CMOS INTEGRATED CIRCUIT DESIGN TECHNIQUES University of Ioannina

Y. Triatouhas

CMOS Integrated Circuit Design Techniques

Overview

- 1. VLSI testing
- 2. On-chip/off-chip, on-line/off-line testing
- 3. Fault models
- 4. Yield Defect level Fault coverage
- 5. Control/observation points
- 6. Path delay fault testing
- 7. Circuit partition/segmentation

VLSI Systems and Computer Architecture Lab

• Imperfections in chip fabrication may lead to manufacturing defects.

- The manufacturing yield (Y) (κατασκευαστική απόδοση) depends on the used technology, the silicon area and the layout design.
- Early in a technology development the yield is too low (even less than 10%) and continuously rises (even above 95%) as technology is getting mature.

Rule: The earlier a defect is detected the less the cost for the final product. The rule of ten says that the cost of detecting a defective device increases by an order of magnitude as we move from a manufacturing stage to the next (device → board → system)

VLSI Testing

Reliability and Time to Market

- A reliable product with small time to market will provide higher revenues than a second product with a greater time to market.
 - Testing procedures at the minimum cost in time and resources are required!

VLSI Testing

7

Off-Chip and On-Chip Testing

Off chip testing: The test procedures are applied by external to the chip test equipments (Automatic Test Equipment – ATE or Tester).

On chip testing: Embedded, on-chip, resources are provided in order to support the testing procedures.

VLSI Testing

On-Line and Off-Line Testing

- **On-line testing**: Testing procedures are applied in the field of operation.
 - **Concurrent testing**: Testing is performed concurrently with the circuit operation in the field, during the normal mode.
 - Periodic testing: Testing is performed periodically, during idle times of the circuit operation.
- **Off-line testing**: Testing procedures are applied out of the field of operation, usually after fabrication (manufacturing testing).

VLSI Testing

a

Defects – Faults – Errors

- Defects (Ελαττώματα): are circuit failures and malfunctions due to the manufacturing process (e.g. short-circuits, opens e.t.c.).
- Faults (Σφάλματα): model the influence of defects on the circuit operation (e.g. a line (node) is permanently stuck-at "1" or "0").
- Errors (Λάθη): are the incorrect logic responses of the circuit under the presence of faults.

VLSI Testing

Permanent and Temporary Faults

- Permanent Faults (Μόνιμα Σφάλματα) are those faults that have a permanent impact on the circuit operation.
- Temporary Faults (Πρόσκαιρα Σφάλματα) are those faults that do not have a permanent impact on the circuit operation. They are categorized as:
 - Transient (Παροδικά): non-repeated faults due to random effects like power supply disturbances, electromagnetic interference, radiation e.t.c.
 - Intermittent (Διαλείποντα): repeated faults due to the degradation of the circuit parameters (wearout, aging).

VLSI Testing

13

Yield Loss and Yield Enhancement

- There are two types of yield loss in IC manufacturing:
 - **Catastrophic yield loss**: due to random defects.
 - Parametric yield loss: due to process variations.
- Yield enhancement techniques:
 - Design for Manufacturability: layout design rule adaption in order to improve the manufacturability.
 - **Design for Yield**: process improvements to enhance yield.
 - Design for Diagnosis: techniques that provide access to proper information in order to find the root cause of a failure. This will help to improve the layout design and/or the manufacturing process.

VLSI Testing

Yield and Defect Level

The targets (from design and fabrication point of view) are:

Mathematical model:
$$Y = \left[\left(1 - e^{-A \cdot D} \right) / A \cdot D \right]^2$$
 A = die area D = defect density

X

Defect Level (DL)= number of defective ICs that pass the test total number ICs that pass the test

These are test escapes!

DL is measured in defective parts per million (DPM) - < 100 DPM \Rightarrow high quality

(N)

VLSI Testing

15

Fault Coverage

Given that the yield is a priori less than 1, it is a prerequisite of a testing procedure to provide the highest possible fault coverage ($\kappa \dot{\alpha} \lambda \nu \psi \eta \ \sigma \varphi \alpha \lambda \mu \dot{\alpha} \tau \omega \nu$).

X

Theoretical relation among defect level, fault coverage and yield:

VLSI Testing

Fault Detection

The detection of faults in a circuit consisting of many hundred-millions up to few billions of transistors is an open issue. Possible approaches:

 Application of all possible input combinations and observation of the circuit responses.

Impractical solution due to the huge number of all possible combinations.

• Use of efficient algorithms for the generation of a reduced set (*test set*) of input combinations (*test vectors*) along with the corresponding responses, which is capable to detect "all" possible faults of the fault model under consideration.

Main strategy: "divide and conquer"

• Assist testing with embedded design for testability (DfT) techniques. Main strategy: "divide and conquer"

Desired fault coverage 100%.

In practice a fault coverage of 90–99.9% is achieved depending on the fault model and the circuit under test.

VLSI Testing

17

Testability

Testability is defined as a measure of the ability to detect the faults of the fault model under consideration in a *circuit under test* (*CUT*). It depends on the:

- **Controllability (Ελεγξιμότητα):** is a measure of the ability to set a node in a predefined logic state using proper primary input values (vectors).
- <u>Observability</u> (Παρατηρησιμότητα): is a measure of the ability to determine the logic state of a node by observing the circuit responses at the primary outputs.

Fault free circuit

Circuit with stuck-at faults

Fault detection is a process where a fault is sensitized by applying proper values at the primary inputs of the circuit, so that an error is generated at a circuit node, and afterwards this error is propagated to a primary output to be observed.

VLSI Testing

Re-convergent Fan-Out Points

The presence of *re-convergent fan-out points* (σημείων επανασύγκλισης σημάτων) makes fault detection a hard task. This is due to the fact that in such cases it is not always feasible to independently set proper values at various circuit nodes in order to sensitize a fault and/or propagate the generated error to a primary output.

In the example that follows, there is not any proper value for node B that will sensitize the fault and in parallel will permit the propagation of the generated error to the output E. The re-convergent fan-out point is node E.

Design for Testability

Design for testability (DFT) techniques are today a common practice to meet the reliability levels required in modern integrated circuits (ICs). According to this approach, proper testing circuitry is embedded along with the functional *circuit under test* (CUT) aiming to alleviate the testing process and enhance testability.

- Scan testing techniques (τεχνικές σειριακής σάρωσης).
 They provide full controllability and observability of the circuit's internal states.
- Built-In Self Test BIST techniques (τεχνικές ενσωματωμένου αυτοελέγχου).
 Proper circuits are embedded in an IC to enable its self-testing. These circuits provide test vectors to the circuit under test (CUT) and monitor its responses to detect errors.

BIST circuits can be also exploited for on-line testing.

- I_{DDQ} testing (or current monitoring) techniques.

 Power consumption is the criterion to discriminate defective from defect free
- Test standards.
 Existing test standards, like the IEEE 1149.1 and IEEE 1500, provide a common way to perform testing procedures in nanometer ICs.

VLSI Testing

29

Scan Testing

All the memory elements (latches or Flip-Flops) are properly connected to form a unified shift register (*scan register*). This way the internal state of the circuit is determined (controlled) by shifting in (*scan-in*) to the scan register the required test data to be applied to the combinational logic. Moreover, the existing internal state (previous logic response) can be observed by shifting out (*scan-out*) the data stored into the scan register.

VLSI Testing

