
Primo Toys

Beginning computer programming
for kids:

An introductory guide to
computational thinking and coding
for kids aged 3-6 years old.

Plus programming ideas for
kids, and the best programming
languages for kids.

An introductory guide to computational
thinking and coding for kids aged 3-6
years old.

Plus programming ideas for kids, and
the best programming languages for
kids.

www.primotoys.com

Beginning computer
programming for kids

Table of Contents
Hello 3
Why a book and why now?

Who is this book for?

How does this book work?

Who will find each secion most useful?

5

6

7

8

Part One 9
What do we mean by introducing computer programming for kids?

Why should kids learn coding and computational thinking at all?

A brief history of coding education for kids

10

13

19

Part Two 23
The use of age groups in the eBook

Section i) Three to Four Years Old

Section ii) Five to Six Years Old

24

25

57

Part Three 73
What Next? 74

Glossary 80

Bibligraphy 83

www.primotoys.com 3

Hello
Hello, we are Primo Toys. We’re a team of technologists, designers
and educators who make toys that help children learn with technology.

You may already know our first toy, Cubetto – a playful wooden robot
that helps young children aged 3+ learn the basics of computer
programming through hands-on play, without a screen.

We started building it back in 2013, and we made a bit of a splash last year
when we launched Cubetto 2.0 on the crowdfunding platform Kickstarter.
We raised $1.6m, becoming Kickstarter’s most-funded educational
technology project ever. At the time there were just five of us in the team.
Now we are 17 and, after another Kickstarter campaign we look like this:

www.primotoys.com 3

https://www.primotoys.com/
https://www.kickstarter.com/projects/primotoys/cubetto-hands-on-coding-for-girls-and-boys-aged-3
https://www.primotoys.com/

www.primotoys.com 4

We created Cubetto because, like an increasing number of academics
and experts, we believe that coding for kids is a new kind of literacy
for the 21st century. 

We think that for girls and boys, all over the world, learning to
program will be as important as their ABCs and 123sw in helping
them understand the world around them. We believe that
introducing children to a world of algorithms, bugs and queues also
develops their problem-solving skills, encourages collaboration and
nurtures children’s creativity.

Like Maria Montessori, the Italian educationalist acclaimed for her
method that builds on the way children naturally learn, we think
that children learn best through play. We also know that they’re
motivated by challenges; and that at very young ages, abstraction
(the ability to think about a solution to a problem without trying it
out first), is difficult.

4

Coding is a new kind
of literacy for the 21st
century.

4

https://www.primotoys.com/
https://cyber.harvard.edu/node/95731
https://www.youtube.com/watch?v=MwLXrN0Yguk
http://ctt.ec/PkVB9
http://ctt.ec/PkVB9
https://amshq.org/Montessori-Education/History-of-Montessori-Education/Biography-of-Maria-Montessori

www.primotoys.com 5

Our aim is to help create a new global standard for coding education
that incorporates this and other approaches to the way children learn
best, both at home and in the classroom. We want to help a new
generation to realise their full creative potential in a world of rapidly
increasing technological progress. This ebook is part of that mission.

Why a book and why now?

In the four years since we started, learning software programming
for kids – once a niche and nerdy enterprise – has elbowed its way
politely into the mainstream. Well-publicised and well-funded
private and public campaigns (often helped along by very well-
known entrepreneurs and stars – Mark Zuckerberg, Bill Gates,
will.i.am…) have helped make this possible. A growing number of
innovative designers, researchers, and – of course – crowdfunding
platforms, have also helped propel coding toys and programming
games to new heights. Children as young as three or four can now
use block-based, tangible coding languages like our own or Kibo or
Google’s Project Bloks; while older children can build and program
their own robot kits including Lego Mindstorms and LittleBits. And
then there’s a growing number of programming languages for kids,
like MIT’s ScratchJr designed for five to seven-year-olds.

Meanwhile, in some countries including the UK, programming is
already part of the curriculum, and there are a huge number of schools
that teach coding around the world. So there’s never been more
information for parents and teachers dedicated to helping to get kids
coding. If you Google ‘kids’ coding ebook’ you’ll find plenty of engaging
publications that offer a step-by-step initiation to a variety of coding
languages, all aimed at beginning computer programming for kids.

https://www.primotoys.com/
https://code.org/quotes
https://code.org/quotes
https://www.theguardian.com/technology/2016/jun/28/project-bloks-google-kids-code
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit
https://www.google.com/search?q=kid%27s+coding+ebook

The problem is that many of these have been written to complement
formal schooling, which typically starts in most countries around ages
five or six, and have been written for teachers rather than parents. So
we decided to produce something that could also help children aged
three to six. An introductory guide that brings together all those vital
hands-on learning techniques and imaginative tips and tricks we’ve
learned and developed over the years.

Who is this book for?

This book is primarily for parents who are keen to find out more
about what computer programming is, and how they can introduce
easy programming for kids in a fun and engaging way.

We also hope that teachers, particularly those less familiar with
coding and its key concepts,will find it useful both as an introduction
and a tool for their lessons.

6

www.primotoys.com 7

How does this book work?

In Part One:
‘Introducing coding for kids’, we dip into some of the key terminology
that we’ll use throughout the book that typically causes confusion.
We’ll also ask: ‘Why learn to code in the first place?’

In addition, there’s a brief but important history of educational
coding, which introduces some of the bright minds and stunning
innovations that got us to where we are today – it sets the scene for
the rest of the book, so please don’t skip it!

In Part Two:

We look at two different age groups:

Section i. Three to four years old.
Section ii. Five to six years old.

For both age groups we investigate:

• How children learn.
• Which computational and programming concepts should be
introduced at each age.
• What games and exercises (some that use technology, and others
that don’t) we can use to teach these concepts in fun, authentic and
creative ways, as well as programming ideas for kids, and the best
programming languages for kids.

https://www.primotoys.com/

In Part Three:

‘What next?’, we take a quick look at the options available to parents
and educators who want to introduce their children to programming
beyond tangible devices.

Who will find each section most useful?

While we hope that you’ll find each part of this book helpful, Part
Two, Section i, on three- to four-year-olds has been written especially
with parents in mind. Part Two, Section ii, for five- to six-year-olds has
been written with both parents and teachers in mind.

We hope you enjoy using this book as much as we enjoyed writing it.

8

Part One

What do we mean by introducing
computer programming for kids?

Why should kids learn coding and
computational thinking at all?

A brief history of coding education
for kids

9

www.primotoys.com 10

What do we mean by: ‘Introducing
Computer Programming for Kids?’

Computing terminology can be tricky. ‘Coding’, ‘programming’,
‘computational thinking’ and ‘computer science’ are often used
interchangeably to mean the same thing. To avoid confusion, let’s
start out by getting them straight.

Computer science is the study of what computers can actually do –
it’s essentially the theory side of things. Computer scientists test and
study what is possible using hardware (the physical components of
a computer, like the hard drive and motherboard), and software (the
programs and data that run on and that live in a computer’s hardware).

Examples, given by Oxford University, of the kinds of things that
concern computer scientists include whether computers can help us
to model and investigate hugely complex systems like the human body,
financial systems or the Earth’s climate.

Computational thinking is the thinking tool that computer scientists
use for the kinds of investigations given above.

The BBC puts it most succinctly: Computational thinking ‘allows
us to take a complex problem, understand what the problem is and
develop possible solutions. We can then present these solutions in
a way that a computer, a human, or both, can understand.’

Computer programming, on the other hand, is the practice of
making a computer do things, normally through lines of code that
have been written to create an intended outcome: ‘If I write ABC the
computer will do XYZ.’

https://www.primotoys.com/
https://www.ox.ac.uk/admissions/undergraduate/courses-listing/computer-science?wssl=1
http://www.bbc.co.uk/education/guides/zp92mp3/revision

www.primotoys.com 11

Coding, even though it’s often used as a catch-all for all three terms
above, is just another slightly more contemporary way of saying
‘computer programming’: ie the act of writing code, normally on
a screen, to make a computer do something you want it to do.

In this book, for reasons we’ll outline later, we’ll focus predominantly
on introducing computational thinking approaches to children in
younger age groups (three to four and five to six), tying in some of
the basic elements of programming.

For a glossary of all the terms we use in the book, please skip to the
back!

© iStock/RichVintage

https://www.primotoys.com/

www.primotoys.com 12

Why should kids learn coding
and computational thinking?

1) Coding nurtures
creative expression

2) Programming
demystifies tech

3) It teaches problem
solving and persistence

4) Children learn by
thinking about doing

5) But children also learn
to think about thinking

</>

https://www.primotoys.com/

www.primotoys.com 13

Why should kids learn coding and
computational thinking at all?

There’s a common assumption, not always helped by the tech
industry itself, that kids need to learn coding because we need
more computer scientists. More software engineers, the argument
goes, would help shape our digital world for the better and, you
know, it wouldn’t be so bad for the economy either. (The term
‘workforce-ready’ comes to mind).

To which the obvious response for a parent or educator is: ‘But what
if my child or student doesn’t want to be a computer scientist?’

While it’s true that the big tech firms – Google, Facebook, Apple,
Tesla – are snapping up whizzkid engineers, there are far more
exciting and compelling arguments for why children should learn to
code, beyond: ‘Because it’s great for GDP.’ Here are five of them:

1. Coding nurtures creative expression

Coding for kids is a fundamentally creative process.  Just like
painting or cooking, with coding a child benefits from the satisfaction
– even the exhilaration – that comes from starting with nothing and
finishing with something.

And it goes further. In the real world, creative acts are often limited
by the materials we have at our disposal – like ingredients when we
cook, or the canvas when we paint. But with programming, where the
virtual world is infinite, the only restriction is the child’s imagination.

https://www.primotoys.com/
http://ctt.ec/y3uaN
https://twitter.com/intent/tweet%3Ftext%3DCoding%2520for%2520kids%2520is%2520a%2520fundamentally%2520creative%2520process.%2B%40primotoys

www.primotoys.com 14

Coding for kids is a
fundamentally creative
process; starting with
nothing and finishing
with something.

www.primotoys.com 14

© iStock/romrodinka

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 15

2. Programming demystifies tech

The University of Oxford forecasts that in the next 20 years as many
as 47 per cent of jobs in the United States will become completely
automated. Meanwhile, predictions on the number of connected
devices that will be in use by 2020 as part of the Internet of Things vary
from 20 billion to 75 billion.

Because of this proliferation of devices and computers, there’s a
growing anxiety about the increasing role of artificial intelligence
and computers, in particular whether machines will make workers
obsolete. Understanding what computers can and can’t do is
fundamental in addressing these anxieties. If we can teach children
how to remodel the technological world around them, we can help
them become creators rather than just consumers of technology.

15www.primotoys.com

© iStock/weerapatkiatdumrong

www.primotoys.com 15

https://www.primotoys.com/
http://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf
http://www.gartner.com/newsroom/id/3165317
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10
https://www.theatlantic.com/magazine/archive/2015/07/world-without-work/395294/
https://www.theatlantic.com/magazine/archive/2015/07/world-without-work/395294/
https://www.primotoys.com/blog/2017/03/creating-with-tech/
https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 16

In the next 20 years
as many as 47% of
jobs in the USA will
become completely
automated.

16www.primotoys.com

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 17

3. Teaching kids programming requires
persistence and problem-solving

Anyone who’s played with code, from beginners to professionals, will tell
you that writing programs can get quite challenging quite quickly. Or
put more simply: coding can be frustrating. Really, really frustrating.

This, says computer scientist and educator Sheena Vaidyanathan, is
unreservedly a good thing: children ‘learn that something doesn’t work
out but you can quickly fix it and try it again in different ways.’

With an introduction to programming, children learn to think laterally
when faced with a problem in coding: ‘If A + B didn’t work, then
maybe A + C will.’ Coding also equips kids with the ability to stick with
a problem and work on finding a solution.

4. Children learn by thinking about doing

The grandfather of coding education, Seymour Papert (more on him in
bit), was a huge advocate of teaching by using programmable robots
for kids. He was also a huge advocate of the principle that we learn by
doing. As he saw it, the two worked hand in hand: ‘Programming the
robot to do something helps a child to think about “doing”.’

However, to this he added an interesting qualification: ‘You learn by
doing but you learn better by thinking about what you are doing. I
think this is what is most important.’

In essence, thinking about what you want to do, one step at a time,
before you do it, enhances the learning process.

https://www.primotoys.com/
https://www.youtube.com/watch?v=bi9lpZUGvZw
http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-marvin-minsky-et-al-american/

www.primotoys.com 18

5. But children also learn to think
about thinking

Papert (him again) also spoke of the discovery and the sense
of wonder that children experience when first introduced to
programming. ‘In teaching the computer how to think, children
embark on an exploration about how they themselves think. The
experience can be heady: Thinking about thinking turns the child into
an epistemologist,  an experience not even shared by most adults.’

For us, this is the argument that is the most exciting. More than
anything, computational thinking is an unbelievably valuable thinking
tool – perhaps the thinking tool of the 21st century – and one that can
be applied throughout our lives to incredible effect.

With programming,
children learn to think
laterally when faced
with a problem.

https://www.primotoys.com/
https://books.google.pt/books?id=DQYXoRx9CcEC&pg=PT433&lpg=PT433&dq=%22The+experience+can+be+heady:+Thinking+about+thinking+turns+the+child+into+an+epistemologist,+an+experience+not+even+shared+by+most+adults.%22&source=bl&ots=OLEwfqsyTr&sig=Vt_CeLJV6IV5F-txAh5hPWAo8ew&hl=en&sa=X&ved=0ahUKEwiF0u7MyY_TAhXCz4MKHQAsCu0Q6AEIGTAA#v=onepage&q=%22The%20experience%20can%20be%20heady%3A%20Thinking%20about%20thinking%20turns%20the%20child%20into%20an%20epistemologist%2C%20an%20experience%20not%20even%20shared%20by%20most%20adults.%22&f=false
http://ctt.ec/47J9e
http://ctt.ec/47J9e
https://twitter.com/intent/tweet%3Ftext%3DThinking%2520about%2520thinking%2520turns%2520the%2520child%2520into%2520an%2520epistemologist.%2B%40primotoys

www.primotoys.com 19

A very brief history of coding
education for kids

Coding education as we know it today started 60 years ago with a
turtle and a four-letter word that sounds like, but definitely isn’t, Lego.

First though, let’s rewind a little further to the work of Jean Piaget
(1896-1980). A Swiss clinical psychologist regarded today as giant
of educational thinking, in the first half of the twentieth century
Piaget devised a theory called Constructivism, which looks at how
learning happens.

Rather than acquiring knowledge, he argued, humans construct it
based on past experience and their understanding of the world.
Children make sense of their surroundings not as ‘miniature adults’
or as empty vessels, but ‘as active agents interacting with the world
and building ever-evolving theories.’ Part of this theory included the
idea of ‘discovery thinking’, which asserts that children learn best
through doing and exploring.

Years later, these ideas found a home, if slightly tweaked, in the work
of Piaget’s protege – a brilliant South African computer scientist,
mathematician and educator called Seymour Papert (1928-2016).
In the 1960s while working at MIT, Papert created an ingenious
programming language called Logo.

With Logo programming, the child writes on a keyboard commands that
produce line graphics, either on screen or in the real world, with a small
robot – a ‘floor turtle’ armed with a pen. With Logo Turtle, for the first time,
kids could play with and learn complex programming by producing a
screenless, creative outcome via a physical object (in this case a robot).

https://www.primotoys.com/
https://en.wikipedia.org/wiki/Constructivism_%28philosophy_of_education%29
https://tltl.stanford.edu/content/seymour-papert-s-legacy-thinking-about-learning-and-learning-about-thinking
https://tltl.stanford.edu/content/seymour-papert-s-legacy-thinking-about-learning-and-learning-about-thinking
http://web.mit.edu/
https://en.wikipedia.org/wiki/Logo_%28programming_language%29

www.primotoys.com 20

Logo Turtle programming applies Papert’s own educational theory
of Constructionism and its four key pillars:

1) Children learn by doing.
2) Tangible objects support concrete ways of thinking.
3) Powerful ideas can empower the individual.
4) Self-reflection helps children clarify their own thinking and
connection to the environment around them.

The key principles behind Piaget’s Constructivism and Papert’s
Constructionism were fundamental to further tangible (that is to
say ‘hands-on’) coding technologies, which evolved from the 1970s
onwards. These included Tortis, another floor turtle released in
1974; MIT’s tangible programming bricks launched in the 1990s;

Children learn best
through doing and
exploring.

© iStock/Sasiistock

https://www.primotoys.com/
http://ecrp.uiuc.edu/v12n2/bers.html
https://eric.ed.gov/%3Fid%3DED118366
http://alumni.media.mit.edu/~mcnerney/mcnerney-sm-thesis.pdf

www.primotoys.com 21

CONSTRUCTIVISM
Jean Piaget
(1896-1980)

LOGO PROGRAMMING LANGUAGE

LEGO MINDSTORMS

Seymour Papert
(1928-2016)

TORTIS
1974

1998

MIT’S TANGIBLE
PROGRAMMING BRICKS

1990

https://www.primotoys.com/

22

and of course Lego Mindstorms – the school kits that let kids build and
program robots (the third and most recent generation was launched in
2013). The blocks of our own coding toy, Cubetto, can be considered
an extreme simplification of Logo Turtle programming language.

We can also see the influence of two other educational greats
throughout this period: Friedrich Froebel (1782-1952) and Maria
Montessori (1870-1952). Both these figures and their timeless
wooden block-based learning materials promoted hands-on, open-
ended play in which the child could learn about the properties of the
materials with which they played (colour, size, weight), but also about
themselves and the world around them.

As I’ve already mentioned, there is an ever-growing number of toys
designed to help get kids coding – ready for a world of robots and
AI in which ones and zeros are the way we communicate. It’s hard
to overstate the importance that the work of Papert, Piaget, Froebel
and Montessori still has on the most effective ways of teaching
children the basics of computer programming. We will refer to each
throughout the book.

https://www.lego.com/en-us/mindstorms
https://www.primotoys.com/blog/2017/01/educational-toys-history/

Part Two

The use of age groups in this ebook

Section i) Three to Four Years Old
Section ii) Five to Six Years Old

23

www.primotoys.com 24

The use of age groups in this ebook

First, a qualification. As any educator, researcher or parent will tell
you, children don’t develop in unison. At any age there’s a wide
variation of abilities and skillsets between children of the same
age. While some three-year-olds know the alphabet and its sounds
back to front, there are others who find the representation of a
letter totally alien. The same applies to teaching children to code.
Nonetheless, age groups remain a useful heuristic to help guide us,
however roughly, to how children learn best at a certain points in
their development. Additionally, for most children around the world,
formal education doesn’t start until the age of five, which is why we
have divided this book into a section for three- to four-year-olds and
another for five- to six-year-olds.

As the parent or educator, you have a better understanding of where
your child or children are developmentally than we ever will, so
please approach the following sections as a flexible guide that can
be bent, stretched and twisted to their needs.

https://www.primotoys.com/

www.primotoys.com 25

Section i) Three to Four Years Old

How do children at this age learn?

There’s a good reason you hear so many parents talking about
threenagers. Children at this age have bundles of energy, tons of
self-belief, and don’t suffer fools gladly. It helps to play the way they
tell you to.

More than anything, three-year-olds just want to do stuff. And even
though they may pick up something and then put it down again at
dizzying speeds, their interest in the world around them is thrilling
and constant. As their speech is still developing, they often find
it difficult to articulate what they’re trying to do. Which can be
challenging for a parent.

So what kinds of cognitive, social and emotional developmental
changes are children going through at this age, and what kind of things
do we need to consider when teaching them the basics of coding?

Because the research on how we can use technology to teach
children is still in its relative infancy, answering this question can be
tricky. Fortunately, we were able to speak with and take guidance
from the leading academics in the field: Ilene Berson, Professor of
Early Childhood, and her husband Michael Berson, Professor of
Social Science Education, both at the University of South Florida.

https://www.primotoys.com/
http://www.coedu.usf.edu/main/departments/ce/Faculty/IleneBerson.html
http://www.coedu.usf.edu/main/departments/seced/Faculty/Berson.html

www.primotoys.com 26

A STEM class in English
might use computer
algorithms to explore
literary style.

Children don’t segment their learning
or play

The increasing momentum behind the STEM (Science, Technology,
Engineering and Mathematics) and STEAM (which adds Arts to the
mix) movements in education, is in part down to a growing belief that
the best teaching is interdisciplinary. The argument, as outlined by
DT Max in the New Yorker, is that ‘similar patterns of thinking underlie
many subjects and integrating them makes students smarter. Taking
a sculpting class can help researchers understand protein folding;
a course in storytelling can aid doctors in communicating with
patients. A STEM class in English might use computer algorithms
to explore literary style.’  Can we apply the same approach to
teaching coding education? Absolutely.

26

https://www.primotoys.com/
https://en.wikipedia.org/wiki/Science,_technology,_engineering,_and_mathematics
https://en.wikipedia.org/wiki/STEAM_fields
http://www.newyorker.com/magazine/2016/05/16/sphero-teaches-kids-to-code
http://ctt.ec/5fdl6
http://ctt.ec/5fdl6
https://twitter.com/intent/tweet%3Ftext%3DA%2520STEM%2520class%2520in%2520English%2520might%2520use%2520computer%2520algorithms%2520to%2520explore%2520literary%2520style.%2B%40primotoys

www.primotoys.com 27

1 + 1 = 2

‘Children don’t segment their brains into “Now I’m going to be a
scientist and now I’m going to be a mathematician.” They weave in
and out of literacies and activities seamlessly,’ says Ilene.

While two children are playing a block-sorting game with round
and square blocks, they might be building their spatial awareness,
honing their social-emotional skills, and also developing their ability
to problem-solve. This has interesting implications for teaching
computational thinking, suggesting that a more blended approach to
teaching the subject, where skills are learnt in combination with other
seemingly non-related topics and knowledge, is more beneficial than
a prescribed ‘coding session’.

https://www.primotoys.com/
http://scienceblogs.com/cognitivedaily/2008/09/17/a-simple-toy-and-what-it-says/
http://scienceblogs.com/cognitivedaily/2008/09/17/a-simple-toy-and-what-it-says/

www.primotoys.com 28

Causality is starting to develop

‘They’re beginning to understand that “if” I do this, “then” this will
happen.’ says Michael Berson. These lessons are being learnt all the
time, often in the rough and tumble of playtime: “If I hit my friend,
then they will push me back”.’

The aim of the adult is to nurture the exploration of causal thinking,
while at the same time helping to prevent any negative outcomes,
like, say, a fight with another child. How to do this? Using tangible
coding toys is a low-risk method of encouraging this type of thinking.
‘It creates a safety net,’ says Michael. Children think: ‘If this happens
and I don’t like it, no big deal, I can just change it.’

Hands-on learning trumps screens

Why is hands-on learning, or kinaesthetic learning, so beneficial at
this age? It’s not just about removing the distractions of screens.
Ilene highlights the sensorial qualities of hand-held items. ‘When you
have a two-dimensional representation of something, like on a book
or a screen, your sensory interaction with that thing is limited to sight.’

Something that can be held, on the other hand – let’s say a wooden
block or a piece of tangible code – can also be touched, tasted (if the
child decides to bite it), smelt (compare wood to plastic, say), and heard
(if the child decides to bash one item with another). Consequently,
handheld items provide richer sensory information to the child.

https://www.primotoys.com/
https://en.wikipedia.org/wiki/Kinesthetic_learning

www.primotoys.com 29

The nature of hands-on learning experiences also benefits the child. For
Dr Sarah Gerson, an academic at the University of Cardiff’s Psychology
Department, the pros of hands-on learning over screen learning are
that: ‘The social and interactive nature of hands-on experiences
makes them more engaging and richer sources of information.’ 

There’s more. Ilene says that: ‘Very young children in particular
use a lot of physicality in their learning process.  Through
movement they are embodying knowledge. You can see that when
young children engage with tangible technologies, they become
an extension of the technology itself.’ We see this with three- to five-
year-olds when they’re programming robots, like our own Cubetto,
when they’ll often act out what they want to do first before writing the
program. So in effect, when children turn, spin, jump and bump they
become a code-learning resource in themselves.

Very young children use
a lot of physicality in
their learning process.

https://www.primotoys.com/
http://ctt.ec/5mq6o
http://ctt.ec/5mq6o
https://twitter.com/intent/tweet%3Ftext%3DThe%2520social%2520and%2520interactive%2520nature%2520of%2520hands-on%2520experiences%2520makes%2520them%2520more%2520engaging%2520than%2520screen%2520learning.%2B%40primotoys
http://ctt.ec/6r53N
http://ctt.ec/6r53N
https://twitter.com/intent/tweet%3Ftext%3DVery%2520young%2520children%2520in%2520particular%2520use%2520a%2520lot%2520of%2520physicality%2520in%2520their%2520learning%2520process.%2B%40primotoys

www.primotoys.com 30

The social and
interactive nature of
hands-on experiences
makes them more
engaging than screen
learning.

30www.primotoys.com

© iStock/skynesher

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 31

Play is great, but open-ended play
is better.
‘There’s a tendency with adults to step in and get in the way, which can
inhibit the child,’ says Ilene. She adds that from a developmental point
of view it’s better to let children negotiate their own way through an
activity,  especially when that negotiation involves other children.

There’s no question that this can be can be a messy process. The
child, for example, won’t always follow linear steps. Rather than going
down the usual A-B-C route, they may try to go from A-C and then they
realise that they needed to go via B in the first place. But when they
have to figure things out together, they see a more enhanced skill set,

It’s better to let kids
negotiate their own way
through an activity.

https://www.primotoys.com/
http://ctt.ec/l9e64
http://ctt.ec/l9e64
http://ctt.ec/l9e64
https://twitter.com/intent/tweet%3Ftext%3DFrom%2520a%2520developmental%2520point%2520of%2520view%2520it%25E2%2580%2599s%2520better%2520to%2520let%2520children%2520negotiate%2520their%2520own%2520way%2520through%2520an%2520activity.%2B%40primotoys

www.primotoys.com 32

says Ilene. Rather than directing the child, the role of the parent should
be that of a facilitator, asking good questions to help the child along.

In her research for Tortis (that stands for Toddler’s Own Recursive Turtle
Interpreter System – an early floor turtle that children could control by
use of a buttons on a control panel), published in 1974, Radia Perlman
(another star of educational coding and design), lamented how
overbearing parents could be during her sessions with children:

‘Parents were especially bad since they were anxious for their child
to appear smart and consequently nagged at the children to go onto
new things and yelled at them for giggling. Parents were a help when
they had the right attitude, however, suggesting projects, laughing
with the kids, playing, with them, etc.’

www.primotoys.com 32

© theoldrobots.com

https://www.primotoys.com/
http://files.eric.ed.gov/fulltext/ED118366.pdf
https://www.primotoys.com/

www.primotoys.com 33

Moreover, by being overly prescriptive, says Professor Marina
Umaschi Bers (one of tangible coding’s leading thinkers), parents
risk sheltering the child from what the renowned computer scientist
Alan Kay calls ‘hard fun’ – something that is both enjoyable and
challenging. By working on their own and setting themselves
challenges, children manage their frustration and also develop
‘confidence in one’s ability to learn.’

Indulge their sense of agency

‘People talk about the terrible twos, but three- to four-year-olds,’
smiles Ilene, ‘typically have the sense of a great deal of agency
too. Normally by four to five years old we see children becoming
socialised so that this agency is lost.’

The benefits of this self-belief as Ilene sees them are clear: less-
inhibited creative thinking, and a willingness to try things out and
make mistakes.

‘Part of the challenge for adults is to nurture that agency without
things becoming too chaotic,' she says. A more child-centred
approach to learning (as outlined in the point above), with light
touches from the parent or teacher, can help this.

https://www.primotoys.com/
http://ecrp.uiuc.edu/v12n2/bers.html
http://ecrp.uiuc.edu/v12n2/bers.html
https://twitter.com/intent/tweet%3Ftext%3DPart%2520of%2520the%2520challenge%2520for%2520adults%2520is%2520to%2520nurture%2520a%2520child%2527s%2520agency%2520without%2520things%2520becoming%2520too%2520chaotic.%2B%40primotoys

www.primotoys.com 34

Abstraction is difficult

‘The ability to abstract – making symbolic representations of things
– is more challenging the younger children are,’ says Ilene. ‘This is
because their language skills and and their experience are so much
more limited.’ A typical three-year-old, for example, has only half the
life experience of a typical six-year-old. Children at this age rely on
concrete examples of things to inform how they see the world and
draw conclusions. Because abstract thinking is removed from the
‘here and now’, children naturally struggle.

What should we be teaching children
at age three to four?

It’s a good question. In 2014 the Economist ran a story on coding
education that highlighted the problem of where to start with coding
for kids: ‘Even basic matters, such as striking the right balance
between conceptual exercises like the sorting game and actually
writing programs, are still not settled.’

Given everything we’ve addressed above – the benefits of tangible
play and interdisciplinary learning, the willfulness of ‘threenagers’ and
their difficulties with abstraction – it’s unlikely that most very young
children will benefit from jumping headfirst into early lessons on
Python, JavaScript, Scratch or any other on-screen coding language.
Like most things, it helps to start at the beginning when learning
computer programming, and that means computational thinking.

https://www.primotoys.com/
http://www.projectlearnet.org/tutorials/concrete_vs_abstract_thinking.html
http://www.projectlearnet.org/tutorials/concrete_vs_abstract_thinking.html
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit

www.primotoys.com 35

What do we mean by computational
thinking?

At the beginning of the book we defined computational thinking as
a way of thinking that lets us break down big, complex problems into
smaller ones. These problems can then, say, be divided between a
team of individuals (such as children in a playroom), according to
their different skills and abilities.

But in reality there’s no formal definition of what computational thinking
is. In fact, most definitions are, necessarily, pretty broad and encompass
a range of different concepts. There’s also no consensus on which
concepts should be counted as part of computational thinking and
which shouldn’t. If you have a moment, check out the differences
between the Google, Harvard and Barefoot Computing (content
accessible to registered teachers) interpretations, which are significant.
Each outline serves a different purpose for a different audience.

For this book, we’ve borrowed most from the language and model
of computational thinking devised by Barefoot Computing – a fantastic
online resource set up to help UK primary school teachers (who teach
four- to 11-year-olds), with computer science, and has also informed
our thinking for a large part of this section – albeit with our own tweaks
here and there.

So without further ado, here are the concepts and ideas that we think
are most developmentally appropriate for children aged three to four.

https://www.primotoys.com/
https://twitter.com/intent/tweet%3Ftext%3DIn%2520reality%2520there%25E2%2580%2599s%2520no%2520formal%2520definition%2520of%2520what%2520computational%2520thinking%2520is.%2B%40primotoys
https://computationalthinkingcourse.withgoogle.com/unit
http://scratched.gse.harvard.edu/ct/defining.html
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/
http://barefootcas.org.uk/

www.primotoys.com 36

Algorithms

First off, algorithms.

An algorithm is a set of rules that define a sequence of operations.
Often when we think of algorithms we think of them in terms of
computers, ie a series of instructions that tell a computer what to
do. Famous algorithms that dominate our everyday lives include
Google Search, Facebook’s News Feed and the ‘You may also like’
suggestions on Amazon.

However, algorithms aren’t restricted to computers. They can also
be written for humans and everyday activities, for example getting
dressed in the morning or making a cup of tea.  The steps and
rules that we follow for these processes determine whether we
achieve success or failure. Of course, in order to work effectively, the
rules or instructions on which an algorithm runs must be clear and
unambiguous. If they are not, the algorithm malfunctions or breaks.

https://www.primotoys.com/
http://io9.gizmodo.com/the-10-algorithms-that-dominate-our-world-1580110464
http://ctt.ec/W0bOG
http://ctt.ec/W0bOG
http://ctt.ec/W0bOG

www.primotoys.com 3737www.primotoys.com

Algorithms aren’t just
restricted to computers;
they can be written
for humans in simple,
everyday processes too!

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 38

Logic

Logic is also something we can start introducing to this age
group. Logical reasoning is a way for us to understand and explain
why things happen the way they do.

For example: If I’m at A and I want to reach C, do I have go via B or
can I skip it entirely? Logic is important because, unlike people –
who change their mood throughout the day, along with how they
work – machines are predictable. Logical reasoning allows us to
understand how machines work, and in turn what we can do with
them. 

Alongside these concepts, we can also start to introduce certain
different approaches to computational thinking.

Tinkering

Tinkering is all about trying things out and learning by trial and
improvement. Young children naturally want to explore and
experiment. This approach nurtures that instinct.

https://www.primotoys.com/
http://ctt.ec/S798b
http://ctt.ec/S798b
http://ctt.ec/S798b
https://twitter.com/intent/tweet%3Ftext%3DLogical%2520reasoning%2520allows%2520us%2520to%2520understand%2520how%2520machines%2520work%2520and%2520what%2520we%2520can%2520do%2520with%2520them.%2B%40primotoys

www.primotoys.com 39

Algorithms

What we should teach
children at age 3-4

What we should teach
children at age 5-6

Logic Tinkering Debugging

Abstraction Prediction

Programming

Sequencing

Repetition

</>

https://www.primotoys.com/

Debugging

Then there’s debugging, a technical term that describes a process
of literally getting rid of the ‘bugs’ (or mistakes) within an algorithm.
Debugging is a process that we use to varying degrees of success all
the time in real life – it’s a way to find out why, for example, a new toaster
keeps burning the bread, and once we know, how to set it right.

Barefoot Computing have this handy debugging recipe:

• Predict what should happen.
• Find out exactly what happens.
• Work out where something has gone wrong.
• Fix it.

40

http://www.computerhistory.org/tdih/September/9/

www.primotoys.com 41

Activities for teaching these concepts

So, what activities are best to introduce these concepts and
approaches to children aged three and four? In this section we
recommend a few of our favourites.

Unplugged activities

Because computational thinking is a way of thinking – a process by
which we can understand a complex problem, and in turn understand
the different ways that that problem can be solved – it doesn’t require
using computers or screens at all.  Instead, we can use a variety of
playful ‘offline’ or ‘unplugged’ games and activities. (For the record,
the notion of ‘unplugged’ activities was popularised by the team
at CS Unplugged, whose website is a repository of fantastic of free
learning activities that take place, of course, off-screen).

https://www.primotoys.com/
http://ctt.ec/3dJx4
http://ctt.ec/3dJx4
https://twitter.com/intent/tweet%3Ftext%3DBecause%2520computational%2520thinking%2520is%2520a%2520way%2520of%2520thinking%2C%2520it%2520doesn%25E2%2580%2599t%2520require%2520using%2520computers%2520or%2520screens%2520at%2520all.%2B%40primotoys
http://csunplugged.org/

www.primotoys.com 42

Because computational
thinking is a way of
thinking, it doesn’t
require using computers
or screens at all.

www.primotoys.com 42

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 43

1) Leaving the house routine

Why

Real-life routines are a simple and engaging way to introduce
algorithms. Leaving the house, because it’s basic and regularly
repeated, is a good place to start.

The activity

Begin by familiarising the child with the steps we take when we leave
home, along with the terminology for those steps. You can do this by
vocalising the process every time you go out.

For example:

First I pick up my keys
Then I pick up my [wallet / purse / rucksack]
Then we walk to the front door
I open the door
You [the child] can walk through the gap
Then I walk through the gap
I close the door behind me
Finally I lock the door

https://www.primotoys.com/

www.primotoys.com 44

2 - Pick up my rucksack

3 - Walk to the front door

4 - Open the door

5 - Walk through the gap

1 - Pick up my keys

https://www.primotoys.com/

www.primotoys.com 45

Continue to say these steps aloud until the child knows them. Then
try to encourage them to begin saying them at the same time as you.
Once they’re doing this comfortably, ask them to begin vocalising
the process on their own.

At this point, it’s fun to start start asking them questions: ‘Why do
we do the process in this order? Can we change any of the steps
and still have the same effect?’ Test their hypotheses (eg ‘You can
pick up your wallet before your keys’ or ‘You can walk through the door
without opening it’). They’ll soon see which parts of the process –
or algorithm – they can adapt and change, and which they can’t.
Remember, it’s good to keep a constant dialogue going so that the
child is explaining their thinking throughout.

You can also make the algorithm more detailed as the child becomes
more confident and familiar with the process. For example: ‘I put my
hand on the doorknob; I twist the doorknob; I pull the door towards me.’

Other ideas

More everyday opportunities to explore algorithms include:

• Getting out of bed
• Getting dressed
• Going to the shops

In fact, any routine that has a clear order of steps that are repeated
regularly (daily) can work well.

https://www.primotoys.com/

www.primotoys.com 46

2) Programmable Parent

Why

This neat exercise, like the one above, can also be applied to a
variety of real-life scenarios. Alongside algorithms, children also get
a chance to see action causality (if I do this, then that will happen)
with satisfying immediacy. They also put logic into practice, as well
as tinkering and debugging.

The activity

Tell your child that they’re going to help you make jam on toast. Show
them a piece you’ve made earlier and tell them the aim of the game is
to make it look exactly the same.

Tell the child to imagine that you are a robot and that they have to
give you instructions (or write the computer program) on how to
make the jam on toast. (This could be a neat, creative opportunity
to really bring the activity to life – and drive home your new robotic
alter-ego – by making props with the child, such as a robot head out
of papier maché for you to wear, or a ‘control button’ that the child
has to press every time they want you to complete a separate step
in the process.)

Using your best robot voice, begin by having a conversation with
your child about what you need to make the dish. Elicit from them
the ingredients (jam, bread, butter) and the utensils (knife, plate,

https://www.primotoys.com/

www.primotoys.com 47

toaster, bread board). Ask how you make toast, to the level of
encouraging them to show you where in the kitchen the toaster is
and demonstrating how it works.

Once they have the fundamentals ask them to tell you what to do:
‘Please give me your instructions, master!’, or something similarly
robot-like.

Most likely they’ll make early mistakes like asking you to put jam
on before you make the toast, or putting jam on before the butter.
Exaggerate these mistakes, while also making it playful and fun, so
that the child becomes aware that it’s difficult to do one thing before
another. It’s up to them to debug the process on their own. Meanwhile,
throughout the exercise it’s up to the parent to gently coax the child

https://www.primotoys.com/

www.primotoys.com 48

toward clear, unambiguous instructions of, say, three to four words.
Remember to keep this informal – a conversational approach is best.
Logic is also important here. For example, ‘Can I cut the toast on
a plate rather than a chopping board and still get the same effect,
while saving a bit of time and washing up?’

Designing an algorithm like this is likely to take a few attempts, and
quite a lot of tinkering, to get right. Possible outcomes include the child
getting frustrated or angry, or conversely not caring at all. The point is
that if it’s made to be fun over a number of attempts the child will come
to see that clear instructions can set up a positive and creative outcome.

(To see an example of this activity on film, click here.)

48www.primotoys.com

https://www.primotoys.com/
https://www.youtube.com/watch?v=leBEFaVHllE
https://www.primotoys.com/

www.primotoys.com 49

Other ideas

The programmable parent can be adapted to fit a variety of situations:

• Making cereal in the morning
• Turning on a story CD
• Buying food in the supermarket, and so on.

For a larger, more creative version of this activity, the
programmable parent can play a part within a treasure hunt. Work
with the child or children to design a treasure map of their own,
being as imaginative as possible. It’s up to them to direct you
around the garden. Just as with making toast, there are plenty of
opportunities to encourage them to think logically and engage
in real-time debugging,  with the added benefit of rooting their
understanding of these procedures in other areas of knowledge
such as nature and storytelling.

https://www.primotoys.com/
http://ctt.ec/o2Uaa
http://ctt.ec/o2Uaa
http://ctt.ec/o2Uaa
https://twitter.com/intent/tweet%3Ftext%3DA%2520treasure%2520hunt%2520encourages%2520kids%2520to%2520think%2520logically%2520and%2520engage%2520in%2520real-time%2520debugging.%2B%40primotoys

www.primotoys.com 50

A treasure hunt
encourages kids to
think logically and
engage in real-time
debugging.

www.primotoys.com 50

© iStock/Glim

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 51

Simon Says

Why?

If you grew up with Simon Says, you’ll know what a simple game
this is. But its simplicity is deceptive, because it’s a terrific way to
smuggle in some key computational thinking ideas and principles.

What?

In case you’ve never played it before, Simon Says is a game for a
minimum of two players. One player (in this case the adult) takes the
role of Simon, who issues instructions to the other player or players.
These are often active, silly, fun or all three at once, for instance:
‘jump up and down’, ‘touch the floor’, ‘make a funny face.’ However,
these instructions should only be followed by the child if they’re
prefaced with the words: ‘Simon Says.’ In larger groups, if a child
executes an instruction that doesn’t start with ‘Simon Says,’ they’re
out.

What is learned when we include an activity is that the instructions
have to be unambiguous, just like in an algorithm. So unless there is
a ‘Simon Says’ before the actual instruction, then the algorithm or the
‘code’ itself is broken because it stops being logical. In addition, the
adult has a verbal tool that allows him or her to insert false data into
algorithm, either by not including the ‘Simon Says’ command, or by
using a muddled command like ‘Says Simon’ or ‘Stephen Says.’
Consequently the child needs to engage in debugging throughout.

https://www.primotoys.com/

www.primotoys.com 52

Other ideas

Simon-Says-style commands can give added zest and complexity to
the Programmable Parent and Leaving the House games. In addition,
the child can also take on the role of Simon, which gives him or her
the opportunity to experiment with unambiguous commands, as
well as trialling what it feels like to consciously create a program or
algorithm with bugs in it. 

Plugged in activities

The benefits of ‘unplugged’ activities are obvious. They are easy to
set up, quick to play and, of course, free. However, as a company
that makes a wooden robot designed to teach kids the basics of
programming, it would be remiss of us if we didn’t say that certain
tech-based (let’s say ‘plugged in’) activities are greatly beneficial too.
We are followers of Seymour Papert’s Logo turtle after all.

https://www.primotoys.com/
http://ctt.ec/K3cUe
http://ctt.ec/K3cUe
https://twitter.com/intent/tweet%3Ftext%3DSimon-Says-style%2520commands%2520give%2520children%2520the%2520opportunity%2520to%2520experiment%2520with%2520unambiguous%2520commands%2520and%2520the%2520conscious%2520creation%2520of%2520bugged%2520algorithms.%2B%40primotoys

www.primotoys.com 53

If you are using a tangible programming toy, the child needs to first
be introduced to the product and how it works. In the case of Cubetto,
introduce the Control Board as a sort of remote control that children
can use to send instructions to the wooden robot after blocks are
inserted to make a sequence of commands.

Without the board, there is no way of sending Cubetto his instructions.
Meanwhile, in the case of, say, Kibo, the child must understand that
they need to scan the barcode of each instruction block using the
barcode scanner on the robot.

We mention this because it is important for children to understand
that each device is only able to move with a human’s command. This
is not only empowering, but also key to understanding computing
and computer programming.

53www.primotoys.com

https://www.primotoys.com/
http://kinderlabrobotics.com/kibo/
https://www.primotoys.com/

www.primotoys.com 54

4) Left, right, forward, backward

Why?

The language of direction is fundamental to our lives, but it’s also
fundamental to various tangible coding languages for kids that
use a robot – Cubetto included. By introducing these terms (left,
right, forward, backward) we can help the child understand this
terminology, while also introducing them to sequencing using
precise, unambiguous instructions.

The activity

The terms ‘left’, ‘right’, ‘forward’ and ‘backward’ are introduced
to the child by the adult. This can be pre-taught in earlier offline
activities mentioned above. Indeed, the adult could help the child
make them more precise, like ‘a quarter turn right’, ‘a quarter turn
left’ or ‘backwards one step’.

When the children are familiar with these instructions, Kibo,
Cubetto or another robot powered by tangible code can be
introduced. The corresponding directions for the buttons or (in
Cubetto’s case) blocks are pointed out to the child. Then, using a
map, the teacher sets a square as an end goal or a ‘home’ – the aim
is to reach this square.

Next, it’s up to the child to narrate what they’re programming the
robot to do, as they do it. There is of course no right or wrong way for
the child to move the robot to get home, that’s up to them. The role

https://www.primotoys.com/

www.primotoys.com 55

of the adult is to guide the learner and help them with the correct
terminology as they’re narrating which way the robot is moving.

This activity comes with a variety of challenges. The child must
first understand that the robot needs to be guided to a destination
using a program. It can’t simply be picked up and put there. In
addition, it’s likely that ‘up’ and ‘down’ may be used by the child to
mean ‘backwards’ and ‘forwards’. The child may also struggle to
understand initially that the way Cubetto is facing requires different
instructions to the way the child is facing (just as they might find in
earlier Programmable Parent games).

However, the real challenge is for the adult to avoid interfering too
much when the child is programming the robot. In particular the
parent should avoid worrying about the sophistication of the child’s
algorithms. Even for many five-year-olds, programs limited to two
or three steps (or blocks) are perfectly normal. This should inform
where the ‘home’ square on the map is set.

Other resources
It’s important to emphasise that these should not be seen as
comprehensive guide or curriculum, but rather examples of the kinds
of activities that we’ve found are most beneficial.

Here is a selection of online hubs (including our own) where you can
find more great activities and ideas for teaching children to code,
focused on ages three to four.

Primo Toys - A wealth of Cubetto-themed stories, activities and video
tutorials that parents and teachers alike will find handy.

https://www.primotoys.com/
https://www.primotoys.com/resources/

www.primotoys.com 56

Barefoot Computing - Mainly focused on educators, including
more on Barefoot’s breakdown of computational thinking and
programming, along with activities to support them.

CS Unplugged - Also teacher-focused, but shouldn’t be missed
by any parent looking for off-screen games and puzzles to teach
computer science.

Kibo - More on Kibo, the research behind it, and a selection of step-
by-step tutorials on how to use it.

https://www.primotoys.com/
http://barefootcas.org.uk/
http://csunplugged.org/
http://kinderlabrobotics.com/kibo/

www.primotoys.com 57

Section ii) Five to Six Years Old

How do children at this age learn?

Between the ages of five and six, from a learning point of view, much
of what we discussed in the previous chapter still applies. Multiple
literacies are still developing in tandem; interdisciplinary learning
based on lived experiences still works best; and open-ended, hands-
on play remains beneficial.

Typically, however, we see three important changes: two cognitive,
one environmental.

1) Children are beginning to learn how
to abstract

It’s around this time that a child can begin to think symbolically,
which is essential in order to teach kids to code. A younger child,
says Early Childhood Professor Ilene Berson, may want to throw a
wooden block against a wall because they really have no idea how
that block will behave when it hits the wall until they try it out. Will it
explode on impact, bounce back or fly straight through the wall? By
the time a child is five or six, they know that the block will ricochet off
the wall or shatter, making a noise and – in the process – probably
putting any adult nearby on edge.

In general, children in this age group have more lived experience at
their disposal – they have a clearer idea of how the world works because

https://www.primotoys.com/
http://www.coedu.usf.edu/main/departments/ce/Faculty/IleneBerson.html

www.primotoys.com 58

they’ve seen more of it. Consequently, they can begin to make sense
of the world using their imaginations, to plot mental routes and to
extrapolate ideas without necessarily needing to enact it first in the real
world (not that physical reenactment can’t still be useful).

As an interesting side note, the notion that children can abstract
at this age runs contrary to psychologist Jean Piaget’s stages of
cognitive development, which for decades were a mainstay of
thinking among educators. For Piaget, it was only once a child had
reached the age of 11 (the so-called formal operational stage),
that they could think in logical terms using symbols. There is
now evidence to suggest that we’ve underestimated children’s
capabilities drastically. A 2016 study found that children as young
as three to four were able to grasp algebraic concepts.  This
is significant because, of course, algebraic thinking is all about
symbolic representation.

https://www.primotoys.com/
https://www.simplypsychology.org/piaget.html#stages
https://www.simplypsychology.org/piaget.html#stages
http://www.tandfonline.com/doi/full/10.1080/00094056.2016.1208009
http://ctt.ec/z5gO6
http://ctt.ec/z5gO6
https://twitter.com/intent/tweet%3Ftext%3DRecent%2520research%2520shows%2520children%2520as%2520young%2520as%2520three%2520to%2520four%2520grasping%2520algebraic%2520concepts.%2B%40primotoys

www.primotoys.com 59

Recent research
shows that children as
young as three to four
were able to grasp
algebraic concepts.

www.primotoys.com 59

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 60

2) Growing patience and persistence

A child’s approach to activities and problem-solving in this time also
changes. Following on from the willfulness of the terrible twos, says Ilene, at
around three and four years old children begin to develop an intentionality
when they play – they identify a goal and work towards that goal. Of course,
in open-ended play, the goals can shift and transform quite quickly, but
they’re still there. This behaviour lends itself directly to beginning computer
programming for kids.

In the earlier years of schooling at around ages five and six, children
begin to direct their intent towards reaching a goal using solution-driven
processes: ‘How am I going to get this done?’. At the same time the
attention that they can devote to a particular task (before frustration sets in)
grows too, and so does their perseverance and ability to collaborate with
other children. Like a big bag of tricks, says Ilene, these social-emotional
and cognitive strategies can be used for coping with problems and other
people.

www.primotoys.com 60

© iStock/vladans

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 61

3) Children are enrolled in formal
education
The move from the informality of the home to the more formal setting
of the classroom is one of the most significant moments in a child’s
life. Think of the changes: a new pedagogical environment outside the
home or preschool; extended and routine learning and playtime with
peers in the form of the school day; and a new person – the teacher –
who takes on most of the responsibility of the child’s learning.

Of course, within a school setting, we also start to see a more formalised
approach to learning, and in many cases a movement away from the
kind of open-ended play that children may have enjoyed previously at
home and in preschool.

With open-ended
play, children develop
resilience and
perseverance.

https://www.primotoys.com/

www.primotoys.com 62

‘Among the benefits of open-ended play are that children start
developing a sense of resilience and perseverance,’  says Ilene. ‘If
something doesn’t go the way they intended, they can say: ‘“Oh well,
that didn’t work,” then go back and try it again differently. But what
happens as they move up the year groups or as they get older is that
we often see a movement towards a more prescriptive way of learning,
specifically one where there’s a right and and a wrong answer.’

The problem with socialising learners around a ‘2 + 2 = 4’ or ‘right answer,
wrong answer’ approach from such a young age, says Social Science
Professor Michael Berson, is that it it detracts from their willingness
to experiment. A wrong answer is a piece of negative feedback, and
at this age when children still have so much to learn there are often
more wrong answers than right. The greater the amount of negative
feedback a child receives, the less likely they are to ‘give it a go.’

What should we be teaching them at
age five to six?
Building on the computing concepts that children have already
learned as three- to four-year olds (logic, algorithms and so on, as we
describe Section i), remains fundamental. In this respect, it’s helpful
to think about teaching computational thinking as a little like teaching
mathematics. You begin with addition, then you learn repeated addition
(or multiplication), and then repeated multiplication (or indices). In each
case we’re adding complexity to that early base knowledge.

Part of this is just naming the concepts with which they’re already
familiar. It can be as simple as sounding out the words ‘al-gor-ithm’
or ‘lo-gic’ when an algorithm is being built or we’re using logical

https://www.primotoys.com/
http://ctt.ec/cB8f5
http://ctt.ec/cB8f5
https://twitter.com/intent/tweet%3Ftext%3DWith%2520open-ended%2520play%2C%2520children%2520develop%2520resilience%2520and%2520perseverance.%2B%40primotoys
http://www.coedu.usf.edu/main/departments/seced/Faculty/Berson.html

www.primotoys.com 63

thinking. Or if the aim of a particular part of a class is to debug a
program, we need to make clear that this is ‘debugging’ and so on.
The aim is to familiarise children with the language of programming
so that it starts to inform their thinking.

There are, however, a few new coding concepts that we can introduce
to children at the ages of five and six to help them further understand
computer programming.

Abstraction

What is abstraction exactly? In the words of Jeannette M Wing, the
renowned computer scientist, abstraction is a process that allows us
to identify which ‘details we need to highlight and which details we
can ignore.’ It’s a way of filtering out patterns and specific details to
get to the bare essentials of something, so that we can then create a
representation of that thing.

Let’s clarify this a little further. Say we want to create a representation
of a dog that is true for all dogs. We begin by looking at what makes
a dog dog-like. Dogs have common characteristics, like four legs,
two eyes, two ears, a tail that wags and the ability to bark. They also
have characteristics that are specific to each individual dog, like fur
colour, length of fur, colour and size of eyes; some dogs may yap
and others bark, while some may almost never bark at all. To create a
basic abstraction – or representation – that is true of dogs in general,
we need to group together these common characteristics and
disregard those characteristics that are specific to each dog. (To see
this example but with cats, check out the BBC’s Bitesize page).

https://www.primotoys.com/
http://rsta.royalsocietypublishing.org/content/366/1881/3717
http://www.bbc.co.uk/education/guides/zttrcdm/revision

www.primotoys.com 64

We intuitively make and use abstractions to make sense of the world
– take for example a TV guide or a metro map. In the case of the TV
guide we need to know which programmes are being shown and
when, but we don’t need to know the name of every actor who stars in
it or every step of the storyline. For the metro map, we need to know
the order of stations on a particular line, and even where different lines
cross, but we don’t need to know the distance between each station
or whether the carriages are old or new. In both cases information is
stripped out to clarify understanding.

Abstraction is important because it helps us to solve problems.
Without it, we may arrive at the wrong conclusion. Take our dog
– if we base our abstraction on specific, non-common characteristics,
we may end up thinking that all dogs are made up of shapeless
mounds of dark brown, shaggy hair, that emit loud barking sounds.

© iStock/Nadezhda1906

https://www.primotoys.com/

www.primotoys.com 65

Prediction
Prediction, which fits under the banner of abstraction, also becomes
important at this age. Can a child look at the piece of physical code, or
even hold a series of commands in their head, and have an idea of where
the programmable robot (or human) will end up? If they can, they are able
to solve multiple problems in their head where previously they would
have used more time to enact their solution in real life, in real time.

Programming
Excitingly, at around this time we can also begin to introduce
programming to kids. Put simply, programming is the expression
of the ideas of computational thinking (algorithms, decomposition,
logical reasoning), in written form (coding). Of course, this code
doesn’t have to be on the screen but can be in the form of tangible
code too, using a coding toy.

Sequencing
One of the key ideas within programming is sequencing. When
broken down, a program is a collection of sequential instructions.
These instructions must be clear and unambiguous otherwise the
program won’t work.

Repetition
Repetition, in which the execution of an instruction or instructions within
a program is repeated, is also important. Most programs will have
repetition built in, both as a means for saving time (it beats assembling
the same line of code over and over again), and making it easier to read.

https://www.primotoys.com/

www.primotoys.com 66

Activities to teach these concepts

Depending on the level of the class, the teacher may choose to kick
off with a few lessons that bring children up to speed, for which
those activities outlined in Section i would do well. Of course, these
can be tweaked accordingly. We’ve always liked the idea of a kind
of aerobics class where, rather than exercises, the teacher calls
out directions as a means to revisit left and right and forwards and
backwards commands. Again, these activities can pave the way for
tangible coding activities down the line. Once the children are happy
with two or three block sequences using their coding toys, try the
following activities.

1) Find home

Why?

Alongside an opportunity to play around with prediction and
abstraction, three different learning styles are catered for in this
simple activity.

What?

A large grid is drawn on the classroom floor or playground in chalk.
A home square is chosen by the child and confirmed with the
teacher (or if it’s at home, the parent). In Round 1, the child is invited
to act out the code they’d need to use to arrive at the home square.

https://www.primotoys.com/

www.primotoys.com 67

In Round 2, the same child is then asked to listen to a set of instructions
given by another child or a teacher, and asked to identify on the map
where this will take them.

In Round 3, the child is asked to visualise a path to the home square
using home-made instruction cards (ie square cards with arrows
and commands), before programming another child. (Alternatively
the child could also program a robot like Kibo or Cubetto. For Kibo
the child simply needs to arrange a program of wooden instruction
cubes, scanning the barcodes of each, and pressing the button
when they want Kibo to execute a line of code. For Cubetto, the child
assembles the relevant coloured instruction blocks within the Control
Board. When they are satisfied that this combination is correct, they
just hit the Go button to watch the wooden robot move to the right
square – hopefully! – on the map).

www.primotoys.com 67

https://www.primotoys.com/
http://kinderlabrobotics.com/kibo/
https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 68

Not only does this exercise encourage the use of unambiguous
instructions and then debugging if the sequence of instructions is
incorrect, but abstraction and prediction is introduced by asking the
child to visualise the route in Rounds 2 and 3. Moreover, it’s also an
opportunity for the teacher or parent to see which of several learning
styles might suit a child most: visual, auditory or kinaesthetic. Round
1 is kinaesthetic, allowing the child to walk around and interpret the
code themselves; Round 2 is auditory, where the child has to make a
prediction by listening; and Round 3 is, naturally, visual.

Other ideas

Of course, rather than programming another child in Round 2, the
child could instead program a robot. Once the children are happy with
programming the robot for a route of, say, four blocks, the teacher or
parent can also add in another level of complexity by restricting the
number of instruction blocks or steps the child can use. In order to
complete the route, the child is forced to use repetition (in the case of
our coding toy, Cubetto, this means using the function line, while with
another robot like Kibo it requires the use of repeat blocks).

The parent or teacher can also do exactly the opposite, and provide
an overly long piece of code to get to the home square. It’s then up
to the child to make it more efficient.

https://www.primotoys.com/

www.primotoys.com 69

2) Coding and Storytelling - a robot
adventure

Why?

Storytelling provides a vivid and engaging framework to introduce,
explore or practice programming principles with children.
Conversely, we can also explore the composition of stories using a
computational mind-set.

The activity

This activity uses Cubetto or Kibo or any other robot powered by a
tangible coding language. It also makes use of Cubetto’s gridded,
themed maps (which come as part of the the playset), although
homemade maps will also work well.

The teacher opens by telling a well-known story, for example The
Tortoise and the Hare. The teacher then invites the children to
discuss how we come up with stories and who writes them – the
answer to aim at is ‘an author.’ The teacher then tells the children that
today, they’re going to be authors too and that they’re going to write
a story using coding to help. The teacher sets Cubetto down and
invites the class to give directions.

https://www.primotoys.com/

www.primotoys.com 70

For every new map square that Cubetto lands on, the students have to
dream up and write down a new part of the story. So, the final journey
of Cubetto – let’s say from the mountains to the sea – is literally based
on the route Cubetto took using the code written by the class.

There are several elements of this activity that commend it. Children
get to create their own stories while simultaneously writing the code
for the robot itself – one feeds the other. In addition, children are able
to learn something about the topics they might discover en route, for
example how a mountain is formed, where rivers and streams come
from, or the benefits of freshwater over saltwater for humans. It’s
another example of a creative and holistic approach to coding.

https://www.primotoys.com/

www.primotoys.com 71

Other ideas

There’s plenty of room to extend the reach of this particular activity.
Teachers could, for example, encourage their coder-storyteller
students to tell their stories to children in different classes of the
same age, or even learners in the year below.  This way, they share
their stories and a new learning framework that can extend around the
school or even at home: ‘I wrote this story for you with my Cubetto.’

Other resources
Just as with the previous section, these activities shouldn’t be seen
as exhaustive. Here we outline a selection of online resources for
more computer programming and computational thinking activities,
games and ideas for kids.

Primo Toys - A selection of Cubetto-themed stories, activities and
video tutorials that parents will find handy too.

Barefoot Computing - Aimed at educators, this has the full
outline of their signature breakdown of computational thinking
and programming, plus activities to support them.

CS Unplugged - Teacher-focused, but shouldn’t be missed by any
parent looking for fun and enlightening off-screen games and
puzzles to teach computer science.

Kibo - More on Kibo, the research behind it, and a selection of step-
by-step tutorials on how to use it.

https://www.primotoys.com/
http://ctt.ec/IPYGe
http://ctt.ec/IPYGe
http://ctt.ec/IPYGe
https://twitter.com/intent/tweet%3Ftext%3DTeachers%2520can%2520encourage%2520interactive%2520learning%2520by%2520letting%2520their%2520coder-storyteller%2520students%2520narrate%2520their%2520stories%2520to%2520younger%2520learners.%2B%40primotoys
https://www.primotoys.com/resources/
http://barefootcas.org.uk/
http://csunplugged.org/
http://kinderlabrobotics.com/kibo/

www.primotoys.com 72

BBC Bitesize - This colourful and engaging revision guide for the
UK’s Key Stage 1 and Key Stage 2 levels of the computing curriculum
could be invaluable if you’re a teacher in Britain. However, its clear
language and summaries will benefit any international educator,
along with parents too.

Code.org - For US teachers, Code.org’s K-5 curriculum is jam-packed
with developmentally appropriate lesson plans.

https://www.primotoys.com/
http://www.bbc.co.uk/education/guides/zp92mp3/revision
https://code.org/curriculum/docs/k-5/complete.pdf

Part Three

What next?

73

www.primotoys.com 74

What next?

Over the previous pages we’ve outlined a particular approach to
introducing very young children to coding. One that starts with
computational thinking and its core concepts; that favours hands-on
learning, open-ended play and child-centred activities; and that takes
kids away from the screen to fit the pedagogy of educational greats like
Maria Montessori, Friedrich Froebel, Jean Piaget and Seymour Papert.

This book has been very much an introduction, and a concise one at that.
As a parent or teacher, you may be thinking: ‘How can I build on what
the child has learnt over the course of this book? How can they explore
coding and computational thinking from the ages of seven upwards?’

Well, there are different routes for different styles of learning. We talk
through some of the options below:

1) Continue learning with tangible
coding

When children hit seven years old, tangible coding doesn’t suddenly
become redundant – there is still very much a space for tangible
code in the classroom and at home. Cubetto’s instruction board, for
example, has trillions of combinations, and a variety of fiendishly
difficult (and enjoyable) puzzles can be created with its instruction
blocks.  At a recent workshop we held at Google’s London offices,
even adults struggled when we removed Cubetto’s forward instruction
blocks. The tech firm’s employees had to use brain-busting levels of
abstraction to solve a coding challenge we set them.

https://www.primotoys.com/
http://ctt.ec/C_H9D
http://ctt.ec/C_H9D
http://ctt.ec/C_H9D
http://ctt.ec/C_H9D
Cubetto%20can%20be%20used%20to%20devise%20fiendishly%20difficult%20%28and%20enjoyable%29%20puzzles

www.primotoys.com 75

Storytelling also comes into its own at this age. Children can begin
to draw their own new and larger maps with details of their own
choosing. They can craft new props (think jet packs or back packs)
for their robot coding friend. They can even use colouring pens
to expand the world of Cubetto for new adventures. This has two
handy effects: firstly, it provides more creative and cross-curricular
opportunities to root programming in art, geography, history, science
and so on. Secondly, by building and growing the world of their
robotic friend, children can really own the story they’ve created, and
in turn their own learning process. It’s a neat way of personalising
coding education for the child, by the child.

https://www.primotoys.com/
https://www.primotoys.com/resources/activity-build-jetpack/
https://www.primotoys.com/resources/activity-outfit-cubetto-adventure-backpack/
https://www.primotoys.com/resources/activity-draw-cubetto/

www.primotoys.com 76

2) Start to think about on-screen coding

When children are around the ages of six or seven, you may also
want to start thinking about introducing junior screen-based coding
languages. Scratch, a free programming language designed by
MIT for eight- to 12-year-olds, and its younger sibling ScratchJr,
designed for five- to seven-year-olds, have both become popular
in recent years. In both cases, the emphasis is on creativity and
learning through coding, within which the child can make their own
interactive games and stories. If the young learners are especially
talented and motivated, even starting them out on popular everyday
programming languages like Python shouldn’t be overlooked.

Cubetto can be used
to devise fiendishly
difficult (and
enjoyable) puzzles.

https://www.primotoys.com/
https://scratch.mit.edu/
https://www.scratchjr.org/
https://doc.lagout.org/programmation/python/Python%20for%20Kids_%20A%20Playful%20Introduction%20to%20Programming%20%5BBriggs%202012-12-22%5D.pdf

www.primotoys.com 77

Programming
languages such as
Scratch and Python
can provide a great
introduction to
on-screen coding.

77www.primotoys.com

https://www.primotoys.com/
https://www.primotoys.com/

www.primotoys.com 78

3) Make robots

Sometimes, when we talk to parents about the kinds of learning that
kids can do from seven years old and onwards, we hear them create
a (false) dichotomy between tangible and on-screen coding. There’s
a tendency to see it as one or the other. But actually, there’s no
reason why we can’t combine an on- and off-screen approach just as
Logo Turtle did 60 years ago. We’re talking, of course, about robotics.

By building with and programming robots, children gain an
understanding of both hardware and software as well as STEM
subjects. They can create in the digital world, and still benefit from
the real-world interactions and skills that come from robotics projects
– negotiation, problem-solving, engineering, collaboration, patience
and persistence. For these reasons, we believe that robotics kits

78www.primotoys.com

https://www.primotoys.com/
https://www.primotoys.com/blog/2016/12/young-kids-learn-robots/
https://www.primotoys.com/

www.primotoys.com 79

like Lego Mindstorms become especially effective and engaging
educational resources towards the end of early childhood.

The DIY process at the heart of robotics also eventually opens
the door to an entire community of fellow makers of all ages,
cultures and countries. Maker Faires around the world are rich with
opportunities to collaborate on new projects and make friends with
people you may never have met otherwise.

We speak from personal experience. We grew out of the maker
community, and over several years and many iterations, we designed
a robot that is now used in more than 20,000 schools and homes
around the world. We’ve found that even in adult life there are few
things more challenging, more exciting or more rewarding than
making and programming your own robot.

Of course, you will know your child or children best, so it’s up to you
to work with them to find out which direction they want to go. Our
hope is that this book gives you and them a running start.

Happy programming!

https://www.primotoys.com/
https://www.wired.com/2013/12/lego-mindstorms-ev3/
http://www.nytimes.com/2013/05/02/garden/the-rise-of-the-hacker-space.html
http://makerfaire.com/

www.primotoys.com 80

Glossary

Abstraction - Using abstract representations (things that don’t
exist in the real world), to formulate ideas, solve problems and
come to conclusions.

Algorithm - A set of unambiguous instructions that perform a
specific task.

Causality - The understanding that an action will produce an effect.

Coding - A contemporary term for computer programming.

Computer programming - The practice of making a computer do
things through a sequence of instructions, which are often written
in code.

Computational thinking - A fundamental skill that anyone can learn,
which helps to identify and break down complex problems so that
they can be solved, either by a computer or a human.

Computer science - The study of what computers are actually
capable of doing.

Concrete thinking - A way of thinking bound to facts and the here and
now (for example by way of physical objects that can be held and seen).

https://www.primotoys.com/

www.primotoys.com 81

Constructionism - A learning theory developed by Seymour Papert,
which sprang from constructivist principles but also argues that
learning is most effective when people construct tangible objects or
artefacts in the real world.

Constructivism - A 20th-century learning theory, closely associated
with Jean Piaget, which proposes that humans construct knowledge
based on their experiences, rather than acquiring it.

Hands-on play - A style of play that advocates the use of physical, hand-
held objects and often, but not always, avoids the use of screens.

Kinaesthetic learning - An approach to learning which advocates
learning through physical activities rather than, for example, through
books and lectures.

Logic - A method of reasoning that helps us understand why
something behaves in a certain way.

Logo - An educational programming language developed by
Seymour Papert, Cynthia Solomon and Wally Feurzeig at MIT in 1967.

Montessori - An educational approach developed by the Italian
educator Maria Montessori, which places emphasis on hands-on
play and child-centred learning.

Open-ended play - A style of play in which children can express
themselves and explore freely without being restricted by preset
limitations from adults, or games with a predetermined conclusion.

Programming - See ‘computer programming’.

https://www.primotoys.com/

www.primotoys.com 82

STEM - An acronym that refers to the academic disciplines of
Science, Technology, Engineering and Mathematics. The STEM
movement promotes more effective integration of these disciplines
in the classroom.

STEAM - As with STEM but with the inclusion of Art and design too.

Tinkering - An approach to making and problem-solving through
trial and error.

https://www.primotoys.com/

www.primotoys.com 83

Bibliography

Books and eBooks

• Tim Bell, Ian H Witten and Mike Fellows, Adapted for
classroom use by Robyn Adams and Jane McKenzie,
‘CS Unplugged’ (2015)
• Jason R Briggs, ‘Python for Kids - A Playful Introduction to
Programming’ (No Starch Press, 2013)
• Helen Caldwell and Neil Smith,
‘Teaching Computing Unplugged in Primary Schools’ (2016)
• Seymour Papert, ‘Mindstorms’, (Harvester Press, 1980)

Journals and research

• Carl Benedikt Frey and Michael A. Osborne,
‘The Future of Employment’ (Oxford Martin School, 2013)
• Marina Umaschi Bers and Elizabeth R. Kazakoff, ‘Put
your robot in, put your robot out: sequencing through
programming robots in early childhood’,
J Educational Computing Research Vol.50 (2014)
• Marina Umashi Bers, ‘The TangibleK Robotics Program:
Applied Computational Thinking for Young Children, ECRP

v.12 no.2, (2010)

https://www.primotoys.com/
http://csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf
http://bit.ly/2qixFHN
http://bit.ly/2r83EJY
http://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf
http://ase.tufts.edu/devtech/publications/Kazakoff%252520Put%252520Your%252520Robot%252520In.pdf

www.primotoys.com 84

• Marina Umaschi Bers, Louise Flannery, Elizabeth R. Kazakoff
and Amanda Sullivan, ‘Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum’
Computers and Education (Elsevier, 2013)
• Paulo Blikstein, Arnan Sipitakiat, Jayme Goldstein, João
Wilbert, Maggie Johnson, Steve Vranakis, Zebedee Pedersen,
Will Carey, ‘Project Bloks: designing a development platform
for tangible programming for children’ (2013)
• Anthony Ginn, ‘Interview with Seymour Papert’, Practical
Robotics (1984) Extract here
• Michael Horn and Robert J.K. Jacob, ‘Tangible Programming
in the Classroom with Tern’ (ACM Press, 2007)
• Steven Kurutz, ‘One Big Workbench’, New York Times (2013)
• Seymour Papert and Cynthia Solomon, ‘Twenty things to do
with a computer’, Educational Technology Magazine
(Englewood Cliffs, NJ, 1972)
• Radia Perlman, ‘TORTIS - Toddler’s Own Recursive Turtle
Interpreter System’ MIT AI Memo No. 311/Logo Memo
No. 9 (MIT AI Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1974)
• H. Raffle, A. Parkes, and H. Ishii, ‘Topobo: a constructive
assembly system with kinetic memory. In Human Factors in
Computing’ (ACM, 2004)
• Jeanette M. Wing, ‘Computational thinking and thinking

about computing’ Royal Society (2008)

https://www.primotoys.com/
https://ase.tufts.edu/DevTech/publications/computersandeducation.pdf
https://projectbloks.withgoogle.com/static/Project_Bloks_position_paper_June_2016.pdf
https://projectbloks.withgoogle.com/static/Project_Bloks_position_paper_June_2016.pdf
http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-marvin-minsky-et-al-american/
http://hci.cs.tufts.edu/tern/inter191-horn.pdf
http://www.nytimes.com/2013/05/02/garden/the-rise-of-the-hacker-space.html
http://dspace.mit.edu/bitstream/handle/1721.1/5836/AIM-248.pdf%3Fsequence%3D2
http://files.eric.ed.gov/fulltext/ED118366.pdf
http://files.eric.ed.gov/fulltext/ED118366.pdf
http://tmg-trackr.media.mit.edu/publishedmedia/Papers/187-Topobo%252520A%252520Constructive%252520Assembly/Published/PDF
http://rsta.royalsocietypublishing.org/content/366/1881/3717

www.primotoys.com 85

News articles and blogs

• ‘21st Century Literacy: New Initiative Makes the Case that
Learning to Code is for Everyone,’ Berkman Klein Center for
Internet and Society at Harvard University (2014)
• ‘Gartner Says 6.4 Billion Connected “Things” Will Be in Use
in 2016, Up 30 Percent From 2015,’ Gartner (2015)
• ‘A is for Algorithm’, The Economist (2014)
• Paulo Blikstein, ‘Seymour Papert’s Legacy: Thinking About
Learning, and Learning About Thinking’ Transformative
Learning Technologies Lab Standford Univeristy
• Dan Crow, ‘Why Every Child Should Learn to Code’,
The Guardian (2014)
• Tony Danova, ‘Morgan Stanley: 75 Billion Devices
Will Be Connected To The Internet Of Things By 2020’
Business Insider (2013)
• George Dvorsky, ‘The 10 Algorithms That Dominate
Our World’, iO9, (2014)
• Anya Kamenetz, ‘Coding Class, Then Naptime: Computer
Science For The Kindergarten Set’ NPR (2015)
• DT Max, ‘A Whole New Ball Game’, New Yorker (2016)
• Saul McLeod, ‘Jean Piaget’, Simply Psychology (2009)
• Dave Munger, ‘A Simple Toy, And What It Says About How
We Learn To Mentally Rotate Objects’, Science Blogs (2008)
• Derek Thompson, ‘A World Without Work’, The Atlantic (2015)
• Sheena Vaidyanathan, ‘Computer Science
Goes Beyond Coding’, EdSurge (2015)
• Jeanette M Wing, ‘Computational Thinking:
What and Why?’, The Link (2011)
• Mark Ylvisaker, ‘Concrete vs. Abstract Thinking’
LEARNnet (2008)

https://www.primotoys.com/
https://cyber.harvard.edu/node/95731
https://cyber.harvard.edu/node/95731
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit
http://www.economist.com/news/international/21601250-global-push-more-computer-science-classrooms-starting-bear-fruit
https://tltl.stanford.edu/content/seymour-papert-s-legacy-thinking-about-learning-and-learning-about-thinking
https://tltl.stanford.edu/content/seymour-papert-s-legacy-thinking-about-learning-and-learning-about-thinking
https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick
https://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10
http://io9.gizmodo.com/the-10-algorithms-that-dominate-our-world-1580110464
http://www.npr.org/sections/ed/2015/09/18/441122285/learning-to-code-in-preschool
http://www.newyorker.com/magazine/2016/05/16/sphero-teaches-kids-to-code
https://www.simplypsychology.org/piaget.html%23stages
http://scienceblogs.com/cognitivedaily/2008/09/17/a-simple-toy-and-what-it-says/
https://www.theatlantic.com/magazine/archive/2015/07/world-without-work/395294/
https://www.edsurge.com/news/2015-12-02-computer-science-goes-beyond-coding
http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://www.projectlearnet.org/tutorials/concrete_vs_abstract_thinking.html

www.primotoys.com 86

Videos

• ‘Code: The New Literacy’ (2013) YouTube
• ‘Introducing Project Bloks’ (2016) YouTube
• ‘Program Your Teacher to Make a Jam Sandwich
(Sandwich Bot) Junior Computer Science’, 2012) YouTube
• ‘Young Programmers Think Playgrounds, Not Playpens
| Marina Bers | TEDxJackson’ (2015) YouTube

Websites and online resources
• Barefoot Computing
• BBC Bitesize (KS1 Computing)
• CODE.org
• Computational Thinking with Google
• Computing at School
• Concept to Classroom
• Dr Techniko
• Gov.uk, National curriculum in England:
computing programmes of study’
• Kinder Labs
• Scratched
• University of Sydney
• Wikipedia, ‘Kinaesthetic learning’
• Wikipedia, ‘STEM’
• Wikipedia, ‘STEAM’
• Wikipedia, ‘LOGO’
• Wikipedia, ‘Constructivism’
• Wikipedia, ‘Jean Piaget’

https://www.primotoys.com/
https://www.youtube.com/watch?v=MwLXrN0Yguk
https://www.youtube.com/watch?v=AuRTS35ouTs
https://www.youtube.com/watch?v=leBEFaVHllE
https://www.youtube.com/watch%3Fv%3DjOQ-9S3lOnM
https://barefootcas.org.uk/
http://www.bbc.co.uk/education/subjects/zyhbwmn
https://code.org/
https://computationalthinkingcourse.withgoogle.com/unit
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://www.thirteen.org/edonline/concept2class/constructivism/index.html
https://drtechniko.com/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study#key-stage-1
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study#key-stage-1
http://kinderlabrobotics.com/kibo/
http://scratched.gse.harvard.edu/ct/defining.html
http://sydney.edu.au/education_social_work/learning_teaching/ict/theory/constructivism.shtml#sthash.7D17ZDAY.dpuf
https://en.wikipedia.org/wiki/Kinesthetic_learning
https://en.wikipedia.org/wiki/Science%2C_technology%2C_engineering%2C_and_mathematics
https://en.wikipedia.org/wiki/STEAM_fields
https://en.wikipedia.org/wiki/Logo_%28programming_language%29
https://en.wikipedia.org/wiki/Constructivism_%28philosophy_of_education%29
https://en.wikipedia.org/wiki/Jean_Piaget

