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Refined simplified neutrosophic sets (RSNSs) are 

appropriately used in decision-making problems with sub-

attributes considering their truth components, indeterminacy 

components and falsity components independently. This 

paper presents the similarity measures of RSNSs based on 

tangent and cotangent functions. When the weights of each 

element/attribute and each sub-element/sub-attribute in 

RSNSs are considered according to their importance, we 

propose the weighted similarity measures of RSNSs and their 

multiple attribute decision-making (MADM) method with 

RSNS information. In the MADM process, the developed 

method gives the ranking order and the best selection of 

alternatives by getting the weighted similarity measure 

values between alternatives and the ideal solution according 

to the given attribute weights and sub-attribute weights. 

Then, an illustrative MADM example in a construction 

project with RSNS information is presented to show the 

effectiveness and feasibility of the proposed MADM method 

under RSNS environments. This study extends existing 

methods and provides a new way for the refined simplified 

neutrosophic MADM problems containing both the attribute 

weight and the sub-attribute weights. 
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1. Introduction 

The fuzzy set [1] is represented by the membership function for a fuzzy problem. However, the 

fuzzy set cannot be described by the non-membership function for a fuzzy problem. As the 

generalization of fuzzy sets, Atanassov [2] presented an intuitionistic fuzzy set (IFS), which is 

characterized by the membership and non-membership functions. However, IFS can only handle 

incomplete and uncertain information but not inconsistent and indeterminate information. Thus, a 

neutrosophic set (NS) was introduced by Smarandache [3], where the indeterminacy is quantified 

explicitly. In NS, the components of the truth, indeterminacy and falsity are denoted as T, I, F, 

and then they are expressed independently by the truth, falsity, indeterminacy membership 

functions defined in the real standard interval [0, 1] or non-standard interval ]
−
0,1

+
[. After that, 

Simplified NSs introduced by Ye [4] are the subclasses of NSs and contain two concepts of 

single valued neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs), then they were 

applied in decision making [5-17]. Even though they have been applied in real MADM 

problems, however, their decision-making methods cannot handle the problems of both the 

attributes and the sub-attributes. Smarandache [18] first defined n-value/refined neutrosophic set, 

which is composed of its n-sub-components represented by p truth sub-membership degrees, r 

indeterminacy sub-membership degrees, and s falsity sub-membership degrees satisfying p + r + 

s = n. Next, n-value/refined neutrosophic sets/multisets were applied to medical diagnoses and 

MADM [19-22]. Further, Ye and Smarandache [23] particularized the n-value/refined 

neutrosophic set to a refined single valued neutrosophic set (RSVNS), where its components T, I, 

F and the sub-components T1, T2, ..., Tq and I1, I2, ..., Iq, and F1, F2, ..., Fq are constructed as a 

RSVNS, and then they introduced the similarity measure using the union and the intersection of 

RSVNSs to deal with MADM problems with both attributes and sub-attributes. Then, the Dice, 

Jaccard and cosine similarity measures of refined simplified NSs (RSNS) have been proposed 

[24], along with their applications in MADM problems. Thereafter, cosine measures of refined 

interval NSs (RINS) were introduced by Fan and Ye [25] as an extension of RSVNS and used for 

MADM problems. 

It is well known that a similarity measure in decision-making theory is an important 

mathematical tool. So, Ye [12] put forward similarity measures of SVNS corresponding to 

cotangent function, then Mondal and Pramanik [22] presented the tangent function-based 

similarity measure of refined NSs (i.e. neutrosophic multi-sets) for the MADM problem without 

sub-attributes. However, their MADM methods [12, 19-22] cannot handle the MADM problems 

with both attributes and sub-attributes. In fact, there are no tangent and cotangent similarity 

measures for RSNSs in existing literature. Therefore, we introduce new similarity measures of 

RSNSs corresponding to tangent function and cotangent function to extend the existing decision-

making methods of multiple attributes to MADM problems with attributes and sub-attributes, 

and then the developed method is applied in a MADM example on a construction project with 

both attributes and sub-attributes in RSNS (RSVNS and RINS) setting. 

The rest of this article is constructed as the following. In the second section, we present the 

extended tangent function similarity measure and cotangent function similarity measure for 

SNSs in existing literature. The third section, the similarity measures of RSNSs were introduced 
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corresponding to tangent and cotangent functions. In the fourth section we present the MADM 

method using the tangent and cotangent similarity measures of RSNSs. In the fifth section, an 

illustrative example on decision-making of a construction project with attributes and sub-

attributes is given in RSNS (RSVNS and RINS) setting. Lastly, this article is concluded in the 

sixth section. 

2. Trigonometric function-based similarity measures 

NS [3] is described by the three components T, I, F, which are defined independently as the 

membership degrees of the truth, indeterminacy and falsity within a real standard interval [0,1] 

or a nonstandard interval ]
-
0,1

+
[. For its application in real science and engineering, this can been 

constrained in the real standard interval [0,1]. Thereby, as a simplified form or a subclass of a NS 

Ye [4] presented the concept of simplified NS. The simplified NS contains SVNS and INS. A 

simplified NS P in a universe of discourse X with the element x is denoted as P = {<x, TP(x), 

IP(x), FP(x)>|xX} where each membership function is considered as a singleton or a sub-

interval in the real standard [0,1], such that TP(x), IP(x), FP(x) ∈ [0,1] for SVNS or TP(x), IP(x), 

FP(x)⊆[0,1] for INS. An element <x, TP(x), IP(x), FP(x)> in the simplified NS P is called a 

simplified neutrosophic number (SNN), simply denoted as p = 〈tp, ip, fp〉, which contains single 

valued and interval neutrosophic numbers. 

Similarity measures mainly describe the similarity degree between different objects. Assume two 

simplified NSs in the universe of discourse X are P = {p1, p2, …, pn} for pj ∈ P {j = 1, 2, …, n} 

and Q = {q1, q2,…, qn} for qj ∈ Q (j = 1, 2, …, n) such that pj = <tpj, ipj, fpj> and qj = <tqj, iqj, fqj>. 

Then, the tangent function and cotangent function-based similarity measures between two 

SVNSs P and Q are expressed below [12, 22]: 

S1(P,Q) =
1

𝑛
∑ 1 − tan[(|𝑡𝑝𝑗 − 𝑡𝑞𝑗| + |𝑖𝑝𝑗 − 𝑖𝑞𝑗| + |𝑓𝑝𝑗 − 𝑓𝑞𝑗|)

𝑛

𝑗=1

𝜋

3×4
], (1) 

S2(P,Q)=
1

𝑛
∑ cot[

𝜋

4
+ (|𝑡𝑝𝑗 − 𝑡𝑞𝑗| + |𝑖𝑝𝑗 − 𝑖𝑞𝑗| + |𝑓𝑝𝑗 − 𝑓𝑞𝑗|)

𝑛

𝑗=1

𝜋

3×4
]. (2) 

For INSs, the tangent function and cotangent function-based similarity measures between two 

INSs P and Q are presented by 

𝑆3(𝑃, 𝑄) =
1

𝑛
∑ 1 − tan[(|inf 𝑡𝑝𝑗 − inf 𝑡𝑞𝑗| + |sup 𝑡𝑝𝑗 − sup 𝑡𝑞𝑗| + |inf 𝑖𝑝𝑗 − inf 𝑖𝑞𝑗| +

𝑛

𝑗=1

|sup 𝑖𝑝𝑗 − sup 𝑖𝑞𝑗| + |inf 𝑓𝑝𝑗 − inf 𝑓𝑞𝑗| + |sup 𝑓𝑝𝑗 − sup 𝑓𝑞𝑗|)
𝜋

6×4
], (3) 

𝑆4(𝑃, 𝑄) =
1

𝑛
∑ cot[

𝜋

4
+ (|inf 𝑡𝑝𝑗 − inf 𝑡𝑞𝑗| + |sup 𝑡𝑝𝑗 − sup 𝑡𝑞𝑗| + |inf 𝑖𝑝𝑗 − inf 𝑖𝑞𝑗| +

𝑛

𝑗=1

|sup 𝑖𝑝𝑗 − sup 𝑖𝑞𝑗| + |inf 𝑓𝑝𝑗 − inf 𝑓𝑞𝑗| + |sup 𝑓𝑝𝑗 − sup 𝑓𝑞𝑗|)
𝜋

6×4
]. (4) 
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According to the tangent and cotangent similarity measure properties in [12, 22], the cotangent 

and tangent similarity measures Sk(P, Q) (k = 1, 2, 3, 4) between two simplified NSs P and Q 

also have the following properties: 

(R1) 0 ≤ Sk(P, Q) ≤ 1; 

(R2) Sk(P, Q) = Sk(Q, P); 

(R3) Sk(P, Q) = 1 if and only if P = Q; 

(R4) Suppose M is also a simplified NS in the universe X, If P⊆ Q⊆M, then Sk(P, M) ≤ Sk(P, Q) 

and Sk(P, M) ≤ Sk(Q, M). 

3. Tangent and cotangent similarity measures of RSNSs 

This section presents the tangent and cotangent similarity measures between RSNSs and the 

weighted tangent and cotangent similarity measures of RSNSs containing both the weights of 

their elements and the weights of their sub-elements, which are more suitable for solving 

MADM problems with sub-attributes. 

If a simplified NS (SVNS or INS) P = {p1, p2, p3, …, pn}for pj∈P (j = 1, 2, …, n) is refined, pj 

=<tj, ij, fj> consists of the sub-components such as pji =<tj1, tj2, …,ij1, ij2,…, fj1, fj2,…>. Then 

RSNS contains RSVNS with the components tj1, tj2, …∈ [0,1], ij1, ij2,…∈ [0,1], fj1, fj2,…∈ [0,1] 

and 0 ≤ tji + iji + fji ≤ 3 and RINS with tj1, tj2, … ⊆ [0,1], ij1, ij2,…⊆ [0,1], fj1, fj2,…⊆ [0,1] and 

0 ≤ suptji + supiji + supfji≤3. 

Then, we introduce the tangent and cotangent functions to similarity measures of RSNSs. 

Assume we consider two RSNS P = {p1, p2,…, pn} and Q = {q1, q2,…, qn} for pj ∈ P and qj∈Q (j 

= 1, 2, …, n), where pji = <(tpj1, tpj2, …,tpjr(j)),(ipj1, ipj2,…,ipjr(j)),(fpj1, fpj2,…, fpjr(j))> and qji = <(tqj1, 

tqj2, …,tqjr(j)),(iqj1, iqj2,…,iqjr(j)),(fqj1, fqj2,…, fqjr(j))> for pji∈pj and qji∈qj (i = 1, 2,…, r(j); j = 1, 

2, …, n). Thus, the similarity measures between two RSVNSs and between two RINSs based on 

the trigonometric functions of tangent and cotangent are given as follows: 

(a) Similarity measures of RSVNSs 

𝑇1(𝑃, 𝑄) =
1

𝑛
∑

1

𝑟(𝑗)
∑ {1 − tan [(|𝑡𝑝𝑗𝑟(𝑗) − 𝑡𝑞𝑗𝑟(𝑗)| + |𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑞𝑗𝑟(𝑗)| + |𝑓𝑝𝑗𝑟(𝑗) −

𝑟(𝑗)

𝑖=1

𝑛
𝑗=1

𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

3×4
]}, (5) 

𝑇2(𝑃, 𝑄) =
1

𝑛
∑

1

𝑟(𝑗)
∑ cot[

𝜋

4
+ (|𝑡𝑝𝑗𝑟(𝑗) − 𝑡𝑞𝑗𝑟(𝑗)| + |𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑞𝑗𝑟(𝑗)| + |𝑓𝑝𝑗𝑟(𝑗) −

𝑟(𝑗)
𝑖=1

𝑛
𝑗=1

𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

3×4
] . (6) 

(b) Similarity measures of RINSs 
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𝑇3(𝑃, 𝑄) =

1

𝑛
∑

1

𝑟(𝑗)
∑ {1 − tan [(|𝑖𝑛𝑓 𝑡𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑡𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑡𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑡𝑞𝑗𝑟(𝑗)|

𝑟(𝑗)

𝑖=1
+𝑛

𝑗=1

|𝑖𝑛𝑓 𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑖𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑖𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑖𝑞𝑗𝑟(𝑗)| + |𝑖𝑛𝑓 𝑓𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑓𝑞𝑗𝑟(𝑗)| +

|𝑠𝑢𝑝 𝑓𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

6×4
]}, (7) 

𝑇4(𝑃, 𝑄) =
1

𝑛
∑

1

𝑟(𝑗)
∑ cot[

𝜋

4
+ (|𝑖𝑛𝑓 𝑡𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑡𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑡𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑡𝑞𝑗𝑟(𝑗)|

𝑟(𝑗)

𝑖=1
+𝑛

𝑗=1

|𝑖𝑛𝑓 𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑖𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑖𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑖𝑞𝑗𝑟(𝑗)| + |𝑖𝑛𝑓 𝑓𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑓𝑞𝑗𝑟(𝑗)| +

|𝑠𝑢𝑝 𝑓𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

6×4
]. (8) 

Similar to the properties (R1)-(R4) of the similarity measures discussed above, the simplified 

neutrosophic similarity measures Tk(P, Q) (k = 1, 2, 3, 4) based on cotangent and tangent 

functions also contain the following properties: 

(R1) 0 ≤ Tk(P, Q) ≤ 1; 

(R2) Tk(P, Q) = Tk(Q, P); 

(R3) Tk(P, Q) = 1 if and only if P = Q; 

(R4) Suppose M is also a RSNS in the universe X, If P⊆ Q⊆M, then Tk(P, M) ≤ Tk(P, Q) and 

Tk(P, M) ≤ Tk(Q, M). 

To apply them efficiently in decision-making, we need to consider the weights of elements in 

RSNS as w = (w1, w2, …,wn) and the weights of sub-elements in RSNS as wj = (w11, w22, …, 

wnr(j)) (i = 1, 2, …, r(j); j =1, 2, …, n). Thus, the weighted similarity measures are presented as 

follows: 

(a) The weighted similarity measures between RSVNSs 

𝑊1(𝑃, 𝑄) = ∑ 𝑤𝑗 ∑ 𝑤𝑗𝑖{1 − tan[(|𝑡𝑝𝑗𝑟(𝑗) − 𝑡𝑞𝑗𝑟(𝑗)| + |𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑞𝑗𝑟(𝑗)| + |𝑓𝑝𝑗𝑟(𝑗) −
𝑟(𝑗)

𝑖=1

𝑛
𝑗=1

𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

3×4
]}, (9) 

𝑊2(𝑃, 𝑄) = ∑ 𝑤𝑗 ∑ 𝑤𝑗𝑖cot[
𝜋

4
+ (|𝑡𝑝𝑗𝑟(𝑗) − 𝑡𝑞𝑗𝑟(𝑗)| + |𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑞𝑗𝑟(𝑗)| + |𝑓𝑝𝑗𝑟(𝑗) −

𝑟(𝑗)
𝑖=1

𝑛
𝑗=1

𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

3×4
] ; (10) 

(b) The weighted similarity measures between RINSs 

𝑊3(𝑃, 𝑄) = ∑ 𝑤𝑗 ∑ 𝑤𝑗𝑖{1 − tan[(|𝑖𝑛𝑓 𝑡𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑡𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑡𝑝𝑗𝑟(𝑗) −
𝑟(𝑗)

𝑖=1

𝑛
𝑗=1

𝑠𝑢𝑝 𝑡𝑞𝑗𝑟(𝑗)| + |𝑖𝑛𝑓 𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑖𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑖𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑖𝑞𝑗𝑟(𝑗)| + |𝑖𝑛𝑓 𝑓𝑝𝑗𝑟(𝑗) −

𝑖𝑛𝑓 𝑓𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑓𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

6×4
]}, (11) 



6 U. Solang and J. Ye/ Journal of Soft Computing in Civil Engineering 2-3 (2018) 01-12 

𝑊4(𝑃, 𝑄) = ∑ 𝑤𝑗 ∑ 𝑤𝑗𝑖cot[
𝜋

4
+ (|𝑖𝑛𝑓 𝑡𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑡𝑞𝑗𝑟(𝑗)| +  |𝑠𝑢𝑝 𝑡𝑝𝑗𝑟(𝑗) −

𝑟(𝑗)
𝑖=1

𝑛
𝑗=1 𝑠𝑢𝑝 𝑡𝑞𝑗𝑟(𝑗)| +

|𝑖𝑛𝑓 𝑖𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑖𝑞𝑗𝑟(𝑗)| + |𝑠𝑢𝑝 𝑖𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑖𝑞𝑗𝑟(𝑗)| + |𝑖𝑛𝑓 𝑓𝑝𝑗𝑟(𝑗) − 𝑖𝑛𝑓 𝑓𝑞𝑗𝑟(𝑗)| +

|𝑠𝑢𝑝 𝑓𝑝𝑗𝑟(𝑗) − 𝑠𝑢𝑝 𝑓𝑞𝑗𝑟(𝑗)|)
𝜋

6×4
]. (12) 

The above weighted similarity measures Wk(P, Q) (k = 1, 2, 3, 4) based on tangent and cotangent 

obviously also contain the following properties: 

(R1) 0 ≤ Wk(P, Q) ≤ 1; 

(R2) Wk(P, Q) = Wk(Q, P); 

(R3) Wk(P, Q) = 1 if and only if P = Q; 

(R4) Suppose M is also a simplified NS in the universe X, If P⊆ Q⊆M, then Wk(P, M) ≤ Wk(P, 

Q) and Wk(P, M) ≤ Wk(Q, M). 

4. MADM method based on the proposed similarity measures of RSNSs 

In a MADM problem that has multiple attributes with their sub-attributes, this section proposes a 

MADM method using the proposed similarity measures of RSNSs.  

Let’s consider a set of m alternatives P = {P1, P2, …, Pm} to be judged under attributes Z = {z1, 

z2, …, zn} with their sub-attributes zj = {zj1, zj2, …, zjr(j)} for j = 1, 2, …, n. Then, we give the 

evaluation of the alternatives over the attributes and sub-attributes by RSNSs (RSVNSs and 

RINSs). Table 1 shows the relative evaluation values between alternatives and the attributes and 

sub-attributes, known as the RSNS decision matrix D=(psji)mn, where psji (i = 1, 2, …, r(j); j = 1, 

2, …, n; s = 1, 2, …, m) represents the evaluation value of Pj regarding each sub-attribute zjr(j). 

Table 1. 

The RSNS decision matrix D=(psji)mn. 

 z1 z2 … zn 

 z11, z12, …, z1r(1) z21, z22, …, z2r(2) … zn1, zn2, …, znr(n) 

P1 p11r(1) p12r(2) … p1nr(n) 

P2 p21r(1) p22r(2) … p2nr(n) 

P3 p31r(1) p32r(2) … p3nr(n) 

… … … … … 

Pm pm1r(1) pm2r(2) … pmnr(n) 

 

In Table 1, each alternative Ps in the set P = {P1, P2, …, Pm} is evaluated under all attributes Z = 

{z1, z2, …, zn} and sub-attributes zj = {zj1, zj2,…, zjr(j)} by RSNN psji = <(tsj1, tsj2, …,tsjr(j)),(isj1, 

isj2,…,isjr(j)),(fsj1, fsj2,…, fsjr(j))> (i = 1, 2, …, r(j); j = 1, 2, …, n; s = 1, 2, …, m). The importance 

of attributes and sub-attributes is presented as the weight vectors w = (w1,w2,…,wn) for the set Z 

= {z1, z2, …, zn} and wj = (wj1, wj2,…, wjr(j)) for the set of sub-attributes such that ∑ 𝑤𝑗
𝑛
𝑗=1 =1 and 

∑ 𝑤𝑗𝑖
𝑟(𝑗)
𝑖=1 =1 with wj,wji∈ [0,1]. 
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The ideal RSNN or the ideal solution is given from the RSNS decision matrix D=(psji)mn as 

follows: 

ppji = <(tpj1, tpj2, …,tpjr(j)), (ipj1, ipj2,…,ipjr(j)), (fpj1, fpj2,…, fpjr(j))> = <(maxs(tsj1), maxs(tsj2), …,maxs(t

sjr(j))), (mins(isj1), mins(isj2), …,mins(isjr(j))), (mins(fsj1), mins(fsj2),…, mins(fsjr(j)))> for RSVNNs 

 (13) 

or ppji = <(tpj1, tpj2, …,tpjr(j)),(ipj1, ipj2,…,ipjr(j)),(fpj1, fpj2,…, fpjr(j))> = <([maxs(inf tsj1), maxs(sup tsj

1)], [maxs(inf tsj2), maxs(sup tsj2)], …, [maxs(inf tsjr(j))), maxs(sup tsjr(j))]), ([mins(inf isj1), mins(sup 

isj1)], [mins(inf isj2), mins(sup isj2)], …, [mins(inf isjr(j)), mins(sup isjr(j))]), ([mins(inf fsj1), mins(sup f

sj1)], [mins(inf fsj2), mins(sup fsj2)], …, [mins(inf fsjr(j)), mins(sup fsjr(j))])> for RINNs. (14) 

Then, the ideal solution/alternative is presented as P
*
 = {𝑝1

∗ ,  𝑝2
∗ ,  …,  𝑝𝑛

∗ }, where 𝑝𝑗
∗ = (ppj1, 

ppj1, …, ppjr(j)) for j = 1, 2, …, n. 

Thus, we use the equations (9) and (11) or (10) and (12) to get the values of Wk(Ps, P
*
) (k = 1, 3 

or 2, 4; s = 1, 2, …, m). By the similarity measure values between the ideal solution P
*
 and each 

alternative set Ps, all the alternatives are ranked and the best one is determined based on the one 

with biggest weighted similarity measure value given by Wk(Ps, P
*
) among the alternatives. 

5. Illustrative example 

A successful project can be achieved by many interacted factors as presented in previous 

literatures [14-16], which mainly depends on the decision-making method. Hence, the manager 

has to effectively make accurate and reliable decision according to the presented requirements or 

objective attributes with their highly subjective judgmental factors to select the best alternative 

for some project. 

In a construction project, the manager has to select the best alternative in the decision set of the 

alternatives P = {P1, P2, P3, P4} suggested by different personalities or departments like 

administration department, technical department, finance department, etc. to meet the 

requirements and the objectives of the project from the contractor company, as well as the 

contracting company. The following two cases composed of the suggested alternatives with their 

attributes set Z = {z1, z2, z3} and sub-attributes set zj = {zj1, zj2, zjr(j)} (j = 1, 2, 3) in a construction 

project are presented to describe the applicability of the proposed method. Here, the attributes 

and sub-attributes of alternatives are shown in Table 2. 

Table 2. 

The attributes and sub-attributes. 

z1: Budget z2: Quality z3: Delivery 

z11: Human resource cost 
z21: Experience or 

performance 
z31: Schedule 

z12: Materials and 

equipment cost 
z22: Technology z32: Communication 

z13: Facilities  z33: Risk and uncertainties 
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Case1. Under RSVNS environment, the evaluation values of the decision set of the alternatives 

P = {P1, P2, P3, P4} over the attributes and sub-attributes must belong to the interval [0,1]. The 

weight vector of the given attribute set Z = {z1, z2, z3} is w = (0.3, 0.4, 0.3) and the weight 

vectors of the sub-attribute sets {z11, z12, z13}, {z21, z22} and {z31, z32, z33} are given respectively 

as w1 = (0.5, 0.3, 0.2), w2 = (0.6, 0.4) and w3 = (0.4, 0.2, 0.4). Thus, the RSVNS decision matrix 

D=(psji)43 corresponding to the alternatives with respect to the three attributes with their given 

sub-attributes is given in Table 3. 

Table 3. 

The RSVNS decision matrix D=(psji)43. 

 z1 z2 z3 

 z11,z12,z13 z21,z22 z31,z32, z33 
P1 〈(0.5,0.5,0.6), (0.3,0.4,0.2), (0.2,0.1,0.2)〉 〈(0.7,0.8), (0.1,0.2), (0.1,0.2)〉 〈(0.9,0.8,0.5), (0.1,0.1,0.3), (0,0.1,0.2)〉 

P2 〈(0.7,0.6,0.5), (0.2,0.2,0.3), (0.1,0.2,0.2)〉 〈(0.9,0.5), (0.1,0.3), (0.2,0.2)〉 〈(0.7,0.6,0.8), (0.1,0.3,0.1), (0.2,0.1,0.1)〉 

P3 〈(0.8,0.6,0.8), (0,0.3,0.1), (0.2,0.1,0.1)〉 〈(0.7,0.6), (0.2,0.1), (0.3.0.1)〉 〈(0.5,0.6,0.6), (0.2,0.2,0.3), (0.3,0.2,0.1)〉 

P4 〈(0.6,0.7,0.7), (0.2,0.2,0.1), (0.2,0.1,0.2)〉 〈(0.5,0.8), (0.3,0.1), (0.1,0)〉 〈(0.8,0.8,0.6), (0.1,0.2,0.2), (0.1,0,0.2)〉 

 

To get the value of RSVNS for P
*
 we apply the formula (13) to obtain the following ideal 

solution: 

𝑃∗ = {〈(0.8,0.7,0.8), (0,0.2,0.1), (0.1,0.1,0.1)〉, 〈(0.9,0.8), (0.1,0.1). (0.1,0)〉,  

〈(0.9,0.8,0.8), (0.1,0.1,0.1), (0,0,0.1)〉}. 

For the RSVNS we use the equations (9)-(10) to get the following results of similarity measures 

between the alternatives Ps (s = 1, 2, 3, 4) and the ideal solution P
*
 in Table 4. 

Table 4. 

The similarity measure values between Ps and P
*
. 

Measure Similarity measure value Ranking order The best choice 

W1(Ps, P
*
) 

W1(P1, P
*
) = 0.9106 

W1(P2, P
*
) = 0.9176 

W1(P3, P
*
) = 0.9012 

W1(P4, P
*
) = 0.9186 

P4>P2>P1>P3 P4 

W2(Ps, P
*
) 

W2(P1, P
*
) = 0.8414 

W2(P2, P
*
) = 0.8536 

W2(P3, P
*
) = 0.8254 

W2(P4, P
*
) = 0.8557 

P4>P2>P1>P3 P4 

 

In Table 4, the attribute P4 is considered as the best choice, which is the best alternative under 

RSVNS environment. 
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Case2. Under RINS environment, the evaluation values of the set of the alternatives P = {P1, P2, 

P3, P4} over the attributes and sub-attributes are the sub-interval of the interval [0,1]. The weight 

vector of the given attribute set Z = {z1, z2, z3} is w = (0.3, 0.4, 0.3) and the weight vectors of the 

sub-attribute sets {z11, z12, z13}, {z21, z22} and {z31, z32, z33} are given as w1 = (0.5, 0.3, 0.2), w2 = 

(0.6, 0.4), and w3 = (0.4, 0.2, 0.4), respectively. Then, the refined interval neutrosophic decision 

matrix D=(psji)43 corresponding to the alternatives over the three attributes with three groups of 

the sub-attributes is given in Table 5. 

Table 5. 

The RINS decision matrix D=(psji)43. 

 z1 z2 z3 

 z11,z12,z13 z21,z22 z31,z32, z33 

P1 

      

      

      

0.5,0.6 , 0.5,0.6 , 0.6,0.7 ,

0.3,0.4 , 0.4,0.5 , 0.2,0.3 ,

0.2,0.3 , 0.1,0.2 , 0.2,0.3

 

    

    

    

0.7,0.8 , 0.8,0.9 ,

0.1,0.2 , 0.2,0.3 ,

0.1,0.2 , 0.2,0.3
 

      

      

      

0.8,0.9 , 0.8,0.9 , 0.5,0.6 ,

0.1,0.2 , 0.1,0.2 , 0.3,0.4 ,

0,0.1 , 0.1,0.2 , 0.2,0.3
 

P2 

      

      

      

0.7,0.8 , 0.6,0.7 , 0.5,0.6 ,

0.2,0.3 , 0.2,0.3 , 0.3,0.4 ,

0.1,0.2 , 0.2,0.3 , 0.2,0.3

 

    

    

    

0.8,0.9 , 0.5,0.6 ,

0.1,0.2 , 0.3,0.4 ,

0.2,0.3 , 0.2,0.3
 

      

      

      

0.7,0.8 , 0.6,0.7 , 0.8,0.9 ,

0.1,0.2 , 0.3,0.4 , 0.1,0.2 ,

0.2,0.3 , 0.1,0.2 , 0.1,0.2
 

P3 

      

      

      

0.8,0.9 , 0.6,0.7 , 0.8,0.9 ,

0,0.1 , 0.3,0.4 , 0.1,0.2 ,

0.2,0.3 , 0.1,0.2 , 0.1,0.2

 

    

    

    

0.7,0.8 , 0.6,0.7 ,

0.2,0.3 , 0.1,0.2 ,

0.3,0.4 , 0.1,0.2
 

      

      

      

0.5,0.6 , 0.6,0.7 , 0.6,0.7 ,

0.2,0.3 , 0.2,0.3 , 0.3,0.4 ,

0.3,0.4 , 0.2,0.3 . 0.1,0.2

 

P4 

      

      

      

0.6,0.7 , 0.7,0.8 , 0.7,0.8 ,

0.2,0.3 , 0.2,0.3 , 0.1,0.2 ,

0.2,0.3 , 0.1,0.2 , 0.2,0.3

 

    

    

    

0.5,0.6 , 0.8,0.9 ,

0.3,0.4 , 0.1,0.2 ,

0.1,0.2 , 0,0.1
 

      

      

      

0.8,0.9 , 0.8,0.9 , 0.6,0.7 ,

0.1,0.2 , 0.2,0.3 , 0.2,0.3 ,

0.1,0.2 , 0,0.1 , 0.2,0.3
 

 

From Table 5 we get the RINS P
* 
for

 
the ideal solution by the formula (14) as follow: 

     

     

     

   

   

   

     

     

   

( 0.8,0.9 , 0.7,0.8 , 0.8,0.9 ), ( 0.8,0.9 , 0.8,0.9 ), ( 0.8,0.9 , 0.8,0.9 , 0.8,0.9 ),

* ( 0,0.1 , 0.2,0.3 , 0.1,0.2 ), ( 0.1,0.2 , 0.1,0.2 ), ( 0.1,0.2 , 0.1,0.2 , 0.1,0.2 ),

( 0.1,0.2 , 0.1,0.2 , 0.1,0.2 ) ( 0.1,0.2 , 0,0.1 ) ( 0,0.1 , 0,0.1 , 0.1,0.

P 

 2 )

 
  
 
 
    

Thus, we use the equations (11)-(12) to get the values of similarity measures between the ideal 

solution P
*
 and the alternatives Ps (s = 1, 2, 3, 4) and decision results, which are shown in Table 

6. 
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Table 6. 

The similarity measure values between Ps and P
*
 and decision results. 

Measure Similarity measure value Ranking order The best choice 

W3(Ps, P
*
) 

W3(P1, P
*
) = 0.9169 

W3(P2, P
*
) = 0.9208 

W3(P3, P
*
) = 0.9109 

W3(P4, P
*
) = 0.9282 

P4>P2>P1>P3 P4 

W4(Ps, P
*
) 

W4(P1, P
*
) = 0.8531 

W4(P2, P
*
) = 0.8589 

W4(P3, P
*
) = 0.8328 

W4(P4, P
*
) = 0.8713 

P4>P2>P1>P3 P4 

 

In Table 6, the alternative P4 is considered as the best choice, which is the best one. 

However, the same ranking orders are shown in the two cases under RSNS environments. But 

existing literature [12, 19-22] cannot deal with such two cases with both attributes and sub-

attributes in RSNS setting. 

6. Conclusion 

This study presented the tangent and cotangent functions-based similarity measures of RSNSs, 

and then proposed their decision making method, which is more suitable for the problems that 

have multiple attributes with sub-attributes, along with both the attribute weights and the sub-

attribute weights.  

By the similarity measure values between alternatives and the ideal solution, we can rank 

alternatives and choose the best one. Then, an illustrative example on the decision making 

problem of a construction project was provided in order to indicate the feasibility and 

effectiveness of the proposed method in RSNS (RSVNS and RINS) setting. Obviously, this study 

extends existing methods and provides a new way for the refined simplified neutrosophic 

MADM problems containing both the attribute weight and the sub-attribute weights. For the 

future study, the presented method will be extended to the similarity measures based on 

logarithm function for group decision-making.  
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