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Abstract: Investigations into the nature of the principle of least action have shown that there 

is an intrinsic relationship between geometrical and topological methods and the variational 

principle in classical mechanics. In this work, we follow and extend this kind of mathematical 

analysis into the domain of quantum mechanics. First, we show that the identification of the 

momentum of a quantum particle with the de Broglie wavelength in 2-dimensional space 

would lead to an interesting feature; namely the action principle      would be satisfied 

not only by the stationary path, corresponding to the classical motion, but also by any path. 

Thereupon the Bohr quantum condition possesses a topological character in the sense that the 

principal quantum number   is identified with the winding number, which is used to 

represent the fundamental group of paths. We extend our discussions into 3-dimensional 

space and show that the charge of a particle also possesses a topological character and is 

quantised and classified by the homotopy group of closed surfaces. We then discuss the 

possibility to extend our discussions into spaces with higher dimensions and show that there 

exist physical quantities that can be quantised by the higher homotopy groups. Finally we 

note that if Einstein’s field equations of general relativity are derived from Hilbert’s action 

through the principle of least action then for the case of     the field equations are satisfied 

by any metric if the energy-momentum tensor is identified with the metric tensor, similar to 

the case when the momentum of a particle is identified with the curvature of the particle’s 

path.  

 

In the old quantum theory, the Bohr quantum condition        , where   is the 

momentum of a particle,   is Planck constant and   is a positive integer, played a crucial role 

in the quantum description of a physical system, although it had been introduced into the 

quantum theory in an ad hoc manner [1]. However, except for the quantum condition 

imposed on the orbital angular momentum, the Bohr model was based entirely on the 

classical dynamics of Newtonian physics. In this case, it seems natural to raise the question as 

to whether the Bohr quantum condition can also be described in a classical way. In classical 

mechanics, the actual path of a particle is found by extremising the action integral of the 

particle [2]. On the other hand, in quantum mechanics, the wave equation of a particle can be 

found by applying the Feynman path integral formulation which assumes the particle can take 

any trajectory [3]. The question then arises as to whether it is possible for the action integral 

to be extremised by any path at the quantum level. In this work we show that this problem 

may be investigated in terms of geometry and topology, and it transpires that topology may 

play an important role in the determination of the nature of a quantum observable [4,5].  
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The investigation of the relationship between physics and geometry had been carried out and 

culminated with the development of the principle of least action. In 1744, Euler developed 

and published his work on this variational principle for the dynamics of a particle moving in a 

plane curve [6]. On the one hand, the dynamics of a particle can be studied by using the 

principle of least action. On the other hand, the path of a particle can also be determined by 

using geometrical methods, since a path can be constructed if the curvature is known at all 

points on the path. Euler showed the equivalence between these two methods by calculating 

the radius of curvature of the path directly and by means of the variational principle. Consider 

a particle moving in a plane under the influence of a force. Let    and    be the forces per 

unit mass in the x-direction and the y-direction, respectively. The normal acceleration    of 

the particle is given by 

      
  

  
        

  

  
 
 

 

  
 

                                                                                                       

If   is the radius of curvature, then         , where   is the speed of the particle. This 

result can also be obtained by using the variational principle     , where   is defined by 

             
  

  
 
 

                                                                                                            

The condition       leads to the stationary condition 

 

  

 

 
 

   
  

      
  

  
 
 

 

 

  
 

  
      

  

  
 
 

                                                                   

Employing the relations            and           , the stationary condition given by 

Equation (3) then leads to      
   . This result reveals an intrinsic relationship between 

geometrical methods and the variational principle in classical mechanics. We will now extend 

this geometrical analysis into the domain of quantum mechanics. We show that the 

identification of the momentum of a quantum particle with the de Broglie wavelength leads to 

an interesting feature; namely the action principle      is satisfied not only by the 

stationary path corresponding to the classical motion, but also by any path. In this case the 

Bohr quantum condition possesses a topological character in the sense that the principal 

quantum number   is identified with the winding number, which is used to represent the 

fundamental group of paths [7]. 

Consider a curve in the three-dimensional spatial continuum    which is a topological image 

of an open segment of a straight line. The curve can be represented by a real vector function 

    . For the Bohr planar model, we utilise the fundamental homotopy group and it is 

convenient to consider curves that may have points that correspond to more than one value of 

the parameter  . However, whenever the single-valuedness of the representation      is 

required for differential analysis of the motion, the uncertainty principle in quantum 



mechanics may be invoked to shift the self-intersecting points into the third dimension to 

make the curve single-valued for the whole domain of definition. This is a consequence of 

quantum mechanics which does not allow both the momentum and coordinate associated with 

the third dimension to vanish simultaneously [4]. In differential geometry, the position vector 

    , the unit tangent vector     , the unit principal normal vector      and the unit binormal 

vector     , defined by the relation               , satisfy the Frenet equations [8,9] 

  

  
    

  

  
        

  

  
                                                                                       

where      and      are the curvature and the torsion respectively, and           is the 

linear element. If we consider the motion of a particle in a plane, as in the case of Bohr’s 

model of a hydrogen-like atom, the Frenet equations reduce to  

  

  
    

  

  
                                                                                                                               

By differentiation, we obtain the following system of differential equations 

   

   
 
      

  

  

  
                                                                                                                           

   

   
 
      

  

  

  
                                                                                                                         

If the curvature      is assumed to vary slowly along the curve     , so that the condition 

            can be imposed, then      and      may be regarded as being oscillating 

with a spatial period, or wavelength, λ, whose relationship to the curvature   is found as 

  
  

 
                                                                                                                                                         

In the case of the Bohr’s planar model of a hydrogen-like atom with circular orbits, the 

condition             is always satisfied, since the curvature remains constant for each of 

the orbits. In order to incorporate this elementary differential geometry into quantum 

mechanics, we identify the wavelength defined in Equation (8) with the de Broglie’s 

wavelength of a particle. This seems to be a natural identification since the spatial period   is 

the wavelength of the unit tangent vector     . With this assumption, the momentum   of the 

particle and the curvature   are related through the relation  

                                                                                                                                                              

We now want to show how this result leads to Bohr’s postulate of the quantisation of angular 

momentum. It should be mentioned here that this can only be discussed in terms of Bohr’s 

quantum theory, or Feynman’s path integral methods, since these formulations do require 

concepts employed in classical physics, especially the concept of classical paths of a particle 

[3]. According to the canonical formulation of classical physics, the particle dynamics is 

governed by the action principle           . Using the relationship      given in 



Equation (9) and the expression for the curvature   of the path      of a particle in a plane, 

                , where          and            , the action integral   takes the 

form  

         
    

     
                                                                                                                    

It is shown in the calculus of variations that to extremise the integral                   , 

the function      must satisfy the differential equation [10] 

  

  
 
 

  

  

   
 
  

   
  

    
                                                                                                                     

However, with the functional of the form given in Equation (10),               , it is 

straightforward to verify that the differential equation given in Equation (11) is satisfied by 

any function     . This result may be considered as a foundation for the Feynman’s path 

integral formulation of quantum mechanics, which uses all classical trajectories of a particle 

in order to calculate the transition amplitude of a quantum mechanical system [3,6]. Since 

any path can be taken by a particle moving in a plane, if the orbits of the particle are closed, it 

is possible to represent each class of paths of the fundamental homotopy group of the particle 

by a circular path, since topologically, any path in the same equivalence class can be 

deformed continuously into a circular path [7]. This validates Bohr’s assumption of circular 

motion for the electron in a hydrogen-like atom. This assumption then leads immediately to 

the Bohr quantum condition 

             
  

 
                                                                                             

The Bohr quantum condition possesses a topological character in the sense that the principal 

quantum number   is identified with the winding number which is used to represent the 

fundamental homotopy group of paths of the electron in the hydrogen atom. 

It is interesting to note that our discussions for the dynamics of a particle in a three-

dimensional spatial continuum can be extended to a three-dimensional temporal manifold. 

Mathematically, a temporal manifold can be considered as a three-dimensional Euclidean 

continuum whose radial time can be identified with the one-dimensional time in physics [11]. 

In this case we can also define the temporal position, or moment, vector     , the unit 

temporal tangent vector      , the unit temporal principal normal vector      and the unit 

temporal binormal vector     , defined by the relation                , satisfy the 

temporal Frenet equations 

   
  

    
  

  
         

  

  
                                                                                



where      and      are the temporal curvature and the temporal torsion, respectively, and 

          is the linear element of a temporal curve. If we only consider the motion of a 

particle in a plane, the equations given in Equation (13) reduce to  

   
  

    
  

  
                                                                                                                          

By differentiation we obtain the following system of differential equations 

    
   

 
      

  

   
  

                                                                                                                   

   

   
 
      

  

  

  
                                                                                                                       

If the temporal curvature      is assumed to vary slowly along the curve     , so that the 

condition             can be imposed, then       and      may be regarded as being 

oscillating with a temporal period  , whose relationship with the temporal curvature   is 

found from the differential equations given in Equation (15) or (16) as  

  
  

 
                                                                                                                                                        

This result shows that the temporal curvature   is actually the angular frequency  . In 

principle, the structure of the three-dimensional spatial manifold and the three-dimensional 

temporal manifold are identical, because, without matter, both of them are just a three-

dimensional Euclidean continuum. In order to incorporate this elementary differential 

geometry into quantum mechanics, we identify the angular frequency defined in Equation 

(17) with the angular frequency in Planck’s quantum of energy      of a particle. With 

this assumption, the energy of the particle and the curvature   are related through the relation  

                                                                                                                                                            

As in the case of Bohr’s quantisation of angular momentum, the quantisation of energy can 

be obtained from the relation given by Equation (18) using the principle of least action for the 

temporal manifold and it can be said that the quantisation of energy is a manifestation of 

rotation, or oscillation, in the two-dimensional temporal manifold.  

The Feynman’s method of sum over random paths can be extended to higher-dimensional 

spaces to formulate physical theories in which the transition amplitude between states of a 

quantum mechanical system is the sum over random hypersurfaces. This generalisation of the 

path integral method in quantum mechanics has been developed and applied to other areas of 

physics, such as condensed matter physics, quantum field theories and quantum gravity 

theories, mainly for the purpose of field quantisation. For example, although there are 

conceptual difficulties, the path integral approach to quantum gravity is carried out by 

considering a sum over all field configurations, determined by a metric     and matter field 

  , which are consistent with  the three-geometries at the boundaries of the space-time [12]. 



On the other hand, string theories can be formulated in terms of a sum over random surfaces 

[13]. In this case the surface integral method can be used in the quantisation procedure, where 

the surface action of the form                      
    

  is used for bosonic strings, 

and                       
    

                 for fermionic strings. In these 

action integrals, the spatial coordinates            describe a two-dimensional world sheet, 

the quantities    represent 2-dimensional Dirac matrices, the quantities       are mappings 

from the world manifold into the physical space-time, and     represents the geometry of the 

2-dimensional manifold. These surface actions are a generalisation of the familiar action 

integral for a point particle,        , where the invariant interval is defined by the 

relation          
     [14]. In the following, however, we focus attention on the general 

idea of a sum over random surfaces. This formulation is based on surface integral methods by 

generalising the differential formulation as discussed for the Bohr’s model of a hydrogen-like 

atom.   

Consider a surface in    defined by the relation            . The Gaussian curvature   is 

given by the relation                
       

    
    , where           and 

     
          [8]. Let   be a three-dimensional physical quantity which plays the role 

of the momentum   in the two-dimensional space action integral. The quantity   can be 

identified with the surface density of a physical quantity, such as charge. Since the 

momentum   is proportional to the curvature  , which determines the planar path of a 

particle, it is seen that in the three-dimensional space the quantity   should be proportional to 

the Gaussian curvature  , which is used to characterise a surface. If we consider a surface 

action integral of the form                  , where   is a universal constant, 

which plays the role of Planck’s constant, then we have 

  
 

  
 

            
 

     
    

     
                                                                                                          

According to the calculus of variations, similar to the case of path integral, to extremise the 

action integral                
        , the functional             

   must satisfy the 

differential equations [10] 

  

  
 

 

   
  

   
 

  

      
  

    
                                                                                                         

Also as in the case of path integral, it is straightforward to verify that with the functional of 

the form                      
       

    
       the differential equations given by 

Equation (20) are satisfied by any surface. Hence, we can generalise Feynman’s postulate to 

formulate a quantum theory in which  the transition amplitude between states of a quantum 

mechanical system is a sum over random surfaces, provided the functional   in the action 

integral        is taken to be proportional to the Gaussian curvature   of a surface. 

Consider a closed surface and assume that we have many such different surfaces which are 

described by the higher dimensional homotopy groups. As in the case of the fundamental 



homotopy group of paths, we choose from among the homotopy class a representative 

spherical surface, in which case we can write 

     
 

  
                                                                                                                                      

where    is an element of solid angle. Since     depends on the homotopy class of the 

sphere that it represents, we have        , where   is the topological winding number of 

the higher dimensional homotopy group. From this result we obtain a generalised Bohr 

quantum condition 

                                                                                                                                                      

From the result obtained in Equation (22), as in the case of Bohr’s theory of quantum 

mechanics, we may consider a quantum process in which a physical entity transits from one 

surface to another with some radiation-like quantum created in the process. Since this kind of 

physical process can be considered as a transition from one homotopy class to another, the 

radiation-like quantum may be the result of a change of the topological structure of the 

physical system, and so it can be regarded as a topological effect. Furthermore, it is 

interesting to note that the action integral            is identical to Gauss’s law in 

electrodynamics [15]. In this case the constant   can be identified with the charge of a 

particle, which represents the topological structure of a physical system and the charge of a 

physical system must exist in multiples of  . Hence, the charge of a physical system may 

depend on the topological structure of the system and is classified by the homotopy group of 

closed surfaces. This result may shed some light on why charge is quantised even in classical 

physics. As a further remark, we want to mention here that in differential geometry, the 

Gaussian   is related to the Ricci scalar curvature   by the relation     . And it has been 

shown that the Ricci scalar curvature can be identified with the potential of a physical system, 

therefore our assumption of there is an existence of a relationship between the Gaussian 

curvature and the surface density of a physical quantity can be justified [5]. 

Our discussions for random surfaces can be generalised to a sum over random hypersurfaces 

of the form                    in an (n+1)-dimensional Euclidean space.  A generalised 

action integral is assumed to take the form 

                                                                                                                                                 

where    is a universal constant, which may be identified with some physical quantity, 

depending on the dimension of space, and    is the generalised Gaussian curvature defined 

as the product of the principal curvatures           . In terms of the Riemannian 

curvature tensor, the generalised Gaussian curvature can be written as 

   
 

 
 
            

                                                                                         



where              and     and               are the metric tensor and the curvature 

tensor, respectively, of the hyper-surface. From the theory of differential geometry in higher 

dimensions, we have the generalised Gauss-Bonnet theorem for the case when   is even [16] 

       
 

 
                                                                                                                                       

where    is the volume of an n-sphere and   is the Euler characteristic. Hence, to be 

consistent with this result the variational differential equation obtained from the action 

integral given by Equation (23) must be satisfied by any hypersurface, since the Euler 

characteristic is a topological invariant whose value depends only on the homotopy class, and 

not on the choice of an individual hypersurface. In this case we have the generalised Bohr 

quantum condition 

                                                                                                                                                   

where the universal constant    connects the physical quantity    with the geometrical object 

  . In higher-dimensional spaces, however, we do not have a guiding relation, such as de 

Broglie’s relation and Gauss’s law to identify the quantity   . Nonetheless, this result also 

suggests that it may be possible to discuss a formalisation of the physics that involves 

manifolds of arbitrary dimension. 

For further examinations, it is remarkable to note that Feynman’s postulate of path integral 

formulation of quantum mechanics, which can be verified by the principle of least action as 

discussed above, may also be applied to the field equations of Einstein’s theory of general 

relativity. The field equations of general relativity are written in the form 

    
 

 
                                                                                                                             

where     is the energy-momentum tensor,     is the metric tensor,     is the Ricci 

curvature tensor,   is the scalar curvature and   is the cosmological constant [17]. It is 

shown that Equation (27) can be derived through the principle of least action     , where 

the action   is defined as  

    
 

  
              

                                                                                                  

where    characterises matter fields [18]. In 1917, Einstein introduced the cosmological 

constant   as an addition to his original field equations of general relativity to retain the 

accepted view at the time that the universe is static. The reason for the addition is that if all 

matter attracts each other than a static universe would not be able to remain static. The 

attractive gravity would cause the universe to collapse. Because the original field equations of 

general relativity contain only attractive forms of gravity, a repulsive term is required. 

Einstein started his cosmological considerations by modifying Poisson’s equation     

     with a repulsive term    to form the required equation             , where   



denotes a universal constant [17]. The modification of Poisson’s equation results in the 

solution              if matter was distributed uniformly through space with the density 

  . With these considerations, Einstein also noted that in order to maintain the general 

covariance of the field equations, the repulsive term that would be added to his field 

equations must be of the form     . However, it is observed that the requirements of 

repulsion and covariance can be acquired by the energy-momentum tensor because if   is 

considered to be some form of matter then it should be able to produce some form of energy, 

in particular, a potential energy. The fact that the term      can be replaced by an energy-

momentum tensor can be demonstrated for the case when     as follows. It is shown that 

when     we have the identity     
 

 
      , and in this case the field equations given 

by Equation (27) reduces to  

     
 

 
                                                                                                                                                

It is indicated from Equation (29) that a physical entity can be directly identified with a 

mathematical object. This interesting feature can be seen as an underlying principle for 

quantum physics. As long as the energy-momentum tensor     is directly identified with the 

metric tensor     through the relationship given by Equation (29) then for the case when 

    we have     
 

 
      , therefore the resulting equations from the principle of least 

action     
 

 
               are satisfied by any metric tensor    .  

 

References 

[1] N. Bohr, Phil. Mag. 26, 1 (1913).  

[2] H. Goldstein, Classical Mechanics (Addison-Wesley Inc., Sydney, 1980). 

[3] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 

[4] Vu B Ho, Geometrical and Topological Methods in Classical and Quantum Physics (PhD 

thesis, Monash University, Australia, 1996). 

[5] Vu B Ho, Spacetime Structures of Quantum Particles (Preprint, ResearchGate, 2017), 

viXra 1708.0192v1. 

[6] W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum 

Theory (Dover Publications, New York, 1979). 

[7] I. M. Singer and J. A. Thorpe, Lectures Notes on Elementary Topology and Geometry 

(Scott,Foresman & Co., MIT, 1967). 

 [8] E. Kreyszig, Introduction to Differential Geometry and Riemannian Geometry 

(University of Toronto Press, 1975). 



[9] A. Prastaro, Geometry of PDEs and Mechanics (World Scientific, Singapore, 1996). 

[10] C. Lanczos, The Variational Principles of Mechanics (Dover Publications, New York, 

1970). 

[11] Vu B Ho, A Temporal Dynamics: A Generalised Newtonian and Wave Mechanics (Pre-

print, ResearchGate, 2016), viXra 1708.0198v1. 

[12] S. W. Hawking, General Relativity, An Einstein Centenary Survey, edited by S. W. 

Hawking and W. Israel (Cambridge University Press, 1979). 

[13] A.M. Polyakov, Phys. Lett. B, 103, 207 (1981). 

[14] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge University 

Press, Melbourne, 1988). 

[15] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975). 

[16] M. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish, 

Berkerley, 1979). 

[17] A. Einstein, The Principle of Relativity (Dover Publications, New York, 1952). 

[18] R. M. Wald, General Relativity (The University of Chicago Press, London, 1984). 

 

 


