decision-making procedure which mini-
mizes the chance of no decision.Theorem 2provides an algorithm for dealing with data
and hypotheses that give rise to overlapping critical regions. Overlapping critical regions
require modifications to the user-supplied starting values before NDC can be implemented.
Rather than a disadvantage, the overlapping case turns out to be beneficial, resulting from
abundantly decisive data.Theorem 2shows that in the overlapping case there exists an NDC
procedure which rejects one of the hypotheses (i.e., arrives at a decision) with probability
one while achieving lower than required probabilities of false rejection.

Applications of NDC demonstrate its capacity to reverse statistical conclusions regarding
important empirical relationships derived from standard hypothesis testing. Thus, NDC’s
features amount to more than a mere extension of the standard procedure. Rather NDC
generates distinct conclusions about the economy and, by extension, the desirability of
different economic policies.

The applications and examples in this paper all involve two simple hypotheses supplied
by the user. It was argued that this feature is a virtue because it requires users to reflect
on and defend claims about the economic significance of magnitudes, not merely the signs
of estimated parameters and the size of theirt statistics. However, the simple hypothesis
structure of NDC is not actually required in order to implement NDC. Settling the issue of
whether simple versus composite specifications of the data distribution are more a virtue
than a limitation will require further empirical applications of NDC. Based on these, the
persuasiveness and replicability of various specifications of hypotheses can be evaluated.
Convincingly defending the importance of particular pairs of simple hypotheses will depend
crucially on insights that are specific to the economic meaning of the units of measurement
in a given context. In general, what can be said is that there is a trade-off between context
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specificity and standardization in data analysis, and that NDC occupies an intermediate
position along a spectrum defined by two poles—ritualized use of standard hypothesis
testing on the one hand, and more informative but difficult-to-replicate descriptive analysis
on the other. The argument for NDC is that it enjoys the virtues and avoids the drawbacks
of both.
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