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Lay Summary 

 

Over the past decade, social and commercial applications show high interest in 

indoor positioning to boost their data attribute and enable location based services. 

Such applications aim to utilise location information on smartphones either in real 

time, such as navigation services, or streamed through backend processing modules, 

such as data analytics. However, with GPS being the most mature source of location 

data on smartphones, obtaining location attribution indoors remains a problem. 

Nevertheless, GPS has the advantage of being globally available and capable of 

providing location data with reasonable accuracy wherever line of sight connection 

to enough number of satellites is feasible. Indoor positioning systems should provide 

location context without the dependency on sky visibility. Therefore, this research 

evaluates various methods and algorithms to enable location awareness indoors for 

popular smartphone applications.  

This thesis demonstrates an implementation of indoor positioning solution that 

utilises the existing infrastructure of WiFi signal sources around the world. Using an 

ordinary smartphone, without any alteration or customisation, to automatically 

record signal strength indicators for WiFi transmitters deployed around the area, 

should be enough to estimate the smartphone position. To be able to utilise the 

majority of globally deployed infrastructure, the proposed solution sets the limit to 

operate without even previous knowledge of WiFi infrastructure deployment. Hence, 

this research adopts only algorithms that is suitable for auto-discovery to empower 

the acquisition of meaningful data and support the construction of global database.  

Furthermore, the thesis also proposes segmenting the earth into a grid to minimise 

local effects on estimating WiFi signal strength and to reduce the impact of walls and 

other obstacles that cannot be identified on global scale. With that in place, the 

acquired data streamed through set of algorithms to populate the grid with 



 

iii 

estimated signal strength values. Therefore, each area in the grid would accurately 

describe the layout of WiFi transmitters and map them into virtually connected 

graph.  

All the above have empowered this research to autonomously locate signal sources, 

WiFi access points, within the designed global grid. Finally, this thesis evaluates the 

quality of proposed algorithms using large dataset collected in various countries. It 

also suggests error estimation model and mitigation for multi-dimensional floor 

ambiguity. 
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Abstract 

Recent trends in data driven applications have encouraged expanding 

location awareness to indoors. Various attributes driven by location data 

indoors require large scale deployment that could expand beyond specific 

venue to a city, country or even global coverage. Social media, assets or 

personnel tracking, marketing or advertising are examples of applications 

that heavily utilise location attributes. Various solutions suggest 

triangulation between WiFi access points to obtain location attribution 

indoors imitating the GPS accurate estimation through satellites 

constellations. However, locating signal sources deep indoors introduces 

various challenges that cannot be addressed via the traditional war-driving 

or war-walking methods.  

This research sets out to address the problem of locating WiFi signal 

sources deep indoors in unsupervised deployment, without previous 

training or calibration. To achieve this, we developed a grid approach to 

mitigate for none line of site (NLoS) conditions by clustering signal readings 

into multi-hypothesis Gaussians distributions. We have also employed 

hypothesis testing classification to estimate signal attenuation through 

unknown layouts to remove dependencies on indoor maps availability. 

Furthermore, we introduced novel methods for locating signal sources 

deep indoors and presented the concept of WiFi access point (WAP) 

temporal profiles as an adaptive radio-map with global coverage. 

Nevertheless, the primary contribution of this research appears in 

utilisation of data streaming, creation and maintenance of self-organising 

networks of WAPs through an adaptive deployment of mass-spring 

relaxation algorithm. In addition, complementary database utilisation 

components such as error estimation, position estimation and expanding to 

3D have been discussed. To justify the outcome of this research, we 
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present results for testing the proposed system on large scale dataset 

covering various indoor environments in different parts of the world.  

Finally, we propose scalable indoor positioning system based on received 

signal strength (RSSI) measurements of WiFi access points to resolve the 

indoor positioning challenge. To enable the adoption of the proposed 

solution to global scale, we deployed a piece of software on multitude of 

smartphone devices to collect data occasionally without the context of 

venue, environment or custom hardware. To conclude, this thesis provides 

learning for novel adaptive crowd-sourcing system that automatically deals 

with tolerance of imprecise data when locating signal sources.  
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1 Introduction 

1.1 Background 

Over the past decade, many social and commercial applications demonstrated high 

interest in indoor positioning as an extra data attribute added to their location-based 

services (LBS). Such systems aimed to utilise location information on smart phones 

either on real time, such as navigation services, or streamed through backend 

processing modules, such as data analytics. To date, the most mature source of 

location data on smart phones is still limited to Global Navigation Satellite Systems 

(GNSS). Such systems have the advantages of being globally available and capable of 

providing location data with reasonable accuracy when there is a line of sight at least 

to three satellites. However, even with the wider coverage of GNSS systems (GPS, 

GLONASS, Beidou, Galileo), it fails to provide reliable location data indoors or in hyper 

local areas with limited sky visibility. While using GNSS to provide the location context 

seems practical outdoors, researchers have been trying different methods to enable 

similar positioning performance indoors. Breaking the indoor barrier and maintaining 

global availability similar to GPS soon became well recognised as the indoor 

positioning challenge. 

Among various methods and technologies proposed to enable indoor positioning on 

smart phone, WiFi based solutions were the one widely adopted by native operating 

systems, such as Android and iOS. The reason behind such adoption were solely due 

to its potential to operate autonomously on a global scale. alternative technologies 

were limited by the amount of customization it would need before operating. Other 

widely present solutions require hardware customization, setup or periodical 

recalibrations. Examples of such solutions include ultra-wide band (UWB), radio 

frequency (RF-tags) and Bluetooth Beacons [1], [2], [3]. On the other hand, magnetic 

field fingerprints, 3D imaging based systems [4], [5] or systems that utilise inertial 

phone sensors, such as pedestrian dead-reckoning (PDR) [6], are examples of active 

research topics that consider infrastructure free solutions.  
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Further utilisation of existing infrastructure continue to appear in advanced research 

projects in what is known as fingerprinting technique [1], [7], [8]. However, such 

systems require pre-calibration or pre-knowledge of infrastructure distribution and 

environmental parameters or building layout prior to providing reasonable indoor 

positioning. Furthermore, global spread, or venue-based modelling, remains the 

primary limitation for such systems [8]. Therefore, the concept of autonomous indoor 

positioning systems still suffers from various challenges that hold its realisation. To 

be recognised as autonomous system, an indoor positioning solution should be able 

to operate without pre-calibration and require minimal efforts for maintenance. Such 

systems have the potential to overcome the availability challenge and to become the 

solution for global indoor positioning.  

Amongst all indoor positioning technologies mentioned above, wireless and PDR 

solutions are the strongest candidates to empower crowd-sourcing based solution. 

The high availability and low cost of these systems have strengthened its popularity. 

However, as inertial sensors only provide relative motions, it cannot operate 

completely on its own without continuous stream of anchor positions along the 

walking path. Furthermore, PDR shows significant sensitivity to smart phones gesture 

or relative orientation compared to the user body frame. Also, it often requires 

recalibration to eliminate any bias in phone hardware before every indoor walk. In 

addition, PDR to date still suffer from accumulated drifts on long walks [9]. Therefore, 

such solution has become primary source for additional location attributes, such as 

steps heading and travelled distance, fused with other technologies in a hybrid 

system rather than being an indoor positioning system on its own. Thus, WLAN 

solutions, based on crowd-sourcing of WiFi signal sources, remain the potentially 

substitute for GNSS indoors.    

In this thesis we demonstrate our work on research and implementation of an 

adaptive indoor positioning solution based on crowd-sourcing WiFi signal sources 

location and signal attributes. By crowd-sourcing we refer to fully unsupervised 
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solution that anonymously collects labelled and unlabelled data samples while it 

performs signal profiling and locates signal sources. The goal of this work is to use 

ordinary smart phones, without any modifications, to automatically acquire 

observations, such as received signal strength indicators (RSSI) from pre-existing WiFi 

transmitters and estimate its position indoor. As previous knowledge of transmitters’ 

locations, its environmental characteristics or signals attributes are not available for 

globally deployed crowd-sourcing solution, we only targeted algorithms that support 

self-calibration with unsupervised learning approach.  

Firstly, we proposed a method for modelling RSSI observations into sectors of 

dynamic global grid to eliminate the environmental effects on radio propagation. By 

utilising a grid approach, we reduced the impact of unknown obstacles such as walls, 

furniture and human traffic that can only be estimated if map data are available. 

Secondly, we employed data classification and clustering algorithm to populate the 

grid with estimated RSSI values for neighbouring WiFi transmitters gradually. As more 

smart phone users approach each grid location from various sectors our grid became 

more accurate in recognising popular clusters of data. In the end, our research 

primarily focusses on studying the feasibility of locating signal sources (WAPs) on 

reference to the proposed global grid. To enable this, we utilised a mass-spring 

relaxation algorithm to emulate the behaviour of self-organising networks into the 

designated indoor positioning problem. Finally, our research also examines the 

feasibility of implementing such framework to employ the proposed algorithms in 

global scale.  

The above demonstrates the system ability to use crowd-sourced data to estimate 

smart phone location. The proposed system also provides brief discussion for 3D 

modelling of WAPs database as an attempt to estimate smart phones location in 

multi-story buildings. To validate the proposed system usability, we perform sanity 

test experiments on database covering three different countries as a test for global 

distribution. To populate such database, we streamed unlabelled data collected by 
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anonymous smartphone users as part of their daily routines over long period of time 

with random distribution in time and location. Such data collection is more realistic 

than any other procedure as it demonstrates the system ability to deal with modest 

quality data. For evaluation purposes, we utilised a separated set of labelled data, 

with ground truth position. Finally, we compared both estimate smart phone location 

data and the estimated signal sources data in the grid with ground truth data to 

validate the performance of our crowd-sourcing algorithms.    

1.2 Motivation 

The recent development in mobile devices, embedded systems and advanced sensors 

has extended the opportunity for LBS to the indoor territories. Today’s smartphones 

are armed with powerful embedded “sensors”, such as GPS receiver, WiFi receiver, 

accelerometer, gyroscope and digital compass. Such development has enabled new 

generation of context aware applications, such as safety personal trackers, fitness 

and health monitoring, geolocation advertising and geofencing. Such applications 

became widely available for smart phone users through cloud based mobile 

applications stores where they could download any application instantly. This 

revolution in application enabled smartphones enables limitless capability of such 

devices as developers and majority of phone users are keen to adopt to cutting edge 

technologies. In addition, the latest development on big data and data science 

inspired such applications to invest resources to acquire more data attributes. 

Considering the important role location data play in most data driven application, the 

demand continues to inspire more research in this topic. Anyone takes a closer look 

into such data will soon recognise that GPS is still by far the most popular source of 

location for mobile personal devices. As humans tend to spend most of their time 

indoor, where localization through GPS in not feasible, the demands for indoor 

positioning flamed up. These demands have encouraged us to push the limits of all 

technologies trying to develop a simple, cost effective and accurate indoor 

positioning system that satisfy the requirements of the emerging applications. 
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Furthermore, the absence of reasonably accurate location context in more than 50% 

of the global occupied landscape forms a huge barrier for such life emerging 

technologies. This also suggests that solutions with limited coverage either require 

customization to hardware or calibration on venue basis would not be able to break 

through this barrier without significant efforts. Such efforts could involve forcing new 

infrastructure policies globally or utilisation of drones to continuously calibrate wider 

coverage solutions. On the other hand, WiFi transmitters are very popular in urban 

and suburban environments, especially in public services buildings such as malls, 

hospitals, libraries and museums. Previous research [10], [11] has also suggested that 

knowledge of WiFi signals radio map, or knowledge of transmitter’s locations, would 

provide the granularity for seamless positioning experience indoors. Additionally, as 

smartphones move into always connected services, power consumption becomes 

more crucial. Therefore, hybrid localization systems have been adapted by majority 

of mobile operating systems to replace GPS location acquisition with WiFi even for 

outdoors when appropriate.  

In addition to indoor positioning, sourcing radio map information through 

smartphone users would provide useful analytical data for network administrators, 

retail managers, and security officers in assessing service availability, quality and 

network dead zones. Therefore, autonomous crowd-sourcing of WiFi signals in public 

areas would provide also provide continuous feedback about its own wireless 

networks saving all efforts to assess service quality. 

All the above has motivated our research to focus on crowd-sourcing WiFi radio maps 

and transmitters locations as a method for indoor positioning. 

1.3 Problem statement 

This Thesis is set out to examine the suggestion that global crowd-sourcing of pre-

installed WiFi infrastructure can be used to enable indoor positioning everywhere 

without pre-calibration or additional hardware installation. The boundaries of crowd-
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sourcing are usually defined on case by case based on the availability of other data. 

For example, indoor maps availability is still limited to few providers and to date still 

lack global coverage. In another example, advanced trajectory detection and PDR 

data that power location filters suffer from limited availability as smart phone users 

are keen to save power and switch the location services on and off on demand. 

Therefore, some algorithms and techniques could be more feasible for LBS 

application that is offering navigation guidance to plurality of users only where indoor 

maps are available. However, the proposed research problem assumes wider 

coverage that is not limited to maps availability or specific navigation solution.   

To set the boundaries of the proposed research problem, we defined the limitations 

of crowd-sourcing as per the following list: 

- The surrounding environment is anonymous. This implies that no map data 

are utilised by radio maps learning algorithms. Therefore, map matching 

solutions or regression models that utilise map data are not within the scope 

of this research. 

 

- No infrastructure modifications should be required in a form of hardware 

installation or customised network infrastructures. This means that 

designated positioning infrastructure such as Bluetooth beacons or the latest 

RTT protocols are not considered until they are available globally. 

 

- All observations are submitted by off the shelf smart phones without any user 

or device identification. This will imply that observations are treated 

individually as discrete points rather than trajectories. Such limitation affects 

PDR or positioning filters that relay on modelling user’s motion. 

- Pre-calibration or semi-supervised learning that require prescribed collection 

of observations labelled with high confidence by humans or robots are not 

classified as part of our crowd-sourcing.   
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The thesis addresses these limitations by offering the solution tested with blindfolded 

data collection via software app running on off the shelf smart phones. The users of 

these smart phones have anonymously contributed to this program of research by 

providing unlabelled observation without any identification or human interaction 

with the software. Data contributors crowd-source anonymous territories without 

any supervision or prescribed routes. The defined crowd-sourcing method includes 

collection of signal propagation parameters, namely RSSI, passive collection of GNSS 

location references when available, unsupervised learning and adapting the radio 

map for the anonymous environment while simultaneously using the learned radio 

map to provide an estimation of smart phones location indoors. 

1.4 Research contribution 

The main contribution of this research over prior art is visible as it provides novel 

methods for locating WiFi signal sources deep indoors via crowd-sourcing providing 

global scale coverage with moderate accuracy, enough to provide location attributes 

data. The acquisition of such database complements the global coverage of GNSS, by 

further providing similar coverage inside venues or rooms. Compared to prior art, 

where hardware customisation or survey is required, this research propose solution 

that significantly reduces efforts required to locate smartphone user or device, in 

large complex territories to specific room without sacrifice on global coverage. 

Further details about the research contributions can be summarised by the following: 

- The thesis suggests novel solution to employ NLoS mitigation of signals 

propagation model with global deployment providing feasibility for indoor 

positioning on large scale. 

- The thesis proposes utilisation of statistical Gaussian distributions during data 

clustering and classification to identify common signal anchor points indoors. 
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- The thesis introduces novel algorithm for creating and maintaining adaptive 

radio-maps or local and global grid nodes representing anonymous indoor 

territories.   

- This is the first research that study indoor positioning solutions with global 

coverage providing comprehensive testing through significantly large dataset 

compared to any data used in prior art.   

 

Figure 1.1: Comparison of various categories of indoor positioning solutions with GPS in terms of 

their effectiveness in room, venue, urban and global scale. 

To illustrate the contribution of crowd-sourcing solutions compared to other 

categories in indoor positioning, Figure 1.1 provides metric to measure the 

effectiveness of each category. The figure suggests percentage measure of 

effectiveness in four different scales room, venue, urban and global. As clearly visible, 

while it is well known that GPS is not effective on room or venue scale, we argue that 

any hardware customisation would yield very effective in room setup and slightly less 

effective on venue scale. On the other hand, survey-based solutions are more 

effective on venue scale setup and perform good enough on room setup. However, 

both categories, would fail to scale to urban or global coverage due to adaptability 

limitation and cost of deployment and maintenance.   
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To conclude, Figure 1.1 demonstrates that using crowd-sourcing would enable indoor 

positioning solution to provide reasonably good coverage on the four scales. It also 

provides estimation of effectiveness in comparison to hardware and survey 

categories as well as GPS. 

1.5 Thesis structure 

This thesis addresses the indoor location problem by adopting crowd-sourcing 

approach to learn a WiFi signals radio map for anonymous territory and use it to 

estimate the position simultaneously. To achieve completely autonomous solution, 

we adopted data collection through an application deployed on smart phones to 

report received signal strength from surrounding WAPs periodically associating it 

with location data, driven by GNSS receivers on the phone, whenever it’s available. 

In this document we refer to such process as scanning and the generated data as 

observations. Without confusing it with ground truth labelled observations, we often 

refer to observations that is associated with location data as labelled observations.  

Figure 1.2 shows the basis of generic indoor position system utilising reference 

database of WiFi radio maps, or signal sources. In summary, mobile devices scan 

surrounding WiFi signals and consult a central database by sending “where am I” 

position enquiry. In return the central database and the associated processing units, 

usually known as positioning servers, would process the data to calculate the mobile 

device position. In our approach we programmed the software hosted on data 

contributor’s smart phones to always consult the central database to obtain position, 

even if GPS location were available. This has enabled a solution that continuously 

updates the references database as it utilises crowd-sourcing as backend system 

setting behind positioning server. 
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Figure 1.2: An example of WiFi positioning system showing smartphone recording observations of 

WiFi signal strength and making position request to central system with reference database to 

obtain its estimated position. 

In this chapter (Introduction), we set the scope for this research and introduced the 

crowd-sourcing concept, motivation, problem statement and research contributions. 

It scans the literature to exploit the concept of radio map creation and WiFi signals 

propagation from prior art perspectives. In addition, it provides literature to justify 

excluding fingerprinting-based solutions and introducing previous work related to 

crowd-sourcing of WiFi signals sources or adaptive radio-maps. 

In the second chapter (Methodology and Data Analytics) we describe the dataset 

used throughout this research and present some analytical findings. It also presents 

the selected test beds, quality metrics and sanity testing and analysis methods 

adopted in our research. Finally, chapter two also study the implementation and 

platform architecture used to enable global coverage. 



Adaptive Indoor Positioning System based on Locating Globally Deployed WiFi Signal Sources 

Introduction 11 

In chapter three (Locating Signal Sources) we present our approach and algorithms in 

detail. It also introduces the proposed data classification and data clustering based 

on radio-map similarity metrics to assign reference clusters on local and global grid. 

In addition, the third chapter presents the first set of test results in form of sanity 

tests performed on the data sets introduced in chapter two.  

Finally, chapter four (Utilisation of WAPs Database) introduces an early effort we 

made on grid construction, alternative to the process described in chapter two. It also 

presents our testing algorithms used to perform smartphone position estimations. In 

addition, we attempted to model error estimation, inaccuracies in radio map 

construction and how it could impact position estimation. Finally, the same chapter 

describes the concept of floor determination in multi-storey buildings as a potential 

expansion of 2D grid construction. It solely focusses on our attempts to identify which 

floor the user is on based on probability model given the knowledge of WAPs 

distributions among multiple floors.    

1.6 Literature 

Since the early days of GPS utilisation for public, LBS service shown high motivation 

and potential to contribute toward improving quality of life. Such development has 

encouraged researchers to bring this experience and quality indoors by pushing the 

limits on various technologies. As GPS still to date shows major limitations on its 

indoors capability, the search for alternative sustainable and calibration free 

solutions has increasingly appeared in literature. The first classification of proposed 

solutions distinctly put them in two categories, hardware-based solutions and 

software-based solutions. Hardware solutions usually accommodate requirements 

demanding limited implementation scale in order to be affordable. Such systems are 

not within the scope of this research as we focus on autonomous systems that can 

work unsupervised globally. However, as smart phones manufacturers and operating 

systems start to adopt some hardware changes, such as round trip time (RTT), new 

technologies may become feasible in near future.  
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On the other hand, software only solutions, were employed by many research 

projects which can be categorized as ranging techniques, such as trilateration, and 

none ranging techniques, such as fingerprinting. While ranging solutions try to work 

out a mobile node location by measuring the distance from signal sources with known 

location, none ranging solutions only concern finding the best match for radio 

fingerprint of the received signals from a database of training samples. Nevertheless, 

both techniques require some knowledge about WiFi signal sources or signal profiles 

before it can perform any estimation. Hence, crowd-sourcing options has been 

identified as the only approach that could provide wider availability and global 

coverage.  

1.6.1 Using WiFi for indoor positioning 

Few years ago, major smart phone frameworks, such as Apple iOS or Google android, 

utilised their own global database of WiFi signal attributes to provide an estimation of 

a mobile phone location even inside buildings. A study made by Zandbergen [12] 

compared such positioning performance on android and iOS on large scale 

deployment. Zandbergen discovered that accuracy would vary between different 

areas and different times demonstrating the early adaptation of crowd-sourcing. On 

the other hand, the rising interest in WAPs data supports the utilisation of WiFi based 

indoor positioning as the most feasible solution so far. As people spend most of their 

time indoors, WiFi based positioning became a valuable complementary to GPS which 

is used to navigate outdoors.  

Therefore, many hybrid systems aim for seamless positioning everywhere by 

combining multiple position technologies, such as GPS outdoor and WiFi indoors [13]–

[15]. However, positioning quality requirements vary based on each use case. The 

expected accuracy of crowd-sourcing solutions would be affected by many elements 

such as algorithmic calculations, data availability, WAPs quantities and signal 

characteristics. In this section, we try to cover a wide range of technologies that 

utilised WAPs in reasonably large-scale deployment. Nevertheless, the most recent 
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state of the art that could match the global coverage criteria doesn’t appear in publicly 

available literature.  

1.6.2 Hardware customization for time base solutions 

As the defined target for solving the indoor positioning problem somehow overlap 

with GNSS, many researches tried to emulate GPS accurate time-based calculations 

by modifying transmitters and mobile nodes hardware. Particularly, this approach 

requires the radio signal to be timed very accurately on both ends, transmitter and 

receiver [16]. Therefore, WiFi protocol specifications and hardware modification 

were required to realise such solutions.  

Such option promised an alternative to RSSI measurements by offering much accurate 

distance estimation by exchanging customised time packets. The most common 

adopted techniques are: Time of flight (TOF) and Round-Trip-Time (RTT). Both 

techniques record timestamps at mobile node (laptop or smartphone) and an access 

point (router or modem) during handshaking. The timestamps recorded at either end 

can then be utilised to calculate the differential time consumed by signal to travel 

through the air.  This can be used to determine the position of a mobile device 

between known WAP locations using trilateration. It is most suitable for WiFi since an 

acknowledgement signal is already available when a request is made. Unlike the 

models using Received Signal Strength (RSSI), errors in ranging distances estimated 

using RTT are constant [17], therefore the measurements behave better indoors.  

On the other hand, RSSI ranging errors in the estimated distance are subject to 

shadowing, multipath and interference. However, RTT measurements also suffer from 

errors and require additional or newer hardware to operate. Unlike RSSI 

measurements, error models for RTT measurements cannot be assumed Gaussian 

because errors will always increase with quantity of measurements. This can be 

handled by using other error models (Rician, Rayleigh, etc.) [18]. 
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To overcome the hardware requirements, single side RTT technique is developed to 

measure the delay between “request to send” command executed by a node on 

wireless network and “clear to send” message received back from the controller, WAP 

in this case. This time delay is usually the sum of RTT and processing time on 

transmitter side. Although RTT should be almost constant, processing time is subject 

to significant variations. To reduce the error produced by processing time variations, 

statistical models can be adopted [19]. However, such models require significant 

amount of measurements before computing ranging distance. 

With the introduction of timing in newer versions of the 802.11mc standards [20], the 

use of RTT for positioning has become feasible as manufacturers started to support 

the new standards this year. According to this new standards network advertising, 

packets exchanged between nodes would be able to measure two-way RTT with high 

precision even from very few measurements. Furthermore, in crowd-sourced 

scenarios, it increases precisions of the estimated positions of mobile devices hence it 

improves WAPs profiles database.  

Another example of custom hardware appears in the utilisation of special antennas 

to obtain signals direction of arrival (DoA) as an additional parameter when collecting 

observations from modified mobile units [21]. With such unites possibly being 

smartphones or other form of handheld device, DoA availability provides extra data 

to aid position estimation and improve accuracy. Authors of [21] have utilised 

triangulation approach to locate signal sources very precisely, in the range of sub 

meter. However, as currently deployed antennas on the large population of smart 

handheld devices does not support angle of arrival (AoA) or direction of arrival (DoA) 

detection, the technology would be rendered impossible to implement for crowd-

sourcing solution.  

To conclude, in near future indoor positioning solutions would combine signal 

strength and time to substitute for noises and to enforce or discard measurements. 

This will eventually yield significant improvements to ranging techniques once the 
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adoption of new hardware is common enough to replace three billion WAPs currently 

deployed worldwide. Until then, RSSI based distance estimation is the only feasible 

solution to enable trilateration positioning based on current majority of smart phones 

and WAPs infrastructure.  

1.6.3 Trilateration vs fingerprinting 

The trilateration approach is based on fundamentals of least square solving to find 

an intersection point that satisfies all distances between mobile node and multiple 

signal transmitters [16], [22]. Similar to GPS, WiFi trilateration requires at least three 

transmitters with known locations and a reasonably accurate estimation of their 

distance to the mobile node in order to get a fix. Unlike GPS, WiFi protocols have not 

been designed for location purposes. Therefore, converting signal strength to 

distance by modelling the propagation of WiFi signals indoor remains challenging. 

Equation (1.1) shows an example of such propagation model, being the most popular 

for trilateration [23]. 

𝑃𝑟𝑒  =  𝑃𝑡𝑟 + 10 𝑛. 𝑙𝑜𝑔 [
𝑑

𝑑0
]+ ∝               (1.1) 

𝑃𝑟𝑒 : is the received RSSI measurement 

𝑃𝑡𝑟: is the transmitter power at reference distance of 𝑑0. 

𝑛: is a pathloss exponent parameter reflecting the environment and obstacles. 

∝: is a parameter representing noise, estimated as Gaussian white noise.  

Improving position estimation accuracy in trilateration approach has been mainly 

limited to improve ranging techniques by adopting various signal propagation models 

tailored for indoors. Nevertheless, authors of [24] proposed to use trilateration in 

room range to improve fingerprinting-based solution. This model reduces errors in 

signal propagation modelling while it uses very few fingerprints as an initial fix to a 

room. Similarly, other researchers considered hybrid solutions to overcome the 
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propagation errors by adapting linear models on short distances [25]. These solutions 

have contributed toward fully autonomous indoor positioning system aiming for 

unsupervised or semi-supervised solutions [26], [27].  

On the other hand, fingerprinting techniques are based on fully supervised learning 

based on pretrained models. Usually the system should have two phases, offline and 

online. The offline, or training phase, various classification and clustering techniques 

could be used to build a fingerprint database, known as radio map. The process of 

generating such radio map includes measuring the received signal strength (RSSI) of 

all the WiFi access points that can be detected when the device is in known sampling 

reference point and storing labelled data of WiFi signals characteristics in database. 

Pre-processing can then generate the radio-map or the area covered by this labelled 

data. Once radio map is populated, mobile devices submit RSSI of all the WiFi access 

points (WAPs) that can be heard from any unknown location, within the sampling 

coverage area, so the system can estimate their location. To perform an accurate 

positioning of mobile devices, set of RSSI measurements are compared with the radio 

maps in the pre-trained database using multi-dimensional similarity measures to find 

best match [28]. 

RADAR [29], Horus [30] and Placelab [31] were among the very first solutions to set 

the grounds for WiFi positioning. Generally, for all these systems, increasing the 

number of samples during training phase would improve its accuracy as the 

probability for finding better similarity during online phase increases. Later, more 

advance efforts have then been made to improve accuracy and reduce location 

errors. For example, Bayesian Filters were utilised in fingerprinting solutions aiming 

to reduce sampling efforts without compromising accuracy [32]. Furthermore, 

neural-network-based methods have also been employed to further reduce 

calibration overheads [27].   
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To summarise, all the above have suggested that neither fingerprinting nor the 

conventional trilateration would provide sustainable solution for indoor positioning 

problem. Firstly, sampling each public indoor building all over the globe is a severe 

and worthless effort as infrastructure and layout constantly change. Therefore, until 

future research proof that an effective and sustainable fingerprinting solution can 

work autonomously, such solutions will only be adopted on site by site bases. 

Secondly, obtaining very accurate trilateration without adaptive signal propagation 

modelling is not yet feasible. Hence, zero calibration systems that satisfy the 

unsupervised learning of WiFi infrastructure and combine both fingerprinting and 

trilateration is most promising candidate for solving the prescribed problem. 

1.6.4 Zero calibration solutions: 

As the last few years witnessed many location aware services moving indoors, lead 

organizations, such as Apple, Google, Microsoft, Here and Mozilla, adapted one form 

or another of WiFi based localization. This trend increased the demands for location 

attributes data to be available everywhere even if that would compromise accuracy. 

Therefore, autonomous WiFi positioning systems, also known as zero calibration 

solutions, appeared in research literature to answer for industry demands. In general, 

an autonomous system can be any positioning system, regardless of the technology 

behind it, which satisfies the following: 

- Its ability to utilize existing hardware without modifications. For example, smart 

phones and WiFi transmitters. 

- Its ability to expand beyond initial boundaries automatically by performing fully 

unsupervised learning of territories as layout or infrastructure change.   

- Its ability to provide location attributes, room level accuracy continues to be the 

most demanding requirement made by commercial LBS. 

One example of an autonomous system, presented by Cheng et al [33], uses an 

adaptive approach. In his work Cheng modifies the usual KNN algorithm to use 
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clusters instead of samples. Then he employed self-healing algorithms to update 

fingerprinting clusters using every location estimation as new reference point to 

retrain radio maps. His results were also able to satisfy the last condition for accuracy 

requirement but still require initial site survey, hence expanding beyond initial 

boundaries were not presented. 

Another comprehensive research on utilisation of Multi-Dimensional Scaling (MDS) 

to locate WiFi access points in unsupervised system is presented by Koo et al. [34], 

[25], [26]. The proposed solution promises to locate WAPs to the accuracy of 20m. 

With minimal contribution of GPS, Koo method align the constructed map of signal 

transmitters with any global location. It then attempts to estimate dissimilarity 

between all pairs of WAPs by processing time observations O(t) :{RSS0, RSS1,…. RSSn} 

from all input data. The described method then generates a graph where WAPs are 

nodes and dissimilarity represent edges. MDS is then employed to find the best fit for 

all detected WAPs that satisfy all dissimilarities. 

More recent work attempts to simultaneously recalculating smart phone positions 

while locating WiFi Access Points in post processing approach [35]. Their approach 

does heavily rely on static signal propagation model to estimate distance between 

Access Point and each observation points submitted by smart phone. The 

optimisation is made through solving set of least square equations, as per (1.2), 

defining the relationship between WAPs location and observation points location.   

Ϝ̌: 𝐹𝑝𝑜𝑤 + 𝜆1𝐹𝑔𝑝𝑠 +𝜆2𝐹𝑎𝑐𝑐 +𝜆3𝐹∆                                                                          (1.2) 

𝜆1, 𝜆2, 𝜆3 : are scaling factors. 

 Fpow, Fgps , Facc, FΔ: are functions of RSS, GPS positions, Position acceleration and 

elevation change in sequence.  
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Another example of optimisation algorithm, in form of error minimisation, we 

identified mass spring relaxation [36] as alternative approach to MDS and least 

squares. Although such algorithm is not frequently visible under indoor positioning 

discussions, we propose to model each WAP as the centre of gravity between set of 

springs connecting it to set of observations. In other words, mass-spring relaxation 

model all WAPs and observations into single graph G:[P0 , L , D], where P0 is initial 

position estimation of given WAP, L is set of labelled observations represented by set 

of location measurements {l1, l2, ... lk} and D represent graph edges dij as optimum 

distance between WAP position Pi and the corresponding observation position lj. To 

locate an optimal solution for WAP position Pi, mass-spring relaxation continue to 

shift the central node P0 of graph G until it satisfies all edges in D. However, such 

optimal position usually is difficult to find. Hence, minimisation of differential errors 

in distance aggregated as stress measure on all graph edges are used to indicate to 

local or global minima for each WAP.  

One major limitation of mass-spring relaxation appears in its inability to locate global 

minima. Authors of [36] suggest that including some anchors with wrong distance 

estimation to the central node, WAP in this case, would defer the ability of mass-

spring to converge. This level of sensitivity suggests that mass-spring only converge 

to local minima. However, it is possible that the deployment of mass-spring as 

suggested by [36] would not converge to global minima in most cases. Nevertheless, 

on our deployment of mass-spring, discussed in chapter three, we expand the graph 

to include extra springs to anchors even if there are no direct observation to the WAP 

we are locating. Such modification has enabled us to locate global minima by 

minimising the error in all springs across the graph, rather than just the springs 

surrounding the WAP we are locating.   

1.7 Comparison of crowd-sourcing compatible algorithms 

As we are set to test the applicability of crowd-sourcing approach for mass-market 

deployment, we focus on the scalability of each algorithm before we choose one to 
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accommodate our research target. Compared to MDS and iterative least squares, 

mass-spring provides the ground for scalable solution as it offers the flexibility of 

graph modelling. One can argue that MDS also offers graph deployment. However, 

MDS enforces the same weight on all edges of the graph. Hence, it is essential for 

MDS to identify finite boundaries when rendering the graph before starting the 

optimisation [26]. This is a huge limitation on the absence of maps. On the other 

hand, mass-spring offers the ability to optimise, scale and provide custom weight for 

each link regardless of how complex is the graph.  

Furthermore, MDS require retest of all nodes in the graph on every iteration, while 

mass-spring can propagate the stress on weaker anchors limiting the integration 

required to converge. Hence, when applying MDS in metropolitan scale, errors in 

graph can grow exponentially rendering resolution impractical. Furthermore, it is a 

requirement of MDS to be able to measure the distance between each pair of WAPs 

accurately rather than elastic or fuzzy range. Koo proposed to do this by ensuring that 

his dataset covers all possible combination of RSSI measures [34]. Such assumption 

cannot be guaranteed in crowd-sourcing as it is very common that WAPs are installed 

off the public routes and region of RSSI measures would not be observed injecting 

wrong links into MDS. 

Similarly, testing an iterative approach of least squares [35] is clearly restricted by 

number of equations that would need to be solved in large scale deployment as it is 

derived from all possible combinations of observations and WAPs. Therefore, local 

minima can only be sought after solving for all variables, coordinates and scaling 

factors, based on initial positions and static pathloss model.  Therefore, due to the 

amount of observations in our global scale, our attempt to get such solution to 

converge was only successful after limiting the data to local areas rather than full 

dataset. This limitation renders iterative least squares impractical to be implemented 

for autonomous crowd-sourcing on global scale.  
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1.8 Modelling signal propagation for NLoS indoors 

As commonly known, none line of sight (NLoS) conditions are major source of noises 

for locating signal sources or mobile devices through ranging techniques. In this 

section we survey existing methods proposed for mobile navigation application to 

deal with such conditions. The most common approach exploits the availability of 

time series measurements when estimating mobile object location indoors. 

Therefore, various filters used to smooth range measurements to mitigate the NLoS 

errors. Examples of such methods utilises Kalman filtering, particle filtering or 

combination of both [37], [38]. However, such filters heavily depend on time series 

measurements of single mobile unit Therefore, it is not applicable for this research, 

where we process data randomly received from crowd of mobile units. 

Another research [39] employs various statistical parameters, or features, to classify 

and mitigate NLoS errors. The authors examined three different models least squares 

vector machine (LSVM), Gaussian processes (GP) and hypothesis testing. The first two, 

LSVM and GP, are based on modelling the expected behaviour of NLoS RSSI set in 

time space using pre-training data sets. As per our previous argument time-based 

models are not examined in this research due to applicability. However, Xiao’s third 

method, Hypothesis Testing, falls very well within our use case as it allows us to 

compare statistical features extracted from mass geo-located RSSI measurements to 

pre-determine statistical distributions for LoS and NLoS. Such implementation 

assumes prior knowledge of NLoS probability distribution, Gaussian distribution as an 

example. However, as the solution account for variation of mean and standard 

deviation it is still valid in most cases as it reserves a model for each WAP within the 

observation area. 

1.9 Conclusion 

To summarise, in this chapter we have introduced the hypothesis of autonomous 

crowd-sourcing to create global database of signal sources attributions. Also, we have 
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demonstrated how this approach contributes toward solving the indoor positioning 

problem. In addition, we have also defined the scope of this research, focusing on our 

problem statement and motivations. We then provided more insights on prior art to 

justify the significance of adaptive radio-map from literature.  

Furthermore, we have presented our justification on utilisation of crowd-sourcing 

versa customisation of hardware or venue survey presenting the concept of zero 

calibration as definition of crowd-sourcing. At the end, we have located three 

compatible algorithms MDS, iterative least squares and mass-spring. With initial 

justification on the scalability and adaptability to errors in observations, we 

concluded on using mass-spring for our research. In addition, we identified another 

limitation in crowd-sourcing approach related to NLoS conditions. Considering the 

scale of our proposed deployment, we scanned the  literature and identified NLoS 

mitigation approach [39] that can satisfy our problem statement 
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2 Methodology and Data Analytics 

In this chapter, we would describe how the proposed system is deployed and tested 

globally. Most of test data used in this thesis to verify the success of global 

deployment is the courtesy of sensewhere limited “www.sensewhere.com” as they 

have licenced and deployed the system since 2011. Therefore, the very first part of 

this chapter will focus on the feasibility of global deployment as per the problem 

statement in chapter one. In addition, we will present the data set and methods of 

evaluation used to assess the quality of the obtained WAP database.  

2.1 Global deployment of proposed algorithms 

To analyse the crowd-sourcing success, we took a sample of 25,217,492 observations 

randomly distributed across the countries within the coverage area. We then used 

this comprehensive data set to show case the algorithm capability over a global grid. 

We are not aware of any data set on similar scale used in research literature. Most of 

the algorithms we came across during literature review were running local and 

building specific experiments that can easily overfit the algorithm to that specific 

building or layout. Using global data set is a key part of such methodology.  

 

Figure 2.1: The distribution of our test dataset across multiple countries showing global coverage 

heat map based on observations count. 

Figure 2.1 shows how the data set is distributed globally. It clearly demonstrates that 

the most of our data is based in four counties: China, UK, USA and Brazil. This can be 
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explained by either deployment sensewhere made with customers, such as China and 

Brazil, or mass data collection exercises conducted in some major cities, such as UK 

and USA. Data collection process involved each smart phone performing both active 

and passive scans based on configurations supplied by hosting application and 

operating systems restrictions.  As phone deployment is made by third party, we were 

unable to accurately measure or obtain details of such configurations or retrieve this 

from the data.  Hence, phone deployment is not going to be covered within the scope 

of our research. Nevertheless, it is still possible to shed some light on what data 

attributes we had access to through sensewhere data sources.  

Before we start any further analysis, let’s have a closer look into the data attributes 

of raw observations as they are stored in the database before processing. As can be 

seen from the data attributes, we only deal with labelled data, However, data entries 

tagged with ‘W’ as source of location data, is considered unlabelled data due to 

uncertainty in location accuracy provided. However, in this research we attempt to 

mitigate for noises generated through such uncertain measurements as expected 

during large scale crowd-sourcing.  

Table 2.1: Data attributes for raw observations received from mobile devices during data 

collection. 

Attribute Description Sample 

Timestamp The time when this observation collected in 
GMT 

‘2016-12-08 11:51:14’ 

Geoindex The geographical ID of global grid 129960296450 

Latitude Angular northing coordinates as per WGS84 116.45020997095 

Longitude Angular easting coordinates as per WGS84 32.066326530612 

Altitude An estimated absolute height from sea level.  102 

Level numerical indication of floor number relative 
to ground floor. 

0 

EstimatedError  Specified in meters as an expected error in 
location. 

12.82 

LocationTag A label to describe the technology used to 
obtain this location. G: stand for GNSS and 
W: stand for WiFi 

‘G’ 

Detected 
Signals 

An array of all MAC addresses heard from 
the reported location, along with its signal 
strengths.   

[{‘0006C63165AA’,-
80},{‘000CE6020CCC’,-
67}] 
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As mentioned above, this dataset has been collected by software development kit 

offered to smartphone application developers to embed within their code revoking 

the native location libraries on Android operating system. By embedding such kit, 

end-users of such smartphone software application would record signal observation 

to obtain estimation of location data. Simultaneously all signal observation will 

anonymously be recorded and stored by central in isolation of any user data.  

As a first analytical look into the collected data, we measured the percentage of 

unlabelled, or uncertain, data within the sample data set. To further show the low 

dependency on labelled observation, we plotted the proportion of labelled verses 

unlabelled data identified by WiFi and GNSS tag entries across our dataset. Figure 2.2 

demonstrate an average percentage of labelled data as low as 28.2% over the course 

of 17 month. It only considers China’s entries as it is the largest and the most 

randomly distributed data across the country.  

 

Figure 2.2: Percentage of labelled data 'GNSS' and unlabelled data 'WiFi' randomly collected by 

software development kit deployed in selected test areas in China. 

Further look at the data shows that it covers time span of over two years. This 

guarantee that our data capture the changes over time as some infrastructure 

relocate to other parts of the city or even another country. Also new or retiring 

infrastructure would be present. However, we are more interested in proofing the 
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feasibility rather than studying facts about WiFi routers life cycle. Hence, we are only 

going to present statistical measures to describe the quality of the data set used. 

Starting by number of contributing devices, we render each unique session as 

contributing device, as we do not hold user identification data. It is true that two 

different application sessions could be from one device, but for us they equivalent to 

two devices as the user started brand new request for location service. This of course 

doesn’t favour the development of algorithms, but it matches the real-world 

deployment for most cases. For example, Figure 2.3 shows the number of active users 

per month over the total 30 months of data collection.  

 

Figure 2.3: Monthly distribution of contributing users based on number of unique devices 

submitting data per month. 

Another important factor related to the accuracy of the obtained database for WiFi 

transmitters is the classification of stationary or mobile signal sources. This is 

especially important as the research expands beyond a building or city to cover 

locations across the globe. Furthermore, considering the latest trend of WiFi 

connections available in public transport and personal hot spots, the impact of these 

mobile WAPs could accumulate to become major source of errors when using the 

database for any LBS. 
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Therefore, we performed some data cleansing before we run the data through the 

algorithm to remove any WAPs that obviously classified as mobile. For this initial 

classification, a simple voting system is deployed based on optimum WiFi 

propagation distance. As we are mainly interested in WiFi signal sources that offer 

wide coverage extending from indoor to the boundary of outdoors, where our 

labelled data are collected, we set to identify an optimum propagation distance for 

our cleansing. However, we are also concerned that too wide coverage of WiFi 

coverage by single WAP would offer more noise into the algorithm than helping it 

out.  

Hence, we set the value to 300 meter as maximum allowed coverage area of WAPs.  

As we scan the data sequentially, based on time, we compare if the same WAP appear 

in observations more than 300m apart. In such case the WAP would score one 

relocation incident. Once a given WAP scored 3 or more relocations were classified 

as mobile. Table 2.2 shows the results of this initial classification for set of WAPs 

appeared in the sample dataset.  

Table 2.2: numerical analysis of sample dataset showing WAPs grouped by their mobility tag. 

 

Country Total Stationed Relocated Mobile 

China 323576 285526 19514 18536 

UK 47875 43011 2741 2123 

USA 106152 94596 5428 6128 

Total 477603 423133 27683 26787 
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Figure 2.4: Percentage analysis of WAPs mobility flag as they are extracted from sample data set. 

The figure shows combined numbers for three countries based their score for violating maximum 

WiFi propagation distance. Stationed WAPs scored 0, Relocated WAPs scored<3, Mobile WAPs 

scored ≥3.   

2.2 Measuring accuracy of WAPs database 

The next part of our methodology is assessing the quality of database. As per the 

introduction, the proposed solution employs adaptive crowd-sourcing and self-

learning algorithms to maintain, or automatically create, database of WAPs profiles. 

Justifying that our approach and the proposed algorithms produce an accurate 

estimation of signal sources locations or their signal profiles is not a straightforward 

process in the absence of ground truth data.  Basically, full database justification is 

not possible without knowing WAPs actual location globally as we do not control 

areas which data collection app users visit. Therefore, we adopted sanity tests 

evaluation based on selected samples of the database.  

However, to make sure that we do not end up overfitting the data to specific venue, 

we continue to use the full data set when running data through the system. This 

would guarantee that any impact of neighbouring data or stretch of WIFI signal 

propagation is considered when producing results. Nevertheless, we found that even 

on selected data set, it would be easier to evaluate database quality by locating smart 
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phones rather than WAPs. Hence, we are going to perform two levels of evaluation: 

known WAPs test and known smart phones test. 

Before we start describing each test in detail, it is important to mention that all data 

collection performed for these tests were performed using more than one phone. As 

we do not have record of what phones are used by end users while crowd-sourcing, 

we can’t compare or match the performance per phone model or hardware 

specification. Still the tests are valid indication of data quality as our ground truth 

data include measurements from different brands and models. To name some, we 

have used: 

- Samsung S3 - S5. 

- LG Nexus4. 

- LG Nexus5. 

- Motorola Nexus6. 

- Huawei Nexus6P 

 

2.2.1 Known WAPs tests 

To overcome the challenge of WAPs with unknown location, we adopted 

methodology of associating each mac address to an estimated ground truth coverage 

area instead of specific location. For obvious reasons, asking retailers and public 

buildings owners about their infrastructure installation plan was rolled out as an 

option immediately after our first attempt. Therefore, we started an initiative to visit 

selected test beds and record WiFi observations along with best guess as ground 

truth location manually. Recording Ground truth data is done by using finger touch 

event on an indoor map overlaid inside custom built smartphone application.  

 

Figure 2.5 demonstrates the process in few simple steps. The collected 

measurements are then processed to identify set of WAPs candidates valid for data 

evaluation. The processing includes identifying geographical area were the WAP has 

been detected with signal strength greater than -75dbm. Area size and number of 
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observations are then compared with thresholds to realise if the WAP is valid 

candidate for sanity test or not. 

 

 

Based on test we run within university buildings, Kings building campus in Edinburgh, 

95% of mac addresses were successfully located within the -75dbm coverage area. 

The 5% can be explained by edge cases where WiFi transmitters are located on the 

peripheral parts of the building so the collected observations didn’t capture a 

qualifying area according to the cut off criteria. In the example below, see Figure 2.6, 

we marked the -75dbm coverage area in red for one WAP detected in one of our test 

beds. We also show the histogram for this RSSI distribution for the same WAP.  

 

 

Figure 2.5: Collecting an estimation of ground truth measurements in one of our selected test beds 

(St.James Edinburgh). The figure shows selecting start and end points (right), then recording 

measurements as the user walk between them (left) 

Figure 2.6: Ground truth geometry estimation for WAP -75dbm coverage area recorded in one of 

our testbeds (The Centre, Edinburgh). Map coverage (right). Histogram (left) 
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To finalise, sanity tests can then be executed by comparing the crowd-sourced 

location of each candidate WAP with its ground truth known area. Errors in the 

database can then be derived by calculating the shortest distance between the 

estimated WAP location and the perimeter of its -75dbm area from ground truth 

database.  To perform this, we have utilised MySQL spatial function ST_DISTANCE- 1 

for calculating distance between two geometries, where one of them is constructed 

as point using longitude, latitude as coordinates.  and the other is the pre-calculated 

geometry. The figure below presents an example of distance calculation between 

point coordinates and polygon geometry. 

 

 

 

                                                      

1 https://dev.mysql.com/doc/refman/5.7/en/spatial-relation-functions-object-
shapes.html#function_st-distance 

Error Distance (d=7.8) 

Error Distance (d=3.4) 

Error Distance (d = 0) 

Sample Ground truth geometry 

 Estimation of WAP 

Estimated Location 

Estimated Location 

Estimated Location 

Figure 2.7: An illustration of how we calculate errors in location WAPs compared to 

reference coverage area of -75dbm 
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2.2.2 Known smart phone tests 

In these tests, we collected WiFi observations for one minute in each test point within 

every test bed building. This would usually provide us with an average of 10 

observations per test point, depend on the phone hardware specifications WiFi 

scanning time may vary. At the same time, the ground truth location L0 of each test 

point is recorded by pointing on an indoor map using mobile app specifically 

developed to do so. However, we still estimate the user errors of such process by 

circle with 5m diameter around the map extracted ground truth location to substitute 

for any minor map errors or fat finger user errors. The extracted ground truth data 

files are then stored to perform smart phone positioning sanity tests. Figure 2.8 show 

the final layout of ground truth points in St.James shopping centre in Edinburgh. 

 

 

When executing such sanity tests, we used snapshot of fully crowd-sourced WAPs 

database to query for smart phone best fit position Lt using individual observation 

from the extracted ground truth data files. The two positions are then compared to 

calculate positioning errors Derr as per the equation (2.1): 

𝐷𝑒𝑟𝑟   =  𝑀𝐴𝑋
 
 ( (𝑑𝑔𝑒𝑜   −    5) ,  0  ) (2.1) 

where dgeo is calculated as geometry distance between two points. 

Figure 2.8: Recording ground truth on an indoor map layout over mobile screen. 
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2.2.3 Selecting test beds for evaluation  

As stated above, our evaluation process evolved around streaming geographically 

selected sets of observation covering test areas around various parts of the world. 

The cluster of servers used to process and crunch these numbers are covered in next 

section. This section only describes the produced dataset and the tests performed to 

verify data quality. Once all data is processed, we obtained an estimation of where 

each WAP is located globally. The output is then used to perform sanity tests as 

prescribed in previous section. Below we have provided illustration of WAPs 

distribution in selected cities or areas that we will be using throughout these tests. 

  

Figure 2.9: WAPs recorded in the Greater City of London showing the coverage and distribution 
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Figure 2.10: WAPs recorded in the City of Edinburgh showing coverage and distribution 

 

 Figure 2.11: WAPs distribution across San.Francisco downtown, California, USA  
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These three selected areas show major densities outside China. As can be 

observed from the figures, most of the distribution correlates with main 

roads and sectors in each city, clearly visible in San Francisco. This can be 

explained by the uncontrollable collection as these data came from specific 

use cases assigned by the host application. For example, a map or 

navigation mobile app users would only use it when driving or walking 

through complex territory such as shopping mall, University or airport. 

However, the special case of China was more of social networking app that 

is used everywhere including public areas, restaurants, work offices or even 

homes. With large set of data around Beijing city, we were unable to plot 

each WAP to show details distribution. Therefore, we have represented the 

distribution by plotting grid density map for Beijing and surrounding areas 

in China. 

 

Figure 2.12: WAPs density around Beijing shown in heat map style based on grid. 

As we have now identified four major areas globally for performing sanity tests, we 

then nominated specific buildings in these selected cities based on ground truth data 
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availability, building dimensions, WAPs density and accessibility. We attempted to 

cover various types of areas with variations of WAPs density, but to be noted 

Edinburgh got our maximum attention due to the ease of access to collect ground 

truth.  Table 2.3 shows our list of selected test beds. 

Table 2.3: List of venues used to perform sanity tests and verify results. 

CITY VENUE WAPS SIZE 

EDINBURGH, UK UoE – Alrick Building 112 56m x 17m 

EDINBURGH, UK UoE – Hudson Bear Building 89 38m x 38m 

EDINBURGH, UK UoE - Sanderson Building 49 62m x 49m 

EDINBURGH, UK St.James Shopping Centre 913 238m x 212m 

EDINBURGH, UK TheCentre Shopping Centre 547 687m x 334m 

LONDON, UK Westfield Shopping Centre 2346 384m x 384m 

SAN.FRANCISCO, USA Westfield Shopping Centre 3488 174m x 167m 

BEIJING, CHINA ECMAll Shopping Centre 1249 159m x 109m 

BEIJING, CHINA DreamPort Shopping Centre 3653 393m x 116m 

BEIJING, CHINA Aegean Shopping Centre 2816 172m x 96m 

For each of these identified venues we obtained test points labelled data to identify 

set of WAPs that satisfy the known WAPs test criteria stated in 0. Then reference area 

for each candidate WAP is extracted using test points reported RSSI values.   Below 

we provide summary of each individual venue to demonstrate its suitability. 
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Table 2.4: Statistical numbers showing coverage of sanity tests qualified measurements in each 

selected test bed. 

VENUE TOTOAL 

WAPS 

TEST POINTS QUALIFIED 

WAPS 

% 

ALRICK BUILDING, UK 112 18 24 21% 

HUDSON BEARE BUILDING, UK 89 23 32 36% 

SANDERSON BUILDING, UK 49 27 17 35% 

ST.JAMES, UK 913 59 238 26% 

THECENTRE, UK 547 86 298 54% 

WESTFIELD, UK 2346 56 911 39% 

WESTFIELD, USA 3488 43 1587 45% 

ECMALL, CHINA 1249 28 836 67% 

DREAMPORT, CHINA 3653 98 1765 48% 

AEGEAN,CHINA 2816 34 1912 68% 

2.3 Creating scalable framework 

One major challenge of any algorithm that adopt global deployment approach is that 

it requires extensive maintenance efforts to deploy in larger scale. This includes two 

major challenges: scalability of data processors and searchable data storage. As 

shown in literature, all prior art research suggests storing radio-map of an area 

permanently [3]. This radio-map varies in size and structure, but in general they share 

the same scalability limitation when more than one venue is included in the data 

storage. In our approach there is no static radio-map as it changes every time new 

observations are received which help the system to overcome the recalibration 

overhead in maintaining accurate database. However, such flexibility amplifies the 

challenge of searchable data storage and data processors scalability as data 

constantly changes. Therefore, it was in our interest to present scalable data 

structure as part of the research methodology justifying its validity for universal 

coverage. 
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Figure 2.13: the proposed data processing framework for crowd-sourcing showing multi-stage 

processing algorithms to generate temporal profiles and execute LESS in an adaptive loop. 

Figure 2.13 shows the design of our data processing framework stating its high-level 

components that we are going to cover its detail in next chapter. As can be seen from 

the graph, we assume that smart phones are responsible for obtaining observations. 

At the same time, location data can either be obtained from native mobile sensors, 

such as GPS, or by performing position estimation, based on snapshot of relevant 

data from the “WAPs Data Storage”. Hence, we assume that all observations 

streamed into the proposed algorithms would already have some level of position 

associated with it. Therefore, any utilised data queue can easily be configured to 

perform the initial categorisation of data based on geographical location index and 

MAC address. The geographical location index would then be used to obtain 

reference clusters from global grid to update the temporal state of these clusters 

ensuring they contain all valid data streamed in. In addition to reference clusters, 

MAC addresses are used to obtain location data for each WAP in relation to the 

identified cluster to enable the optimisation performed in LESS [40]. 
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2.3.1 Data structure:  

Considering the scale of our dataset, accessing and locating data is designed to 

perform seamlessly when all queries to database are performed using the correct 

index. It is even more trivial that the key has some representation of data distribution, 

so data segmentation can be performed efficiently between various data regions with 

an interconnected cluster of servers. Hence both our data indexes, MAC address and 

geoindex, are carefully selected to make sure that any query to database is made by 

one of these two keys. The tables below describe the proposed data storage structure 

for WAPs, Table 2.5, and temporal Data Clusters, Table 2.6. 

Table 2.5: Data structure for WAPs describing access through data keys (vertical) or data fields 

(horizontal) 

 

Table 2.6: Data structure for Temporal Data Clusters describing data keys (vertical) or data fields 

(horizontal) 

Key  \  Fields Geoindex1 Geoindex2 Geoindex3 Geoindex4 Geoindex5 

MAC1 {Binary Data}  {Binary Data} {Binary Data}  

MAC2  {Binary Data}  {Binary Data} {Binary Data} 

Key  \  Fields MAC1 MAC2 MAC3 MAC4 MAC5 

Geoindex1-Cluster1 {Binary Data}  {Binary Data} {Binary Data}  

Geoindex1-Cluster2  {Binary Data}  {Binary Data} {Binary Data} 

Geoindex2-Cluster3 {Binary Data} {Binary Data} {Binary Data} {Binary Data} {Binary Data} 

Geoindex2-Cluster4 {Binary Data} {Binary Data}  {Binary Data} {Binary Data} 
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Using such data structure has provided us the flexibility to access almost instantly, 

less than 10ms, any record in our data storages using the designated data-keys and 

data-fields. For example, updating the probability distribution of MAC m in Cluster x 

in geoindex g, can use the data key g-x and data field m to write or read only the 

required binary data. This is now very common practice of big data and supported by 

all big data frameworks [41], [42], [43], [44], [45], [46]. 

To conclude, our system design relays on adaptive loop continuity to process 

incoming data and optimise the estimated position of access point simultaneously. 

This has enabled us to overcome the requirement for processing vast amount of data 

at the same time. Hence global scalability of our data processor can be achieved by 

adding any number of processors required as data keys can be used to prevent racing 

conditions or duplicate processing. However, in this research we only executed one 

data processor.               

2.3.2 Grid and sub-grid hierarchy 

In this section we aim describe how our global grid [47] are built for data classification 

and clustering. Designated Grid filters has previously utilised for tracking smart 

phones indoors [48]. However, such grids were more of local representative of cells 

that are defined and stored in pixilate array of shapes, either squares or octagons 

[49]. 

Utilisation of the grid as data classifier is just the reverse. Each grid-cell present the 

belief of set of rules governance what observations could be submitted by a smart 

phone within the area of such cell. Therefore, we propose that each grid-cell would 

host an approximation of probability distribution concerning pairs of RSSI and WAPs. 

Such beliefs are continuously updated as we receive more observations located 

inside each grid-cell. An obvious implementation would consider fitting an 

environmental model to each PDF or to customise grid size [50]. However, in the final 

shape of our proposed framework, we were keen to remove any dependencies on 
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pre-knowledge of the surroundings and end up utilising evenly distributed grid. 

Therefore, we chose to define the grid as a function of location based on geo-indexing 

as shown in the figure below.  

 

 

As per any Grid-based filters, our approach aims to represent the globe as small cells 

of enough size to drive positioning accuracy. Therefore, we chose to render each set 

of latitude and longitude up to 4 decimals as an indication of 10m to 20m length area. 

This made our grid operating without previous knowledge of the building shape, 

location or boundaries.  

2.4 Conclusion 

In this chapter, we have defined the source of the dataset used in our research. Our 

definition went on to describe sanity tests and methods used for accuracy 

justification. We have also provided modular overview of the framework, data 

structure and georeferenced grid for processing such large dataset. We believe that 

this chapter has provided justification for the validity of our methods and dataset to 

locate WAPs on global scale. The rest of the chapter also provides brief description 

Figure 2.14: The proposed global geo-indexing in square grid supporting multiple level in 

hierarchy structure where larger geoindex contain set of smaller geoindex areas. 
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for platform realisation and big data integration as it adds data storage indexing and 

multi-segment key to enable large scale deployment.  
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3 Locating WiFi Signal Sources 

As demonstrated in the discussion of chapter one, scalability and applicability of 

crowd-sourcing based algorithms was a major limitation when studying prior art 

solutions. Instead of attempting to permanently store and interactively locate 

unlabelled observation to frequently optimise WAPs location [26], [35], the proposed 

solution attempts to label every observation in real time. However, it is still possible 

to perform initial localisation for labelling observations periodically every 1 to 10 

minutes. To enable such labelling in real-time, our approach generates an adaptive 

descriptor of each WAP denoted here as “WAPs temporal profile”.  

 

Figure 3.1: Overview of adaptive system architecture based on continuous signal observations 

streamed and converted into temporal signal profiles 

In order to reduce the computational power and possible influence of multi-floor 

signal distribution errors, we adopted an approach to separate horizontal and vertical 

attribute of WAPs location. By introducing such segregation of (x,y) from the z during 

the phase of WAPs position estimation, we were able to solve one problem at a time. 

In addition, this approach were essential to enable deployment on large scale by 

solving for global minima that satisfy (x,y) separately from the global minima of z. 

Furthermore, we argue that the representation of z in meter is not valuable on the 
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mass scale as humans can’t easily make sense of z values without pre-knowledge of 

building vertical layout measurements. Hence, we propose to solve for (x,y) only to 

locate WAPs while we add floor level as a tag in WAP temporal profile instead of z 

value in meters. However, as discussed in the introduction, we will introduce 

algorithms to solve for floor estimation as substitute of z in chapter four of this thesis.  

As demonstrated in Figure 3.1, the major contribution of our proposed architecture 

is its complexity reduction  saving majority of  computational costs compared to the 

frameworks suggested in literature [15]. This is mainly due to the temporal profiles 

and reference clustering that allow us to process each observation only once making 

sure observations are consumable by data streaming. This chapter takes you on the 

journey of transforming labelled observations into temporal WAPs profiles.  For the 

rest of this chapter, we denote our input as set of discrete and independent 

observation   

O = {O1,O2,….On}    

where each observation Oi is defined as: 

- Mi = {m1, m2…. mm} set of WAPs  

- RSSi = {r1, r2…. rm} corresponding set of received signal strength  

- L(t) location estimation in time t with covariance Q(t). 

Having location estimation L(t) defined as temporal entity makes it only valid from 

time t till time t+ε with an error vector defined in covariance Q(t). The problem is 

then contained in calculating the location for WAPs {M} based on their appearance 

in {O} and their temporal profiles Pm. Each observation, Oi presents state of WiFi 

signals detected by mobile unit at location in space defined as Li. Obviously, values 

represented by Li(t) is either estimated by an external measurement, such as GNSS 

sensors on the mobile unit, or generated by the same system based on previously 

generated WiFi access points profiles Pm. Therefore, we also define DSi as a 

parameter of Li(t) to flag the dependency of L(t) on the temporal state of Pm. 
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Furthermore, in this research, we also expand the definition of location of any 

observation, cluster of observations or WAPs to be function of time as all parameters 

of crowd-sourced data is subject to change beyond the defined uncertainties.  

3.1 Data Classification & Data Clustering 

As new entries, or observations, are received and streamed into data classification 

and clustering algorithms, each observation would be placed correctly in the global 

grid. Similar to the usage of radio-maps for fingerprinting database, signals similarity 

is a key feature for data classification into grid locations. In our proposed classifier, 

each geoindex Gx in the grid hosts multiple hypothesis of what WiFi signals should be 

observed by devices visited Gx. Each hypothetical cluster is represented by PDF of 

signal strength RSSI measures modelled as a function of Gaussian Distribution 

(Mi,µi,σi). Where Mi is the MAC address of WAP belong to this cluster, µi  is the mean 

RSSI and σi is the standard deviation of all observations fused in the cluster head CHi.  

The utilisation, or selection, of normal distribution is justified by the fact that signal 

distraction and multipath would randomly affect measurements taken within limited 

area. With the proposed clustering and classification of RSSI measurements into 

10mx10m grid, the noise can be assumed random fading out of the mean value. 

Furthermore, as experimentally proven the condition of having random variate of 

RSSI measurements is satisfied as at least 65% of values fall within one σ if the mean 

[16], [23], [51]. All of this has encouraged us to force Gaussian distribution into the 

measurements as we stream them to be located into given geoindex of our global 

grid. Finally, with enough measurements accumulated into each geoindex, the 

representation of mean RSSI as Gaussian gets more accurate.  

Finally, our proposed solution employs an adaptive density k-mean clustering [52] on 

all observation classified to belong to geoindex Gx. The rest of this section describes 

clustering algorithm and geoindex classification in more details. 
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3.1.1 Implementation of k-mean for geoindex clustering 

K-mean algorithm is commonly used for classification and clustering of large amount 

of data. The basic clustering process appears in many data mining and data analytics 

research. The algorithms often depend on one parameter to measure distance 

between elements and what is defined as cluster heads. Therefore, it has been 

utilised by fingerprinting based indoor positioning to reduce calibration points by 

clustering them into k clusters based on pre-defined k.  As the primary distance 

calculation present in WiFi indoor positioning solutions is based on RSSI, uncertainty 

should be considered. In our research we employed density k-mean clustering [53]  

[52] to deal with uncertainty of distance estimation.   

The first step on k-means is to determine number of clusters k, which could be 

randomly set to choose any k objects as initial cluster heads. However, as we deal 

with continuous stream of data and limited distribution, only within one geoindex, 

we allow k to change as the system process further patches of observations.  Such 

adaptive implementation of k-mean clustering is simple to implement recursively in 

continuously changing environment.  

For example, let geoindex Gx be an area where the system process observations for 

the first time. Starting with k=1 all observations in the first patch will then form an 

initial cluster where the cluster head is determined based on density function λi 

representing the density of observations around an observation Oi. The steps below 

illustrate how we perform an adaptive clustering: 

1- Let m be the number of observation in the patch the system is processing, 

and d(i,j) be the Euclidian distance between Oi and Oj. 

Q = [
𝑑(1,1) ⋯ 𝑑(1,𝑚)
⋮ ⋱ ⋮

𝑑(𝑚, 1) ⋯ 𝑑(𝑚,𝑚)
] 

2- Define average distance Davg as per (3.1). 

𝐷𝑎𝑣𝑔 =
1

𝑚2
∑ ∑ 𝑑(𝑖, 𝑗)𝑚

𝑗=1
𝑚
𝑖=1 (3.1)  
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3- Define the density function λi as per (3.2). 

𝜆𝑖  (𝑂𝑖) = ∑ �̂�(𝑑(𝑖, 𝑗) − 𝐷𝑎𝑣𝑔)
𝑚
𝑗=1 (3.2)  

�̂�(𝑐) {
= 0  𝑤ℎ𝑒𝑛 𝑐 > 0 
= 1 𝑤ℎ𝑒𝑛 𝑐 < 0

 

4- Find Oi with maximum density and use it as initial cluster head for the first 

cluster CH1 

5- Define a Boolean exit flag as per (3.3) 

Exit  = �̂� (max
𝑄
(𝑑(𝑖, 𝑗))  −  ε) (3.3)    

Where: ε is the maximum Euclidean distance allowed in a geoindex. 

6- If Exit = 0, remove all observations where 𝑑(𝑂𝑖 ,  𝐶𝐻𝑘)  ≤  𝜀  , else stop the 

process and return list of CH1 …. CHk 

7- Repeat to locate CHk+1 

Once set of cluster heads, Ch1 …CHk, is finalised, the usual K-mean is applied to 

classify each observation into the nearest cluster. Then all observations belonging to 

each cluster is fused to recalculate new cluster head. However, the fusion of multiple 

observations is performed assuming that RSSI measures follow normal distribution, 

which is valid in a limited space such as our defined geoindex. Therefore, we 

proposed to separate each observation into set of WAPs before fusion to allow 

modelling RSSI measurements into set of probability distribution functions 

PDFi (Mi, Gx). 

To show our proposed fusion algorithm in more detail, we could summarise it in 

symbolic collection of mathematical structures, arrays. Let [O1-Ok] be set of 

observations clustered for fusion to create CHx. The first step in the fusion process is 

creating list of combined WAPs  �⃗⃗� = ⋃ 𝑚𝑖
𝐾
𝑖=1 , where each unique WAP  𝑚𝑖  ∈  �⃗⃗�  is 

described by the following structure:  

✓ Ki: number of times mi appeared in the set of observations. 

✓ RSSIi [ri1 - rki]: an array of all RSSI measures for WAP mi. 
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✓ Δi: The score of mi compared to all WAPs in  �⃗⃗� , calculated by equation (3.4). 

 

𝛥𝑖   =  
𝑚𝑎𝑥
𝑗 : 1→ 𝐾𝑖

(𝑟𝑖𝑗)

2 × 𝑚𝑎𝑥
𝑖: 1→ 𝐾

( 𝑚𝑎𝑥
𝑗 : 1→ 𝐾𝑖

(𝑟𝑖𝑗))

 +  
𝐾𝑖

2 × 𝐾
         (3.4)    

Where: 

Ki is the number of RSSI readings for the WAP mi 

rj is the RSSI reading j of WAP mi 

K is the total number of readings in the cluster 

From the above equation we intend to represent the quality of given WAP in a form 

of score Δi. In the literature, it appears that there are two methods of calculating the 

robustness if WAP appearance in an area as fraction 
𝐾𝑖

 𝐾
. Such metric only introduces 

how many times it appears compared to the total number of observations within the 

cluster head CH. However, we wanted to introduce an influence factor added as 

fraction  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑆𝑆𝐼 𝑓𝑜𝑟 𝑊𝐴𝑃 𝑚𝑖

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑆𝑆𝐼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑊𝐴𝑃𝑠
. Hence, we assigned a weightage of 0.5 to 

robustness and influence metrics and combined them in one score metric. 

Once the score is calculated per WAP, the next step is to filter out any WAP that is 

not scoring high enough compared observations in batch we are processing. In our 

research, we used threshold of Δi>0.2 to remove unreliable WAPs from the temporal 

profile we are creating to describe each Cluster head.  Finally, all RSSI measurements, 

associated with each WAP passing the score filter, fed into normal distribution 

function to extract (ki,µi,σi) to compose Pµ. 

∀𝑚𝑖  ∈   �⃗⃗�  ∶ :  𝑁𝑜𝑟𝑚(𝑅𝑆𝑆𝐼𝑖)  
𝑦𝑖𝑒𝑙𝑑𝑠
→       (

𝜇𝑖
𝜎𝑖
) 

As RSSI normal distribution function produces temporal profile for the cluster CHx, 

location data of all observations would also be fused together to compose location li 

of the cluster. To obtain this location we utilised an improved version of weighted-
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centroid [25], [54]. However, in our implementation of weighted centroid, we didn’t 

only consider RSSI when computing weight per reference point. Instead, we have 

included the uncertainty in observations localisation errors. Hence, each observation 

Oi is assigned with weight wi based on RSSI differential values to the fused signal 

profile Pµ. Equations (3.5) and (3.6) demonstrate how the fusion is done based on m 

observations and n WAPs in Pµ. WAPs not part of Pµ are ignored as they do not 

contribute to the final output of the fusion function. 

𝐿𝜇  =  
∑ (𝑤𝑖. 𝑙𝑖)
𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

(3.5) 

𝑤𝑖 =
𝑛

∑ (10
|𝑟𝑖𝑗 − �̅�𝑗|

10 )𝑛
𝑗=1

+
1

𝑑𝑒𝑡(𝑞𝑖). 𝑑𝑠𝑖
(3.6)

 

rij represents RSSI measure for WAP with index j in observation Oi. 

�̅�j represents RSSI measure for WAP with index j in the cluster head signal profile Pµ. 

qi represents the covariance matrix for location li in observation Oi. 

dsi represents the dependency score for location data li in observation Oi. 

Before we complete the reference cluster data structure, we also include covariance 

matrix Qµ.  In another words, our fusion function estimates the spread of location 

data among the cluster in a form simple (x ,y) covariance matrix Qµ, as shown in (3.7). 

This value would play an important role when we start consuming the location data 

to optimise WAPs and reference clusters relationship. In addition, another measure 

of quality proposed in this research is the fused dependency score assigned to each 

estimated location Lµ. This score is computed by the equation (3.8).  
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𝑄μ(x, y)  =  
∑ (𝐿𝑖(𝑥)  −  𝐿μ(𝑥)) . (𝐿𝑖(𝑦)  −  𝐿μ(𝑦))
𝑚
𝑖=1

𝑚
(3.7) 

DSμ   =  min ( min
𝑖=1: 𝑖≤𝑚

(𝑑𝑠𝑖) + 1,
∑ (𝑤𝑖. 𝑑𝑠𝑖)
𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

) (3.8)   

Figure 3.2 provides visual description to how the fusion is done in a form of block 

diagram. The example shown in Figure 3.2 is fusion of k observation generating the 

total of n qualified WAPs on a set of clusters. 

In addition to clustering and fusion, the dependency on signals similarity classification 

to assign observation to specific geoindex forms the second part of this module. 

Nevertheless, it is more common to calculate the dissimilarity, or WiFi distance, as a 

reverse indication to similarity. In this research we used two similarity calculation 

algorithms, Euclidian distance and PDF based similarity. Additionally, as our grid allow 

us to retrieve all neighbouring geoindices for any observation Oi, similarity is 

calculated for the geoindex that claim the observation, based on location, as well as 

all neighbouring geoindices. 

To estimate the complexity of our proposed classification and clustering algorithm, 

we set to measure number of operations a machine would take to perform the 

proposed solution on a set of N observation with M WAPs in each observation. For 

such case, taking into account the maximum possible execution, we estimated the 

complexity as per the following list: 

Weighted Centroid   O(2.N.M) 

Combining WAPs and Filter based on Δi  O(N.M) 

Calculating Normal Distribution Parameters  O(2.N.M) 

Calculating Dependency score    O(N.M) 

As can be seen from the broken down complexity figures above, total number of 

operations in the proposed algorithm can be estimated to O(6.N.M). However, as we 



Adaptive Indoor Positioning System based on Locating Globally Deployed WiFi Signal Sources 

Locating Signal Sources 51 

scale the number of observations N and number of WAPs M to large numbers, the 

sequential execution of 6 components in the algorithm is fixed. Hence the overall 

complexity can be represented by the total operation in the range of:  O(N.M). 
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Figure 3.2: Block diagram of fusion algorithm generating temporal profile for set of observations 

classified into one cluster head. The diagram shows how the input data is formatted or transformed at 

each stage to produce location data and signal PDF data.  
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3.1.2 Euclidian distance  

Euclidean distance is commonly used in fingerprinting positioning algorithms to 

measure signals similarity between set of calibration points and an online 

observation with unknown position. Therefore, it is now very well studied to us RSSI 

of several WAPs as a measure of Euclidian distance [26] [51]. To achieve this, RSSI 

readings of n WAPs could be presented as signals FP set {rssw1A,rssw2A…rsswnA} for 

point A and {rssw1B,rssw2B…rsswnB} for point B. The indexes and values in the two 

vectors should be respecting the order and the availability of RSSI measures from all 

WAPs in the two sets. Then the two sets are used to determining the dissimilarity 

between signals in point A and signals in point B. The normalised distance d, the 

smaller d the more similar A and B, are given as per the Equation (3.9). 

𝑑(𝐴, 𝐵) = √
1

𝑛
∑(𝑅𝑆𝑆𝑤𝑖  −  𝑅𝑆𝑆𝑤𝑖

∗ )
2

𝑛

𝑖=1

(3.9) 

n: number of WAPs in both sets, both share the same list of WAPs. 

𝑅𝑆𝑆𝑤𝑖: is the received signal strength for access point wi at point A. 

𝑅𝑆𝑆𝑤𝑖
∗ : is the received signal strength for access point wi at point B. 

An obvious limitation of the above equation is that the set of WAPs in any given two 

points are very likely to be different. This cover various possibilities from dynamically 

changing environments, where WAPs could change, unstable WAPs or observations 

that are far enough to encounter variation in WAPs. To overcome this limitation, the 

authors of [55] defined thresholds to filter the list of WAPs before it is used in distance 

calculation. However, a simple solution could be used by setting default RSSI value to 

missing WAPs from any given observation. In our research we used the same 

thresholds as per [55] with default minimum RSSI set to -90 dbm. 
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Furthermore, considering the classification problem of crowd-sourced data for 

dynamically changing environment, we only have one vector for observations as it 

streams into the classification algorithm. On contrast, our grid is constantly changing 

as the set of clusters, or temporal profiles, are not set of calibration points. Hence, to 

measure the similarity of any observation to specific geoindex, we recreate the 

calibration point RSSI set in equation (12) from set of RSSI mean values [µ1 … µn] for 

each cluster head in geoindex Gx. The distance between an observation O and Gx are 

then estimated as the local minimum of the function d(O, Pµj) where Pµj  is the 

temporal profile of cluster head j in geoindex Gx. 

3.1.3 PDF based similarity 

Similar to Euclidian distance, this method utilises temporal profiles Pµ in a given 

geoindex Gx to calculate final probability of an observation Oi belonging to Gx. The 

concept of this probability calculation assumes that all WAPs in the same temporal 

profile have independent probability distribution. Therefore, the probability of an 

observation Oi belonging to cluster CHx with k WAPs, is given by equations (3.10) 

(3.11). To consider the justification and the proof of such probability calculation, 

readers can refer to [16] for more details.  

P(𝑂𝑖,  𝐶𝐻𝑥)  =  ∏𝑃𝐷𝐹(𝑟𝑖𝑗   ,    𝜇𝑥𝑗   ,      𝜎𝑥𝑗)

𝐾

𝑗=1

  (3.10) 

PDF(r, μ, σ)   =   
1

√2π.  σ
. 𝑒
−
1
2σ2

.(𝑟 − μ)2
(3.11) 

rij: is the RSSI reading of WAP j in the observation i. 

 𝜇𝑥𝑗: is the mean of the RSSI distribution of WAP j in the profile of CHx. 

σxj: is the standard deviation of the RSSI distribution of WAP j in the profile of CHx. 
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On the other hand, PDF based similarity does provide probability instead of distance. 

Therefore, local maximum of the probability function (3.10) is direct indication to the 

probability of Oi to belong to geoindex Gx. Nevertheless, for the consistency of one 

measurement used in clustering algorithm, distance can also be derived from the 

maximum probability by the following: 

𝐷(𝑂𝑖, 𝐶𝐻𝑥)  =   (1   −   𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 (𝑃(𝑂𝑖,  𝐶𝐻𝑥))) × 𝑀𝑎𝑥𝐷  (3.12) 

MaxD: is a configuration parameter represent the maximum allowed distance for an 

observation to belong to a geoindex. In this research, we use MaxD = 50m. 

In the normalisation phase of the probability function, as appeared on equation 3.12, 

we aim to produce linearly distributed values for the function 𝑃(𝑂𝑖,  𝐶𝐻𝑥) so that 

probability numbers cover all range between [0 - 1] when observations get more 

similar to the given geoindex signal profile. However, as this can’t be guaranteed on 

all cases, we have limited the use of this distance model to comparison between 

neighbouring geoindices to avoid the requirement of converting probability numbers 

to distance. 

3.2 Estimating Location of Signal Sources 

After we completed the classification and clustering of observation into temporal 

cluster heads, represented by each Gaussian PDF on set of geoindices, we set to 

examine an iterative trilateration approach to solve for optimal locations for all WAPs 

appeared in our signal observations clusters. Therefore, we developed our novel 

approach based on mass-spring relaxation. Our proposed implementation of mass-

spring consumes reference observations in form of RSSI, covariance and location data 

derived from temporal profiles generated during the classification and clustering 

stage. The reader should refer to Figure 3.2 for visual dependency of these two 

processes. Nevertheless, our novel implementation also accommodates for outlier 

detection before it executes the proposed optimisation algorithm. Therefore, before 
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we describe our algorithm in more details, let’s clarify outliers detection and 

mitigation.  

Considering the stream of temporal profiles processed in the patch of time t, denoted 

here as TP(t), it is very likely that some WAPs shows higher level of noise compared 

to others. Therefore, before we attempt to locate any WAP, we compare the set of 

cluster heads TP(t) with what the algorithm previously processed TP(t-1) to identify 

any possible outlier and merge any clusters that show high similarity. The following 

list of behaviours are monitored by the proposed outlier detection module: 

- WAP no longer appear in any observation in the area are removed from TP(t-1). 

- WAPs appear in only one cluster across the processed area are removed from TP(t). 

- Matching clusters are fused together. Matching clusters are identified based on 

condition:    D(CHi , CHj) < ε1 

Where ε1 represents dissimilarity or distance threshold for 10m distance. 

- Conflicting score is calculated based on simple voting system as each cluster   𝐶𝐻𝑖 adds 

conflict score of 1 to any neighbouring cluster  𝐶𝐻𝑗 if “Vote Conflicted” function, as per 

(3.13), returns True.   

 

𝑉𝑜𝑡𝑒 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑒𝑑: : 𝐷( 𝐶𝐻𝑖 ,  𝐶𝐻𝑗  )  >  𝜀2 .   𝑚𝑎𝑥(𝐶𝐻𝑗(𝐷𝑆𝜇) , 𝐶𝐻𝑖(𝐷𝑆𝜇)   )   (3.13)  

ε2: is the maximum dissimilarity/distance allowed between two neighbouring 

geoindices. 

CHj (DSµ): is the dependency score for the cluster head CHj. 

 

Once all clusters are finalised and outliers are mitigated, we are now ready to 

compose input vector per WAP and estimate initial location for each signal source. 

The sole purpose for the initial estimation is to allow extracting signal propagation 

parameters to estimate distance to source (DtS) value for each WAP in each cluster. 

In addition, an initial estimation also is required for an iterative approach. Therefore, 
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we construct selected set of observation references vector per WAP, for example 𝑀𝑖⃗⃗ ⃗⃗   

combine k selected labelled observations for WAP Mi in vector such as: 

𝑀𝑖⃗⃗ ⃗⃗    ∷  ⋃(𝐿𝑗  ,  𝑤𝑖𝑗)

𝐾

𝑗=1

 

Lij: is the location of cluster j which contain an observation of WAP mi. 

Wij: is the weightage assigned to Lj based on Pj -> (µi , σi ) for WAP mi and other 
quality parameters such as Qj, DSj. We compute Wij as shown in Equation (3.14): 

𝑤𝑖𝑗 =
1

(10
| μ𝑖| − σ𝑖 − 𝑇𝑟𝑖

10 )

+
1

𝑑𝑒𝑡(𝑄𝑖). 𝐷𝑆𝑗
    (3.14)

 

Tri is the transmitted power set as 30dbm in this research. 

Qi is the covariance matrix for WAP mi 

DSi is the dependency score for cluster chj 

Once each WAP is allocated with references vector, the process of computing its 

initial location is simply made using weighted centroid as per equation (3.5). 

Furthermore, Each WAP location is then compared with each entry in references 

vector to produce list of all geoindices between the signal source and the 

measurement point. In return this list is used to pull from pretrained database an 

estimation for each pair if they have line of sight relation (LoS) or none line of sight 

(NLoS). The process of obtaining these LoS or NLoS probability is here referred to as 

LoS (Gx1, Gx2) function. This function follows the same hypothesis testing 

classification approach described by [39]. However, in this research we propose an 

adaptive mitigation instead of static model for either LoS or NLoS, we modelled the 

estimated attenuation between the transmitter and receiver when using log-distance 

pathloss as per the following: 
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𝑃𝑜𝑤𝑒𝑟(𝑑)  =  𝑟0  −   10𝑛𝑙𝑜𝑔(𝑑)  −  ∑𝐿𝑜𝑆 (𝐺𝑖 ,  𝐺𝑖−1).𝑊

𝑔

𝑖=1

    (3.15) 

r0: is the reference RSSI at 1m distance from the transmitter. 

n: pathloss exponent  

g: number of geoindices between the reference point and the estimated transmitter 

location. 

W: is an average signal attenuation per wall [23]. 

σ: is the standard deviation of RSSI reported at distance d. 

However, as stated above, we are interested in calculating distance to source, rather 

than Power(d). This can be simply done by considering that Power(d) = µ, where µ 

represent the mean RSSI measurement for the reference point in question. We can 

then write the same equation as: 

𝐷𝑡𝑆  =  10
𝑃𝑟0 −  𝜇 − ∑ 𝐿𝑜𝑆 (𝐺𝑖 , 𝐺𝑖−1).𝑊

𝑔
𝑖=1
10𝑛      (3.16) 

Finally, we put everything together in  Figure 3.3 to demonstrate modular design for 

the proposed data flow. The proposed flow reads input data as set of temporal 

profiles for current and previous estimation CH(t) , CH(t-1) and output is the 

estimated location of each signal source [M1- Mn]. As mentioned before, the same 

optimisation algorithm also updates reference clusters and output new set of 

estimated temporal profiles denoted as CH(t+1). 
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Figure 3.3: Block diagram showing signal source location estimation algorithm. The figure 

demonstrates clusters and temporal profiles data flow through adaptive trilateration. 
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3.2.1   iterative trilateration 

This approach is basically an iterative reduction of distance mean square error cost 

function. However as shown in literature [5] [35], this is very commonly classified as 

mutual localisation problem. Therefore, the proposed algorithm should not only 

estimate the location of signal sources, it also optimises the predetermined location 

of each reference cluster CHi. To achieve this we define a local cost function E(CHx,Pi) 

as the root square mean error of distance between CHx, as set of reference clusters 

<CH1,CH2..CHk>, and the estimated position Pi for the WAP Mi. 

𝐸(𝐿, 𝑃) = √
1

𝑘
∑(√(𝑋𝑙𝑖  −  𝑋𝑃)

2
+ (𝑌𝑙𝑖  −  𝑌𝑃)

2
 − 𝐷𝑡𝑆𝑖 )

2𝑘

𝑖=1

(3.17) 

Thus, an initial stage is proposed to solve this optimisation problem by finding a value 

for position Pi of WAP (i) that minimise local cost E in (3.17). To identify the local 

minima, we adopt mass spring relaxation approach [36] by modelling each WAP as 

the centre of gravity between set of springs representing its relation to all reference 

clusters.  

To further describe our mass-spring relaxation modelling based on our predefined 

terms, let’s denote the graph G:[P0 , L , D] as shown in Figure 3.4. Where P0 is initial 

position estimation, L is anchor positions set <l1 l2 ... lk> denoted as the positions 

assigned to each reference cluster and D represent graph edges dij as optimum 

distance between a given central node position Pi and the corresponding anchor 

node position lj. To obtain a stable state of mass-spring relaxation we would place 

the central node P of graph G in the optimum position that satisfy all edges in D 

without relocating anchor nodes L.  
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To generalise, let’s try to present any given wirelessly connected network as graph 

components defined as per the following list: 

Anchor node (lJ ): is a node that we were able to estimate its position with 

covariance, or error, less than threshold. However, first phase of such 

iterative relaxation always treats all reference clusters as anchor nodes. 

Central node (P ): is a node that we are optimising its position or its position 

is still unknown. For this phase we are representing each WAP as central node. 

However, each reference cluster could also be central node in a graph, if 

WAPs were presented as anchor nodes. 

Relaxed Edge Distance (di ): is the distance estimated between two nodes 

based on the reported signal loss in any communication between them. In our 

case this is denoted by the estimation of distance to source DtSi as graph edge 

between each WAP and reference cluster.  

Graph Edge Distance (�̃�i): is the distance estimated between two nodes 

based on their estimated positions. 

Figure 3.4: Example of mass-spring relaxation shows central node position P0  and set of 

anchor references l1-l4 in a graph. 
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Connectivity Degree (c ): is a numerical measurement of how many hops are 

required to estimate “Edge Distance” between two nodes. The example 

shown in graph G, demonstrate connectivity degree of 1. However, in this 

research we would utilise connectivity degree only up to 2, where second 

level of connectivity is used to estimate the edge distance between two 

WAPs. 

Graph Tension (τ = ∑τi ):  is the sum of persistence errors between estimated 

positions of all graph nodes and their relaxed edge distances.  In other words, 

this represents the sum of tensions caused by anchors nodes place too close 

or too far from central node.  

In this research we estimate the tension between two nodes as the absolute 

difference between relaxed edge distance and graph edge distance for the edge 

between them. 

𝜏𝑖 =  �̃�𝑖     −     𝑑𝑖 (3.18)  

To avoid the usual computational overhead of managing multidimensional graphs of 

complex network, an iterative optimisation approach is adopted. In practice, we aim 

to achieve an optimised state of each network of reference clusters and WAPs. The 

optimisation process can be formulated as minimisation of graph tension τ over 

vector points {P, <l1,l2,…lk>}. These tensions then enforce change in the positioning 

of P based on the following calculated force: 

 𝐹 =  
1

𝑛
∑ (

𝜏𝑖.(�⃗�  − 𝑙𝑖⃗⃗ )

�̃�𝑖
)𝑛

𝑖=1 (3.19)  

 Hence, on each iteration we attempt to minimise the total force F by moving the 

estimated position of central node P in the same direction as total force F. The figure 

below illustrates the modelling on mass-spring during an optimisation of central node 

position. 
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3.2.2   Single Connectivity Mass-Spring 

Based on single connectivity problem, we only attempt to optimise each node in the 

graph, based on its distance to plurality of nodes those share an edge with it. Moving 

back to mass-spring algorithm, the algorithm modelled nodes as masses and edges 

as springs spread between them. The natural length of each spring in its relaxed state 

is optimum relaxed distance di. Nevertheless, as springs can be compressed or 

stretched to allow a given graph distance ri, it develops tension τi and force fi trying 

to go back to relaxed state.  The basic gravity law applies to the relationship between 

these masses and springs governing positions, tensions, and forces on the network at 

any time. General network optimisation of mass-spring model resolves by finding 

optimum positions of all masses.  

 

Figure 3.5: Modelling forces in mass-spring as self-organising network connecting each WAP to 

reference observations clusters.  

For example, let the relaxed estimated distance of dij separate an access point wi and 

cluster cj. Based on current positions of both nodes the spring connecting them 

develop force F that either pushes nodes apart or pull them closer based on their 

graph distance rij being greater or smaller dij. However, this force, does not apply to 



Adaptive Indoor Positioning System based on Locating Globally Deployed WiFi Signal Sources 

Locating Signal Sources 64 

both nodes equally. Instead, each node takes proportion of the force based on its 

own flexibility. In most implementations, anchor nodes reaction to such force is zero. 

However, in our implementation of mass-spring we allow anchor nodes to share a 

small proportion of these forces as long as it remains within the location covariance 

area calculated during clustering phase. Then, each step of our iterative network 

localisation process moves wi and cj in the direction of the force F. Finally, the process 

stops when total force acting on every node is small enough.  

As demonstrated in Algorithm 3.1, we implemented mass-spring algorithm using 

single connectivity measure between WAPs and reference clusters. To make sure 

that locate the optimum point quickly and efficiently, we initialised the algorithm to 

use only 0.3 of force proportion when moving the nodes before recalculating stress. 

We also selected relatively the upper limit for force termination as 0.5, to make sure 

we do not go into resource consuming loops chasing very fine accuracy, which is 

unlikely for indoor environment. Finally, we choose to terminate if the optimisation 

passes 10 attempts to minimise the tension and failed to bring the force absolute 

value down. Hence, we initiated incident limit to 10. 

Algorithm 3.1: Single Connectivity Mass-Spring Algorithm 

Get list of reference clusters CH 

Get list of WAPs to optimise M 

Sort M by tension descending 

Initialize Clusters Impact as empty array 

 

Foreach mi in M 

Initialize force proportion to 0.3 

Initialize force termination to 0.5 

Initialize incident limit to 10 

 

Initialize total force to NULL 
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Initialize incidents to 0 

Initialize Positions as empty array 

If Pi exists 

Set central_position to  Pi 

Set central_wieght to wi 

Else 

Pi = Weighted Centroid (mi, CH) 

Set cenral_position to  Pi 

 

While LENGTH(total force) > force termination OR total force is NULL 

Initialize Current Force as 0 

Initialize Anchors Count as 0 

Initialize Anchors Impact as empty array 

Foreach chj in CH with connection to mi 

Calculate relaxed distance DtSij from µi in cluster chj 

Calculate current distance rij between central_position and Pj 

Compute tension τij as DtSij – rij 

Compute direction vector Aij as (central_position – Pj) /rij 

Compute force vector fij as τij . Aij 

Set Central_Score as wi/(wi+wj) //where wi is the weightage assigned to mi 

Set Anchor_Score as wj/(wi+wj) //where wj is the weightage assigned to cluster chj 

Add Central_Score. fij to Current Force 

Add Anchor_Score.(-1). fij to Anchors Impact[j] 

Set Anchors Count  to Anchors Count+1 

END Foreach 

 

If total force is NOT NULL AND Current Force > total force 

Set incidents to incidents+1 

Set total force to Current Force/Anchor Count  

Set Central Position to Central Position + (force proportion . total force) 

Set force to LENGTH(total force) 

Add force, Central Position, Anchors Impact to Positions Array 
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If incidents> incident limit 

Break 

END While 

 

Sort Positions by force incrementing  

Set Pi to POP (Positions -> Central Position) 

Merge POP (Positions -> Anchors Impact) to Clusters Impact 

Set Qi to COVARIANCE(Positions) 

Set Wi to DET(Qi).DSi //where DSi is the dependency score of mi 

//Start Anchors Optimisation 

Initialise AnchorsForces to empty array 

Initialise AnchorsCount to empty array 

 

Foreach j in Clusters Impact 

Set AnchorsForces[j]  as SUM of AnchorImpact[j] 

Set AnchorsCount[j] as COUNT of AnchorsCount[j] 

Set Pj to Pj + ( force proportion . AnchorsForces[j] / AnchorsCount[j] ) 

END Foreach 

 

END Foreach 

Output CH 

Output M 

 

The most common implementation of mass-spring [36] treats anchor nodes with hard 

positions and central node with soft position. This imply that only central nodes can 

move according to forces applied during optimisation. We found this limitation is not 

suited for crowd-sourcing as errors in reference clusters would permanently limit 

WAPs localisation. Therefore, as per the algorithm described above, we devised the 

force on each spring on both directions. However, not both sides of the spring will 

have the same share of tension. Instead, we derived each side share through 
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weighting. To be specific we used the same weighting described in section 3.2.1 for 

weighted centroid algorithm.    

During the testing of mass-spring algorithm, we observed that edge cases could 

generate forces pushing some WAPs outside the boundaries. These extreme forces 

mostly appear due to errors in reference clusters, such as lack of coverage on one 

side of the building. In the following example, we set up controlled environment 

populated with 5 signal sources in same building and try to measure errors in locating 

these WAPs using Mass-Spring. This sample data represented the case of dispersed 

observations introducing errors from the far north east of the building. 

 

Figure 3.6: Errors in positioning signal sources in controlled environment simulating the edge case 

of measurements only distributed at the edge of the building. Each colour code represents one signal 

source with the line connecting ground truth location (hollow) to the estimated location (solid). 

As can be seen from Figure 3.6, some signal sources were positioned very close to 

their ground truth location. In contrast, due to shifted measurements for three of the 

signal sources, errors in distance estimation has pushed the position out of the 

centroid area. To address such limitation, we have set our target to try limiting the 

freedom of mass-spring forces to limit the impact of outliers.  
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3.2.3   Single Connectivity Mass-Spring with Limited Freedom 

To resolve the edge case problem that we have observed with mass-spring algorithm, 

we set to examine possible ways of customising mass-spring algorithm to add limited 

freedom on nodes. Therefore, based on each node positioning confidence, an area of 

freedom is defined.        

To set a limit on how far each node can move when applying optimisation forces, we 

defined the limited freedom area for each node based on its covariance amplified by 

its dependency score. Hence, when a node reaches the end of its area of freedom, it 

becomes fixed and start enforcing most of the mass force, or tension, to the other 

side of the spring. To be more specific, the covariance matrix represents the 

confidence in node position while dependency score is directly derived from the 

presence of labelled data, such as GPS. Combing both measures guarantees that 

reference clusters or WAPs located at the edge of the building, where GNSS are very 

likely to be present, are limited in freedom and moves only around their central mean 

position. On the other hand, WAPs and reference clusters deep indoors would enjoy 

more freedom as both covariance and dependency score enlarged on the absence of 

labelled data. Therefore, this version of mass-spring is expected to guard hard 

references outdoors or under skylights, while produce more optimised Nodes 

elsewhere. 

To compute the area of freedom, we simply multiply the covariance matrix Qi with 

the dependency score value DSi. The result is an amplified covariance matrix Qfi each 

of its element can be described as   𝑄𝑓(𝑖, 𝑗)  =    𝐷𝑆. 𝑄(𝑖, 𝑗)    

Once we have the new Qfi matrix, we can then use it as positioning boundaries each 

time we have total force applied to node Ni. This can be presented number of 

standard deviations in the force vector. Therefore, an allowable force of up to twice 

the length of standard vector is allowed. Given all of that the decision of crossing 

borders is formed by equation (3.20). 
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𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑓𝑜𝑟𝑐𝑒  =  √(𝐹. 𝑄𝑓
−1
). (𝐹. 𝑄𝑓

−1
)
𝑇
  <  2 (3.20) 

This modification is then applied to the algorithm by recalculating the force F every 

time it drives the position outside the allowable area. In order to respect the spring 

direction and only influence the force strength, we defined the factor of 0.7 as our 

scaling down factor. Hence any force vector fails the above criteria is then scaled 

down by multiplying its dimensions by the scaling factor.  The graph below illustrates 

a sample case for force vector violating the freedom area boundaries rules. 

 

 

As can be seen for the graph, force vector F is derived from the central node position 

before we start optimisation. Depend on how many rounds of optimisation we have 

already done; the node position would be affected. Therefore, we compute the 

vector F as P0 – Pi+1. To clarify it further, we have modified the pseudo code to reflect 

this change in the algorithm. The new version is denoted as mass-spring with limited 

freedom (MSLF).  

Figure 3.7: An iterative position optimisation through mass-spring. The original force vector Fi shown in 

Blue. The scaled down Fi to be within freedom area is shown in red. 
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Algorithm 3.2: Single Connectivity Mass-Spring Algorithm with Limited Freedom 

Get list of reference clusters CH 

Get list of WAPs to optimise M 

Sort M by tension descending 

Initialize Clusters Impact as empty array 

 

Foreach mi in M 

Initialize force proportion to 0.3 

Initialize force termination to 0.5 

Initialize incident limit to 10 

Initialize total force to NULL 

Initialize incidents to 0 

Initialize Positions as empty array 

If Pi exists 

Set central_position to  Pi 

Set central_wieght to wi 

Else 

Pi = Weighted Centroid (mi, CH) 

Set central_position to  Pi 

 

While LENGTH(total force) > force termination OR total force is NULL 

Initialize Current Force as 0 

Initialize Anchors Count as 0 

Initialize Anchors Impact as empty array 

Foreach chj in CH with connection to mi 

Calculate relaxed distance DtSij from µi in cluster chj 

Calculate current distance rij between central_position and Pj 

Compute tension τij as DtSij – rij 

Compute direction vector Aij as (central_position – Pj) /rij 

Compute force vector fij as τij . Aij 

Set Central_Score as wi/(wi+wj) //where wi is the weightage assigned to mi 
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Set Anchor_Score as wj/(wi+wj) //where wj is the weightage assigned to cluster chj 

Add Central_Score. fij to Current Force 

Add Anchor_Score.(-1). fij to Anchors Impact[j] 

Set Anchors Count  to Anchors Count+1 

END Foreach 

 

If total force is NOT NULL AND Current Force > total force 

Set incidents to incidents+1 

Set total force to Current Force/Anchor Count  

Set AllowableForce to False 

While Not AllowableForce  

Set Central Position to Central Position + (force proportion . total force) 

Set F to Pi - Central Position 

Set Qf to DSi.Q 

Calculate AllowableForce as per (16) 

If AllowableForce 

Break 

Else 

Set total force to 0.7 Scale 

Set Anchors Impact to 1.3 Scale 

END While 

Set force to LENGTH(total force) 

Add force, Central Position, Anchors Impact to Positions Array 

If incidents> incident limit 

Break 

END While 

Sort Positions by force incrementing  

Set Pi to POP (Positions -> Central Position) 

Merge POP (Positions -> Anchors Impact) to Clusters Impact 

Set Qi to COVARIANCE(Positions) 

Set Wi to DET(Qi).DSi //where DSi is the dependency score of mi 

//Start Anchors Optimisation 
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Initialise AnchorsForces to empty array 

Initialise AnchorsCount to empty array 

Foreach j in Clusters Impact 

Set AnchorsForces[j]  as SUM of AnchorImpact[j] 

Set AnchorsCount[j] as COUNT of AnchorsCount[j] 

Set AllowableForce to False 

While Not AllowableForce  

Set Pj+1 to Pj + ( force proportion . AnchorsForces[j] / AnchorsCount[j] ) 

Set F to Pj – Pj+1 

Set Qf to DSj.Qj 

Calculate AllowableForce as per (16) 

If AllowableForce 

Break 

Else 

Set AnchorsForces[j] to 0.7 Scale 

END While 

Set Pj to Pj+1 

END Foreach 

END Foreach 

Output CH 

Output M 

Based on the implementation we described above, we repeated the same test in the 

controlled area with 5 signal sources. The results this time, as can be seen from 

 Figure 3.8, shows that even with dispersed and distributed measurements on the 

edge of the building territory, we are able to limit the freedom area of an estimated 

location of each signal source and bring it very close to ground truth location. 
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Figure 3.8: Reduction in errors while locating signal sources in controlled environment using mass-

spring with limited freedom algorithm. Gradient lines represent the vanilla results. Solid lines 

represent new results. Coloured circles represent WAPs, ground truth location (hollow) and 

estimated location (solid). 

3.2.4   Second Level Connectivity Mass-Spring: 

As we continue to look for more innovative ways to improve the algorithm, we 

examined the possibility of adding extra springs between nodes that is not directly 

connected. This approach was first examined in the work presented in [56].  The 

thinking behind these extra springs is to help the algorithm reach more accurate 

global minima as total error between estimated ranging distance vector and the 

obtained location distance vector is usually very difficult to match. Therefore, this 

concept presumes that adding additional restrains between all nodes will reduce 

global errors measure.  

For example, if node A connects to node B but not to node C, while node B connects 

to node C, an extra spring is created to estimate the connection between A and C 

through node B. This will prevent any racing condition where both nodes A and C try 

to influence the position of node B to their local minima. Adding this extra spring will 

affect both nodes local minima to account for this indirect relation, hence node B will 
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be positioned more accurately. However, in our implementation this implies that 

estimation of ranging distances between nodes should go beyond the signal 

propagation model we used. 

 

 

To realise the required connectivity measures between WAPs and reference clusters, 

we define two new problems: estimating RSSI ranging distance between two WAPs 

and estimating RSSI ranging distance between two clusters.  However, both problems 

could potentially share one solution. In other words, the solution of both cases would 

utilise multitude of measurements to estimate the ranging distance by consuming all 

possible routes via the connected graph. Therefore, before we estimate the distance 

between pair of WAPs or pair of reference clusters, our proposed algorithm identifies 

all possible connections that reach both nodes through another node. Such 

connections create entries for ranging distance that is categorised as second level 

connectivity links. 

WAP 

WAP 

WAP 

WAP 

Measurement 

Measurement 

Measurement 

Measurement 

Measurement 

Measurement 

Measurement 

Figure 3.9: Modelling 2nd level of connectivity between WAPs or reference clusters as mass-spring 

graph by leveraging estimated and measure distances between location data and visible WAPs as 

links. 
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In Figure 3.9, we show the first level connection in blue, one sample second level 

connection between WAPs in red and one sample second level connection between 

reference clusters in orange. To estimate the ranging distance in these two cases, we 

compute the upper limit and lower limit by considering the possibility of alignments 

of nodes. The following scenarios are evaluated of how the measuring node is located 

relative to the two unconnected nodes: 

- The measuring node placed anywhere between two unconnected nodes, 

aligned with them. 

 

 

 

 

- The measuring node placed outside the bounds of two unconnected nodes, 

aligned with them. 

 

 

 

 

- The measuring node placed anywhere between two unconnected nodes, but 

unaligned with them. 

 

 

 

- The measuring node placed outside the bounds of two unconnected nodes 

also unaligned with them. 

 

d1 d2 

D = d1+d2 

d1 

d2 

D = |d1 - d2| 

d1 d2 

D = d1+d2 - delta 

d1 
d2 

D = |d1- d2| + delta 
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  Considering any random mix of these four cases, we noted that distance D is always 

ranging between |d1 – d2| and d1+d2. Based on this theory, we have modelled the 

second level connection between unconnected nodes as a range rather than value. 

This is more of fuzzy implementation rather than crisp input. However, it is still valid 

for the mass-spring algorithm. The formula below describes the range of distance D 

estimated from N measurement pairs of (d1,d2). 

  max
𝑖: 1 → 𝑁

| 𝑑2𝑖      −      𝑑1𝑖|    ≤     D    ≤    min
𝑖: 1 → 𝑁

(𝑑2𝑖   +    𝑑1𝑖)                     (3.21) 

Furthermore, as the main purpose of second connectivity estimated distance D is to 

model forces resulted from compressing or extending the springs between any given 

two nodes, we modified the algorithm to keep zero tension if graph distance is within 

the range allocated to estimated distance D. The updated pseudo code below 

provides detail learning of how we implemented such range.  

Algorithm 3.3: Second Level Connectivity Mass-Spring Algorithm with Limited Freedom 

Get list of reference clusters CH 

Get list of WAPs to optimise M 

Sort M by tension descending 

Initialize Clusters Impact as empty array 

 

Foreach mi in M 

Initialize force proportion to 0.3 

Initialize force termination to 0.5 

Initialize incident limit to 10 

Initialize total force to NULL 

Initialize incidents to 0 

Initialize Positions as empty array 

 

If Pi exists 

Set central_position to  Pi 
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Set central_wieght to wi 

Else 

Pi = Weighted Centroid (mi, CH) 

Set cenral_position to  Pi 

 

While LENGTH(total force) > force termination OR total force is NULL 

Initialize Current Force as 0 

Initialize Anchors Count as 0 

Initialize Anchors Impact as empty array 

 

Foreach chj in CH with connection to mi 

Calculate relaxed distance DtSij from µi in cluster chj 

Calculate current distance rij between central_position and Pj 

Compute tension τij as DtSij – rij 

Compute direction vector Aij as (central_position – Pj) /rij 

Compute force vector fij as τij . Aij 

Set Central_Score as wi/(wi+wj) //where wi is the weightage assigned to mi 

Set Anchor_Score as wj/(wi+wj) //where wj is the weightage assigned to cluster chj 

Add Central_Score. fij to Current Force 

Add Anchor_Score.(-1). fij to Anchors Impact[j] 

Set Anchors Count to Anchors Count+1 

END Foreach 

 

Foreach mk ≠ i in M  with at least one 2nd level connection to mi 

Get All possible routs d1,d2 pairs as relaxed distances between mk and mi 

Calculate maximum relaxed distance Dmax as MIN(d1+d2) 

Calculate minimum relaxed distance Dmin as MAX|d2-d1| 

Calculate current distance rik between central_position and mk 

 

IF (rik  ≥ Dmax ) 

 Compute tension τik as Dmax – rik 

Compute direction vector Aik as (central_position – Pk) /rik 
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ELSE IF (rik ≤ Dmin)  

Compute tension τik as Dmin – rik 

Compute direction vector Aik as (central_position – Pk) /rik 

ELSE  

Set τik to 0 

 

IF τik ≠ 0 

Compute force vector fik as τik . Aik 

Set Central_Score as wi/(wi+wk) //where wi is the weightage assigned to mi 

Add Central_Score. fik to Current Force 

Set Anchors Count  to Anchors Count+1 

END Foreach 

 

If total force is NOT NULL AND Current Force > total force 

Set incidents to incidents+1 

Set total force to Current Force/Anchor Count  

Set AllowableForce to False 

 

While Not AllowableForce  

Set Central Position to Central Position + (force proportion . total force) 

Set F to Pi - Central Position 

Set Qf to DSi.Qi 

Calculate AllowableForce as per (16) 

If AllowableForce 

Break 

Else 

Set total force to 0.7 Scale 

Set Anchors Impact to 1.3 Scale 

END While 

 

Set force to LENGTH(total force) 

Add force, Central Position, Anchors Impact to Positions Array 
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If incidents> incident limit 

Break 

END While 

 

Sort Positions by force incrementing  

Set Pi to POP (Positions -> Central Position) 

Merge POP (Positions -> Anchors Impact) to Clusters Impact 

Set Qi to COVARIANCE(Positions) 

Set Wi to DET(Qi).DSi //where DSi is the dependency score of mi 

//Start Anchors Optimisation 

Initialise AnchorsForces to empty array 

Initialise AnchorsCount to empty array 

Foreach j in Clusters Impact 

Foreach chk ≠ j in CH  with at least one 2nd level connection to chj 

Get All possible routs d1,d2 pairs as relaxed distances between chk and chj 

Calculate maximum relaxed distance Dmax as MIN(d1+d2) 

Calculate minimum relaxed distance Dmin as MAX|d2-d1| 

Calculate current distance rjk between chj and chk 

IF (rjk  ≥ Dmax ) 

 Compute tension τjk as Dmax – rjk 

ELSE IF (rjk ≤ Dmin)  

Compute tension τjk as Dmin – rjk 

ELSE  

Set τjk to 0 

IF τjk ≠ 0 

Compute direction vector Ajk as (Pj – Pk) /rjk 

Compute force vector fjk as τjk . Ajk 

Set Force Score as wj/(wj+wk) //where wj is the weightage assigned to chj 

Add Force Score. fjk to AnchorImpact[j] 

Set AnchorsForces[j] as SUM of AnchorImpact[j] 

Set AnchorsCount[j] as COUNT of AnchorImpact[j] 
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Set AllowableForce to False 

While Not AllowableForce  

Set Pj+1 to Pj + ( force proportion . AnchorsForces[j] / AnchorsCount[j] ) 

Set F to Pj – Pj+1 

Set Qf to DSj.Qj 

Calculate AllowableForce as per (16) 

If AllowableForce 

Break 

Else 

Set AnchorsForces[j] to 0.7 Scale 

END While 

Set Pj to Pj+1 

END Foreach 

END Foreach 

Output CH 

Output M 

 

3.3 Results and discussion: 

To evaluate the performance of our adaptive self-organising WAPs mapping based 

on modified mass-spring relaxation algorithm, we used the test scenarios described 

in chapter two of our methodology. To be specific, we performed our evaluation 

based on how far the mapped access points are located from the focused coverage 

area identified through ground truth seeds collected in each test site. This data set 

combine 7620 WAPs distributed between 10 venues. As stated before, we only had 

an average of 44% of detected WAPs qualify for such tests. The relatively low 

percentage can be explained as the full data set is collected over long period of time 

while ground truth data was just snapshot of one day.  
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Table 3.1: Analytical results of the 10 test venues comparing WAPs positioning errors for 

implementation of: weighted centroid (WC), mass-spring (MS) and mass-spring with limited 

freedom (MSLF). Also showing the effect of connectivity factor c=1 vs c=2. 

Venue WC [1] MS C=1 [36] MS C=2 

[proposed] 

MSLF C=1 

[proposed] 

MSLF C=2 

[proposed] 

µ σ µ σ µ σ µ σ µ σ 

Alrick  
16.84 4.27 14.22 3.35 10.52 1.82 9.99 1.69 9.28 1.62 

HudsonBeare  
10.37 2.36 9.41 2.09 8.14 1.90 8.41 1.93 8.03 1.91 

Sanderson  
12.63 3.05 11.05 2.58 11.07 2.51 8.64 1.86 8.68 1.86 

St.James 
15.62 6.32 11.50 4.18 11.23 4.04 9.16 3.16 9.70 3.42 

TheCentre 
11.28 3.96 10.34 3.60 9.62 3.32 8.65 3.02 7.71 2.61 

Westfield,UK 
13.19 5.08 11.74 4.31 9.67 3.30 9.22 3.20 8.12 2.80 

Westfield,US 
13.50 5.53 12.01 4.40 11.25 4.04 10.32 3.41 8.67 3.05 

ECMAll 
11.59 4.18 10.82 3.70 9.47 3.44 11.29 4.08 9.25 3.15 

Dreamport 
16.57 6.61 14.66 5.81 13.90 5.61 11.20 3.94 12.95 4.96 

Aegean 
13.20 4.95 11.65 4.29 9.86 3.59 9.61 3.34 8.72 3.03 

On each venue separately, we compared reference trilateration implementation 

utilising only weighted centroid (WC) to estimate the position of each WAP and 

reference cluster, our implementation of mass-spring (MS) and the proposed 

modified version of mass spring with limited freedom (MSLF) as shown on previous 

section. We also tested both mass-spring implementations with connectivity factor 

c=1 and c=2, the second represent the latest version of mass-spring we implemented 

in section 3.2. Table 3.1 summarises results per venue in a form of mean error µ and 

the standard deviation of all errors σ.  

In summary, the utilisation of multi-iterations approach using any version of mass-

spring shows significant improvements compared to the common weighted centroid 
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implementation. In addition, adding the limitation of freedom in MSLF version of the 

algorithm reduced the standard deviation indicating to more robust localisation of 

WAPs throughout the various iterations. Although the impact of MSLF on the mean 

seams insignificant, it is expected to reduce mobile unit positioning errors as we will 

demonstrate in chapter four. Finally, Table 3.1 also proves that using second level of 

connectivity improves the performance of mass-spring in larger venues where 

labelled data can’t reference the majority of WAPs.  

 

Figure 3.10: Cumulative errors probability comparison between weighted centroid (WC), mass-

spring with c=1 (MS1), mass-spring with c=2 (MS2), mass-spring with limited freedom c=1 (MSLF1) 

and mass-spring with limited freedom c=2 (MSLF2) 

To present the same results in another form, we combined all venues in one data set 

and plotted the cumulative probability distribution of WAPs positioning errors. Figure 

3.10 confirms the results of our previous analysis and suggests that MSLF with C=2 

is performing better than most other implementations. It also suggests that our 

research has managed to locate WAPs globally with an overall mean accuracy of 

12.5m.  On the other hand, the figure also highlights close overlap between the 
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performance gain we are getting due to adding extra level of connectivity. This clearly 

suggests that restricting mass-spring to area of freedom has provided more uplifting 

in performance compared to adding the second level of connectivity.  

3.3.1 Correlation measures: 

To further analyse the correlation between number of access points, venue size and 

WAPs positioning errors, we attempted fitting linear relationship between these 

measures. Figure 3.11 and Figure 3.12 show the same results in a form of correlation 

coefficient analysis per algorithm.  

In summary, we noted that by improving the performance of accurately positioning 

WAPs in each venue, the correlation factor decreases. In other words, mass-spring 

with first level of connectivity shows noticeable increase in errors as venue size or 

WAPs count increase. This is an expected behaviour of most iterative algorithms. 

Basically, the more nodes introduced in the graph the less optimised the graph would 

be. In the mass-spring case particularly, these extra nodes, or WAPs, would generate 

stress on attached springs and introduce more marginal errors when calculating total 

force. Hence it will affect the overall quality of locating WAPs. The same concept 

applies to large venues, as the larger the venue to more WAPs it will have. However, 

it is also expected that errors in meter is proportional representation of edges length 

in the graph. 
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Figure 3.11: An indicative linear fitting represents correlation between number of WiFi access points 

in each venue and errors in positioning of signal sources when executing the proposed algorithms. 

 

 

 

In contrast, mass-spring with limited freedom start to get more robust showing 

almost the same performance everywhere by being less sensitive to venue size or 

Figure 3.12: An indicative linear fitting represents correlation between number of WiFi access 

points in each venue and errors in positioning of signal sources when executing the proposed 

algorithms 
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WAP count.  This was one of the major drivers behind developing the limited freedom 

area. It certainly limits the movement of WAPs during iterative optimisation, keeping 

edges over stressed to obtain better graph fitting as global minima. Therefore, we are 

expecting better positioning reliability from the database as it provides better spread 

of WAPs. 

 

 

 

 

 

 

 

Figure 3.13: An experimental result showing the relationship between errors in WAPs positions and 

number of observations processed as percentage.  

Furthermore, we set an experiment to test the effect of number of observations on 

locating WAPs accurately in our designated test venues. However, using the full data 

set, we measured Pearson’s correlation between number of observations per WAP 

verses the estimated error for the lot of 7620 WAPs. The results of -0.12 correlation 

coefficient suggests that there is a very weak correlation between the two measures.  

Nevertheless, when we tried to measure the effect of reducing the amount of data 

streamed through the algorithm, we got different results. This time we divided all 

observations into tiles of 10% each based on time. We then streamed the data in a 

deployment of MSLF, with connectivity c=2, and measured WAPs mapping accuracy 
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after each tile. Figure 3.13 demonstrates correlation plot between growth in 

observations and improvements of accuracy. 

However, until the tile containing over 60% of observation, strong correlation was 

clearly present. After that the correlation suggests that more data would do very 

minor improvements. This behaviour of the algorithm should be expected. 

Furthermore, it is also noticeable that with more data there is always level of noise 

that made accuracy numbers change around specific range of errors.  

3.3.2 Measuring computational overheads: 

Compared to weighted centroid, someone could simply argue that mass-spring would 

be more computational heavy and hence costs far more when it comes to 

deployment. In chapter two, we justified the proposed implementation of the system 

as we demonstrated data structure and data flow.  However, in this chapter we only 

focus on improving accuracy of mass-spring with different implementations. To 

support the implementation justification with some results, we performed an 

experiment to measure the computational overhead by running 20% of all dataset 

into single virtual cloud server machine. The server virtual hardware specifications 

are shown in Table 3.2. 

Table 3.2: Specifications used for server virtual machine to test the algorithm implementation. 

To measure the efficiency of each algorithm, we estimated the time consumed by 

this VM to process the data in batches. To make our recording of time more accurate, 

we configured the VM to only allow one backend processor at any time. Each 

processor then writes to log file the number of WAPs updated and the time 

CPU 4 cores 

Allocated Memory 8GB 

Storage Volume 500GB SSD 

Connection 1 Gbps 

Operating System Centos7 
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consumed in milliseconds. We believe this measure is the most accurate estimation 

of overheads as it combines CPU, memory and system level overheads in one metric 

based on time.  

Furthermore, the impact of time is significant as it defines how many processors or 

VMs is required on a scale of larger deployment. Therefore, our selected metric 

proofs to impact the cost directly. Additionally, we made none analytical observation 

of system load average during the run and recorded much higher values when we run 

any mass-spring algorithm compared to weighted centroid. However, the variations 

between different versions of mass-spring implementations seams irrelevant through 

system load average, hence we have not included it in this study.   

 

Figure 3.14: Processing speed illustrated as number of WAPs one virtual machine server was able to 

process in each batch relative to processing time in milli-seconds 

The variation in Figure 3.14 suggests that an iterative optimisation might take more 

time even if fewer number of WAPs were involved. However, it also demonstrates 

the applicability of mass-spring algorithm implementation proving that in few milli-

seconds one processor was able to optimise a batch affecting over 500 MAC 
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addresses. Some of the trends or outliers in the graph can be explained as a result of 

log generating. Basically, a marginal error of 2-3 milliseconds is expected as writing 

the log data to storage files is also unpredictable. Hence, we can point out to some 

points falling off the trend such as the entries of 27 milliseconds mark in Figure 3.14.  

However, the overall results in this figure clearly demonstrates that the overall trend 

of processing batches of 500 WAPs only cost 15-25 milliseconds processing time of 

our standard testbed VM.  

Finally, we concluded on the validity of proposed methods to expand wireless 

network localization beyond the roads where GNSS references are available. 

However, we also realize that the larger our network or graph of WAPs grows, the 

more computational time it will take. As a rough estimation we concluded on a model 

that estimates the relationship between the graph size, without GNSS 

measurements, and the computational time. In our estimation we use the factor of 

10(n-1) to render the exponential growth in processing time when the graph cover 

more than one parent geoindex. By a parent geoindex we refer to only two decimals 

of latitude and longitude coordinates, on average it covers 1km by 1km area. For 

example, if we assume that a graph covers only 1 geoindex can be optimized in T 

seconds, expanding the graph over n geoindices would result in T*10(n-1) seconds 

consumed in optimization. Similar model can be derived for accuracy as it degrades 

with the graph expanding throughout multiple parent geoindices. However, we have 

not attempted to estimate the base of such degradation and only considered 10*n 

for such case.  

3.3.3 Prior art comparison: 

As we scanned the literature, we have only identified few research projects on similar 

scope with published results [31], [33], [57]. These projects used smaller data set but 

utilized unsupervised crowd-sourcing of smart phone observations. However, the 

level of performance reported on their publications, still in the range 40m error, 

which is mainly utilized through war-driving without much details on indoor coverage 
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of radio-maps. Hence, these systems are not within the competitive range of accuracy 

for comparison. On the other hand, more recent research in this area [26], [35] only 

utilised limited dataset in implementation.  However, we have attempted to 

implement and test both algorithms, adaptive least squares and multi-dimensional 

scaling algorithms, using only subset of our data on venue by venue basis. Starting 

from the University buildings, we notice that our implementation did not match the 

results published by the authors.  

Table 3.3: Comparison with literature suggested implementation of least squares and multi-

dimensional scaling algorithms 

Venue multi-dimensional scaling algorithm 

[24] 

iterative least squares  [33]  

µ σ µ σ 

Alrick  26.65 12.45 23.63 6.89 

Hudson Beare  19.48 9.63 18.78 5.32 

Sanderson  23.65 11.58 19.92 8.49 

With a further consideration of both publications, we realised that as our data is 

collected randomly and over long period of time. Therefore, it is not matching the 

data quality the authors of [26], [35] have used. Hence, we didn’t progress further 

with the comparison.  

Another unpublished system that could be more applicable, is the adaptation of FLP 

on Andriod phones that recently evolved as data collection and crowd-sourcing. 

Although Google did not provide any details justifying their implementation, it is still 

relatively the most common platform utilizing crowd-sourcing on global scale. 

Therefore, we included the native position measurements when we collected ground 

truth data in the selected test venues. Nevertheless, these native positions represent 

the phone position rather than the position of WAPs. Hence, in this comparison 

below, we can include reporting errors to ground truth location as there is no public 

access to Google WAPs database. 
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Table 3.4: An illustration of errors in native positioning system on Android phones 

 

Table 3.4 shed some lights on how current Android phones perform. It is noticeable 

that some venues perform significantly better than others. Hence, we couldn’t verify 

through these set of results that Google utilize crowd-sourcing, nevertheless, the 

variation in performance still suggests that two different algorithms is used based on 

unknown condition. Therefore, it might be suggesting that fingerprinting is utilized in 

some venues by owners or by Google maps team.   

3.4     Conclusion 

This chapter provided full study of our proposed crowd-sourcing solution to address 

the indoor positioning challenge in global scale. We described the details of our global 

grid geoindex classification and demonstrated our density-based clustering 

algorithm. We proposed to use Gaussian to model RSSI into set of probability 

distribution functions located per geoindex. By doing so, we achieved better 

representation of signal propagation on horizontal frame and explained the value of 

obtaining fused reference measurement of RSSI. Each reference measurement has 

been associated with location attribution derived from data clustering. 

Venue Native positioning accuracy 

µ σ 

Alrick  12.36 5.98 

Hudson Beare  15.63 7.21 

Sanderson  11.31 4.67 

St.James 45.69 15.12 

TheCentre 9.87 3.40 

Westfield,UK 14.15 4.49 

Westfield,US 11.68 3.97 
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Later, we described in detail our journey through improving mass-spring relaxation 

algorithm and provided insights on the results and implementation of the limited 

freedom area feature. We have also compared the first degree of connectivity with 

second degree of connectivity in mass-spring algorithm. Finally, we compared the 

results of various scenarios and attempted to find a competitive study for 

benchmarking.    
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4 Utilisation of WAPs Database 

As demonstrated in the motivation of this research, the wide spread of WiFi signals 

globally has driven most of indoor positioning solutions to utilise WiFi signals during 

position estimation. Accuracy, errors and biases of the obtained positions in any given 

area heavily depend on the quality of pre-trained database. Despite the technology 

or algorithms used to create such database, the most important measure is always 

driven by how accurate the system can locate mobile units or users indoors. To get 

an accurate position, researchers have been utilising various probabilistic or 

deterministic algorithms [3], [58]. However, the selection of one approach over 

another always depend on what kind of data attributes associated with WiFi radio 

map or signal sources database.  

Depending on the type of data collected and mapped during database training phase, 

a mobile unit could use a subset of positioning algorithms. For example, a 

probabilistic approach would employ fingerprinting similarity algorithms to locate the 

best match of observed RSSI fingerprint of unknown location to specific reference 

point. Various similarity measures and pattern matching algorithms continue to 

appear in literature [28]. However, it is obvious that such techniques can’t 

accommodate the uncertainty in crowd-sourcing as the data has been collected from 

variation of devices making it subject to various noises and errors. Therefore, we 

rolled out this option when selecting an algorithm for evaluating our database.   

Similar to an access point, any mobile unit equipped with WiFi receiver can also be 

located by trilateration. This deterministic approach estimates the mobile unit 

position with respect to at least three WAPs whose locations are known to the system 

through crowd-sourcing. The most simplistic deployment of trilateration used the 

geo-spatial centre and places the mobile node’s position in the centre of polygon its 

edges defined by all WAPs observed [59]. Another very similar solution utilised 

positioning centroid calculates the node’s position by averaging the locations of 
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selected set of WAPs based on qualifying criteria [54]. The main disadvantage of both 

methods is the assumption that WAPs distribution is unified. In a practical scenario, 

it is now well known that RSSI measures of each WAP is valid indication that an access 

point is within proximity to the mobile device. Thus, its position should be skewed 

more towards access points with strong RSSI compared to weaker ones. To cater for 

outliers and variations in RSSI distribution that may exist among nearby access points, 

various weighting techniques can be added to centroid algorithm to improve 

positioning accuracy [25].  

In previous chapter we have utilised distance-based weighting centroid algorithm as 

reference WiFi positioning system. The same algorithm was also used to estimate the 

initial location of a reference point or WAP. For such approach to work, we have 

described an adaptive signal propagation model based on log-distance pathloss 

model [23]. In this chapter we will introduce algorithms and methods we developed 

to estimate mobile node position utilising our radio-map of WAPs for the selected 

test areas. Furthermore, we also present an innovative way of estimating errors in 

such adaptive system where radio-maps constantly changing. This quality measure of 

positioning accuracy sets the right expectation for end user, or data consumer, when 

utilising location attributes. Hence it is essential for any indoor positioning system to 

provide an estimation of error associated with each position estimation. Finally, we 

present our brief experiment to add an elevation estimation where WAPs are located 

on different floors in multi-storey building.  

4.1 WiFi Handover positioning algorithm 

The Handover algorithm is based on dividing the mapped area into grids depending 

on two factors. The first factor is the initial position P0 which can be calculated using 

any reference WiFi positioning system. Here we used the weighted centroid system 

as mentioned earlier. The initial position P0 creates central node as the first node in 

the grid. The second factor will be the grid granularity which is presented as a cell 
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length (CL). Depend on how small CL is, position determination will have better 

chance to allocate various weighting to each WAP.  

The main aim of developing the handover algorithm is to improve the location 

estimation in cases were WAPs data base suffer from inconsistency or high level of 

noise. This also include biases and uneven distribution of WAPs. This will be achieved 

by determining the consistency of multiple RSSI measurements and amend the 

weighting of WAPs accordingly. In addition, eliminating the conflicting measurements 

from set of RSSI measurements, before calculating final position, could be considered 

as one benefit of this algorithm. Complimenting any WiFi based positioning, the 

Handover algorithm restrict position estimation to the cells around the central node 

minimising biases. In an iterative way the algorithm estimates HoR (Handover Ratio) 

as weightage to be assigned to each node on the grid.  

The Handover algorithm adopt deterministic approach to detect the next central 

node that corresponds to changes in RSSI measurements, emulating the motion 

direction of the device without PDR. This determination assumes that the algorithm 

holds multiple readings of the surrounding WiFi access points estimated RSSI. 

Alternatively, we could presume that implementing this algorithm in the phone will 

allow continuous access to RSSI measurements. By measuring the delta between 

every two consequence RSSI readings in each grid cell, the Handover algorithm 

weights each node with HoR estimation. To provide a smooth and reliable location in 

real time, the Handover algorithm works in two stages: grid initiating and position 

tracking.  

4.1.1 Grid initialization 

In this model the initial position P0, calculated by applying an improved version of 

weighted centroid [54], will be used to query list of records from WAPs database. The 

purpose for this list is to populate an initial grid. Hence, we require an input of three 

parameters to calculate our query lookup boundaries to avoid overfitting or 
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underfitting the grid. Therefore, considering all received observations, more than one 

is preferred, minimum RSSI, denoted as MinRSS, and maximum RSSI, denoted as 

MaxRSS, regardless of mac address is recorded. As WAPs database entries are 

commonly stored as a set of WAPs spatial geo-tagged with location, MinRSS and 

MaxRSS parameters should be converted into distance to perform database query. 

In this section we have not utilised the adaptive pathloss model presented in 

Chapter3. Instead, we have used equations (4.1) and (4.2) to convert RSSI to distance. 

𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠  =   𝑃𝑇    −   𝑅𝑆𝑆   =  𝑃𝐿(𝑑0)   +   10𝑛 𝑙𝑜𝑔10 (
𝑑

𝑑0
) (4.1) 

𝑑  =   𝑑0  .  10
(
𝑃𝑇 −𝑅𝑆𝑆 −𝑃𝐿(𝑑0)

10𝑛
)

(4.2) 

d: transmitter-receiver separation distance in m 

d0: reference distance, typically 1m 

PL(d0): reference path loss at close distance to transmitter in dBm 

PT: transmit power i.e. -20dBm for most WAPs 

n: path loss exponent 

RSS: received signal strength in dBm 

To complete the grid size calculation, a maximum distance will be calculated from 

MinRSS. When this distance is added as a buffer around P0, Pmax and Pmin would be 

obtained. Then by querying all WAPs in the database between Pmax and Pmin, we 

obtained our WAPs set within the grid area. Such list of WAPs should cover enough 

area surrounding the initial location to improve it further.  Depending on the number 

of WAPs in the list (N) and the distribution of these WAPs with respect to Pmin and 
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Pmax, grid parameters can be calculated. To calculate these parameters, we defined 

the following parameters: 

Dmin as the minimum distance estimated by applying (4.2) on MinRSS. 

Nmin as the number of WAPs in circular area limited with diameter of Dmin. 

CL is the cell length of the proposed grid calculated as  
2 .𝐷𝑚𝑖𝑛

𝑁𝑚𝑖𝑛
 

Dmax as the maximum distance in the buffer around P0 and  

M number grid cells per row calculated as  2 . 𝐶𝑒𝑖𝑙 (
𝐷𝑚𝑎𝑥

𝐶𝐿
) 

Once we have calculated all parameters of the grid, we could then allocate each WAP 

from the list the grid cell that corresponds to its location relative to central node 

located in P0.  

 

Figure 4.1: Sample grid of 4x4 showing the distribution of WAPs around central node 

4.1.2 Position estimation 

During position estimation phase, the proposed algorithm compute new estimation 

of mobile unit position based on scoring assigned to WAPs within each cell of the grid. 

We aim for this model to recognize reference cells that correspond better to the 
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range of RSSI submitted by smartphones. We expect position estimation to be 

improved by handing over process to one central node each iteration. This process is 

repeated until P0 remain in the same node for two iterations. The process can be 

described by the following steps: 

✓ Calculate the HoR (Hand over Ratio) for each node in the grid. 

✓ Compute the normalised HoR by adding 1+|min(HoR)| to all nodes. 

✓ Weight each grid cell as per equation (4.3) 

𝑤𝑖  =  
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 (𝐻𝑜𝑅𝑖)

𝐷𝑖
   (4.3) 

Where:  

Di is the distance estimated as per equation (4.2) from the mean RSSI 

measurement for all WAPs in the grid cell number “i”. 

✓ Calculate the position using weighted centroid between grid cells surrounding 

the node with Maximum HoR. 

As noted from the position calculation steps above, HoR provide an additional 

weighting factor to the conventional weighted centroid algorithm. In other words, it 

is an indication to direction of arrival of WiFi signals without the requirement of smart 

antenna, as these are not yet available in majority of off the shelf smart phones. 

Therefore, we integrated HoR in our weightage calculation to indicate which node 

should take over the position calculation. The procedure to calculate the HoR for each 

node is shown in Figure 4.2. As a result of the previous HoR calculation for each node, 

we now have an index to point to the node that will be the next step Handover node. 

This will be used to calculate the new user position using this node information. We 

simply used the node with the maximum HoR as a Handover Node. 
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Figure 4.2: Modular design and sample grid demonstrating positioning estimation of mobile unit 

via tracking sequence 

Finally, new estimation of mobile unit position is calculated by selecting only WAPs 

associated with the grid cells around the voted handover node. However, as each cell 

may contain many WAPs, we chose one per cell. Various selection criteria have been 

evaluated, but the most effective one was to select the one that is closer to the mean 

RSSI measurement. Once we constructed our reference WAPs with associated mean 

RSSI per each grid cell, we then estimate the position by applying weighted centroid. 

This new position is then used to recreate the grid for next iteration. 

Scan the surrounding WiFi 

signals 

Compare each WAP RSSI 

from the reference WAPs 

list on the grid 

Assign -1 for each WAP with 

decreased RSSI  

 

Add the assigned value of 

each WAP to all the nodes 

surrounding it  

Assign +1 for each WAP 

with increased RSSI 

 

Calculate the sum of all 

values for each node 
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4.1.3 Experimental results and discussion  

The main purpose of testing and developing positioning algorithms was to test the 

validity of our crowd-sourcing system and make sure that WAPs are reasonably 

located. However, as the work on Handover algorithm started before we develop 

mass-spring algorithm, we thought it will be good to consider both algorithms. Hence, 

in this section we are going to show the results comparing three means to estimate 

positions from the same set of test data. The first is the basic implementation of 

weighted centroid. Secondly, the proposed combination of weighted centroid with 

weightage assigned by Handover algorithm. Finally, we estimated mobile unit 

position using single connectivity mass-spring algorithm as described in chapter 

three. 

Table 4.1: The compiled results for testing positioning performance in the selected test venues. 

To analyse the performance of these algorithms, we use the method described in 

chapter two performing known smart phone tests using the same test venues. We 

then compile the results in a form of mean error and standard deviation to identify 

the position quality as well as the robustness. In general, we notice that the results 

vary between venues and that can be explained due to the differences in crowd-

Venue 
Weighted Centroid [1] Handover [Proposed] mass-Spring [Proposed] 

µ σ µ σ µ σ 

Alrick  19.23 6.06 9.53 0.62 13.19 2.93 

Hudson Beare  14.51 4.14 13.96 3.81 12.92 3.49 

Sanderson  10.61 2.27 14.28 3.91 10.55 2.42 

St.James 21.28 9.21 14.08 5.61 11.71 4.28 

TheCentre 18.29 7.57 14.93 6.05 12.62 4.6 

Westfield,UK 20.28 8.62 16.38 6.47 13.18 5.08 

Westfield,US 17.03 6.76 14.15 5.49 14.82 5.95 

ECMAll 15.86 6.25 14.47 5.84 13.51 5.12 

Dreamport 28.41 13.07 21.11 9.31 18.35 7.78 

Aegean 15.86 6.32 12.68 4.82 11.15 4.29 
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sourcing, size, WAP count and layout. However, as the main purpose was to verify 

the quality of WAPs database, we believe that this analysis is satisfactory. The results 

are demonstrated in Table 4.1.   

As can be seen from the highlighted best results obtained per venue, mass-spring 

seems to outperform the proposed Handover algorithm in most cases. It is also clear 

that the work we did on handover had improved the results over the implementation 

of traditional weighted centroid without handover. Nevertheless, there is still a 

possibility to test the scenario where we combine handover with mass-spring to test 

if it can drive the results closer to the demanded 10m error that usually is targeted in 

crowd-sourcing systems.  

4.2 Modelling estimating positioning error  

The ability to assess the quality of estimated positions would benefit any system 

regardless of the technology behind it. This will assure that correct expectation is set 

to end user. Nevertheless, it is very crucial to assess such information accurately 

when it is proposed to be used as feedback to the same system. Previous research 

employs analytical models to assess positioning errors for WiFi positioning systems 

[60], [61]. Such models are very valuable for measuring or understanding the 

expected position errors for a specific positioning system or method. Hence, 

researchers frequently refer to them while analysing the general impact of signal 

transmitters distribution, density of sampling, grid size in fingerprinting, number of 

detected WAPs, signal characteristics and signal propagation.  

On the other hand, these models suffer from two major limitations. Firstly, it expects 

an input from training data to create the reference analytical model. However, 

autonomous systems should be able to estimate its errors without previous training 

and preloaded models. The second limitation is that these models didn’t count for 

dynamic changes and the validity of radio-maps. As radio-maps might reach maturity 

with autonomous system deployment to be used as training data, it will only be valid 



Adaptive Indoor Positioning System based on Locating Globally Deployed WiFi Signal Sources 

Utilisation of WAPs Database 101 

for specific period of time as more data continue to merge in and dynamically change 

radio-maps. Therefore, static analytical models do not fit within the purpose of this 

research. 

More advanced positioning algorithms appeared in literature have focused on 

modelling errors during position estimation in real time rather than limiting error 

estimation to radio-maps. Such models estimate uncertainty in positioning based on 

correlation measure between sections of data used in online phase. However, the 

main difference compared to analytical models is that the first try to understand the 

relationship between system parameters and positioning quality while the second 

only uses information from position determination algorithm. In one example, [27] 

presented a method that uses a regression technique based on signal strength and 

compare it with ground truth model created from training data. However, as the 

training data cannot be used as ground truth for an autonomous system, such model 

cannot serve the purpose of this research. 

More WiFi specific models were also presented in [62]. The authors presented four 

different error estimation models to estimate the quality of fingerprinting samples 

and measure its effect on positioning experience. Their first model “Fingerprint 

clustering” measures the similarity among the samples and cluster all neighbouring 

fingerprints with high similarity into one reference. It then measures the estimated 

error by the cluster size. The second model is “Leave out Fingerprint”. It works to 

create a static error map by recalculating location of each fingerprint sample using all 

other fingerprints in the building.  The third one is “Best candidate set”.  In this model 

the author proposed to use k best matching fingerprints and compute distance 

between each pair then return the maximum distance as an estimation of error.  The 

last model was “Signal Strength variance”. This model calculates the variance in signal 

strength per WAP then estimate the error as an average of variance of all WAPs in 

dataset.   
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Although the above models promise an accurate estimation of errors, they heavily 

rely on the quality of calibration data in all calculations. This requirement is a major 

limitation for crowd-sourcing systems as radio map are constructed with variation in 

quality of input data the system may receive from mobile devices. Also, as the radio 

map changes constantly, such models will not be able to measure aging factor. For 

comparison purposes, we have implemented the clustering and best candidate set 

models into our adaptive system, as they are expected to provide best results 

according to the author [62]. 

4.2.1 Modelling accumulative errors  

Our proposed model is more suited for the way our radio-maps and WAPs database 

are constructed in an autonomous system. As per the details in previous chapters, 

crowd-sourcing systems rely on data streams from different quality and use cases to 

estimate signal characteristics in each geoindex of the radio-map. To be specific, GPS 

data proofed to be the main source of location when crowd-sourcing radio-maps in 

new territories. However, trusting that we always have reasonable quality GPS when 

we deploy crowd-sourcing systems on large scale is not realistic. Even outdoors, GPS 

performance could deteriorate as the users move closer to buildings and start losing 

line of sight with the sky. As demonstrated, adaptive optimisation algorithms were 

employed to extend radio-maps recursively to cover as much of indoor territories as 

possible.  Nevertheless, quality measures of initial GPS location data and the 

consistency of all GPS enriched reference clusters are key parameters in our proposed 

model.  

Taking a step back to describe our data models, we denote each radio-map as number 

of nodes each represents an area roughly close to 10x10 meters. Let’s assume a radio 

map with K nodes populated by signal measurements from M different WiFi 

transmitters (WAPs). Each node Nk represented by collection of Gaussian probability 

distribution functions PDF(µi,σi) modelling all observations of each WAP Wm 

observed within this node. Each time new set of observations for Wm reported within 
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the area covered by Nk, the probability distribution function of transmitter Wm in 

node Nk would be updated to PDF(µi+1,σi+1). Obviously, the error εm concerning the 

uncertainty of Wm location on reference to K nodes, each with PDF, can be calculated 

as in (4.4). 

𝜀𝑚 =  
1

𝐾
∗ √∑ |𝐷(𝑁𝑖,𝑊𝑚) − �̈�(µ𝑖 , 𝜎𝑖)|

𝑞
𝑘

𝑞

(4.4)                                                              

𝐷(𝑁𝑖,𝑊𝑚): is the function that computes distance between node i and WAP m. 

�̈�(µ𝑖, σ𝑖): is the function the calculates log-distance based on RSSI in node i . 

In addition to the uncertainty WAP location data, each node also associated with 

quality metric Qk(t) represents the uncertainty in location data from all observations 

fused in node k until time t. Similar to quality assigned to each node when we 

estimated weightage for position calculation, Qk(t) can be estimated as the 

determent of covariance matrix multiplied by dependency score of node k.  

During the positioning phase, if the mobile detected L WAPs, L radio maps will be 

fetched from the database. But only n matching radio maps are used to calculate user 

location. Then positioning error (Err) would be estimated as in (4.5).   

𝐸𝑟𝑟(𝑡) =  
1

𝑛
∑ [𝜀𝑘(𝑡).  [∑ 𝑄𝑖(𝑡). 𝑃𝑖(𝑡)

𝐾
𝑖=1 ] + 𝑉𝑘]

𝑛
𝑘=1 (4.5)           

𝑃𝑖(𝑡): is the probability of observing RSSI of WAP k on node i at time t, where  

∑ 𝑃𝑖(𝑡)
𝐾
𝑖=1 = 1 

𝑉𝑘: is average error of the radio map initiating vector, mean value of GPS reported 

errors in radio map k. 
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4.2.2 Data analysis and test results:  

To evaluate the feasibility of our proposed model, we run tests in three different 

shopping centres around the city: Site1(250m x 235m), Site2(287m x 110m) and 

Site3(198m x 107m). Then we recorded the ground truth location P0 every 5 meters 

and collected estimation of position P` from the Handover algorithm associated with 

estimated error calculated as per equation (4.5). The absolute measure of difference 

between ground truth error, calculate as line of sight distance between P0 and P`, 

and the estimated error Err for every location 𝑙 (𝑥, 𝑦) in test points L is then used as 

quality metric as per equation (4.6). 

𝐷𝑖𝑓(𝑙) = |√(�̇�𝑙(𝑥) −  𝑃`𝑙(𝑥))
2

+ (�̇�𝑙(𝑦) −  𝑃`𝑙(𝑦))
2

−  𝐸𝑟𝑟(𝑙)| (4.6)   

�̇� : is the ground truth position. 

P`: is the estimated position using the proposed handover algorithm. 

Err: is the estimated error as per equation (4.5)  

 Table 4.2: Test results showing accumulative errors for the proposed error estimation algorithm  

 

As can be seen from Table 4.2, the results show an average fit of error estimation 

compared to ground truth. In some cases, we have managed to closely match the 

errors as the positioning algorithm acquire more data building better estimation of 

Dif stats Site1  

(1650 WAP reported) 

( 220 Test Point) 

Site2  

(580 WAP reported ) 

(130 test Point) 

Site3  

(221 WAP reported) 

(80 test Point) 

Average  8.91 6.54 5.82 

Maximum 26.12 21.05 19.41 

Minimum 0.92 0.41 0.21 



Adaptive Indoor Positioning System based on Locating Globally Deployed WiFi Signal Sources 

Utilisation of WAPs Database 105 

WAPs locations. However, it is also visible that outliers still exist as the maximum 

errors on proportional bases to the venue size or total number of access points.  

On the other hand, running the same test set through the models presented in [62], 

showed a rise in average differentials values due to inaccurate references treated on 

the same as any grid point during the test. However, we noted that minimum 

differentials values are much better. This was due to our model over estimating errors 

in reasonably accurate radio maps in some areas. Table 4.3 and Table 4.4 show the 

results for the clustering and best candidate models on sequence.  

Table 4.3: Test results showing accumulative errors for the Clustering Model algorithm [62] 

Dif stats Site1  Site2  Site3  

Average  31.57 18.94 24.36 

Maximum 92.34 36.51 51.79 

Minimum 2.21 3.68 1.46 

 

Table 4.4: Test results showing accumulative errors for Best Candidate Model algorithm  [62] 

Dif stats Site1  Site2  Site3  

Average  36.14 16.45 23.81 

Maximum 87.98 28.96 59.36 

Minimum 2.02 1.14 2.34 

 

4.3 Floor determination in multi-story buildings 

While indoor positioning seems to be developing very quickly, floor determination in 

3D frame is still challenging topic in research. In multi-story buildings the two-

dimensional position is only one portion of location data attributes. Also, many 

location-based services, such as safety and emergency call location tagging, have 

assigned floor determination more attention due to the efforts required to search 

multiple floors when any incident is reported. Furthermore, the recent interest in 
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measuring human traffic in commercial buildings, is not feasible without some level 

of floor determination. All the above reasons have encouraged us to investigate the 

possibility of using database of wireless signal sources to fill this gap.  

To date indoor positioning solutions for floor determination have been mainly based 

on either Fingerprinting [61], [62], [65] or installed beacons [66]. However, the 

authors in [65]  have shown the feasibility of using WiFi RSSI values for floor 

determination. In their research they have developed a WiFi fingerprinting system to 

work with multi-story building. Compared to other fingerprinting systems the 

mentioned system requires less intensive sampling points in the calibration phase as 

it utilise linear regression.  On the other hand, all above solutions still suffer from the 

common fingerprinting limitations. The first one is that the solution will not be able 

to accommodate any changes in the WiFi infrastructure and will require a complete 

recalibration.  Secondly, the solution is dependent on the quality of the calibration. 

Therefore, an intensive training phase will essential for the system to work.   

In this section we present the research we conducted to develop WiFi based indoor 

positioning algorithms utilising reference database of signal sources, instead of 

fingerprints. We belief that such deployment would save time and cost. Furthermore, 

in this research we have only tested using available WiFi signals for floor 

determination. We argued that floor determination is a standalone process that 

should be conducted separately from the usual positioning for it to provide better 

accuracy. Overall, we aim to enable an indoor positioning system to work with off-

the-shelf components. Hence, we did not consider any additional requirements other 

than access to WAPs database and mobile devices equipped with WiFi receiver. 

Moreover, unlike fingerprinting we have designed the proposed algorithms 

particularly to minimise calibration using reference database parameters.  
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4.3.1 Research contribution 

In this research we have designed two different models for using labelled WiFi signal 

sources to determine the floor number in multi-story building. The first model is “The 

Nearest Floor Algorithm” which is a simplified solution of KNN used in commonly 

fingerprinting [67]. The second one is our novel statistical model “The Group Variance 

Algorithm”. This new model groups the detected WAPs per floor based on their label 

and compare statistical features of each group to find the best match floor number. 

Each model assumes that a reference WAPs database, associating every WiFi Access 

point with its floor number is available. Such database could be obtained from venue 

owners or IT team if the solution is deployed on limited scale. However, we argue 

that with the recent development on smart phone sensors, our WAPs database will 

be able to accommodate crowd-sourcing of this extra label in near future. 

4.3.2 The nearest floor algorithm: 

This algorithm has been developed to simplify the well-known KNN fingerprinting 

algorithm “K Nearest Neighbour”. KNN algorithm is usually implemented as a 

supervised classification method where positioning is obtained based on finding the 

nearest k neighbours in pre-trained references database. The main part of this 

algorithm is the training samples. The training samples should be collected 

intensively during the calibration process of the area of interest. Usually, each record 

of the training samples will contain a reference ground truth position along with WiFi 

observations. Such data are then stored either individually or in clusters to enable 

KNN in online phase. For examples, authors in [68] generates clusters per area, 

including floors clusters. They have also evaluated various algorithms to perform 

clustering and obtain more distinct fingerprints per area.   

Given a new observation reported from the unknown position during online phase, 

KNN works to identify the best k candidate clusters in training data for position 

estimation. The selection of best candidates is based on distance function that 

employs WiFi similarity between the online measurements and the collected training 
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data [28]. Nevertheless, the main factor in tuning KNN performance is usually 

selecting value for k. It is very common that k is related to density of training database 

and therefore, could be a system variable on its own. 

4.3.3 How we approach KNN in this research? 

As we mentioned earlier the nearest floor algorithm has been designed to select the 

nearest reference WAPs to decide the floor number. The key difference between our 

designed algorithm and KNN is that we do not require training data or clusters on 

fingerprinting. While KNN works after an intensive calibration, our algorithm only 

maintains WAPs as references. We consider this as research contribution for few 

reasons. Firstly, the effect of minor infrastructure changes on WAPs as references is 

very minimal, while fingerprinting clusters could suffer from significant inaccuracies 

for the same level of changes. Secondly, data bandwidth and local storage required 

to transfer or store the reference data is very light compared to fingerprinting. 

To maintain compact and searchable data structure, with ability to extend to global 

coverage, we have designed WAPs reference data structure specifically for floor 

estimation.  The proposed data structure holds only one entry for each WAP, so mac 

address can be used as database key for distributing and searching the data at any 

scale. Also, we assume that only WAPs with enough accuracy and maturity, or any 

equivalent quality indicators, will be added to floors data structure. This is the main 

reason for keeping this structure separated from the main global database. Figure 4.3 

shows the structure of the database which has been designed for floor determination 

only.  

 

 

Weight Floor Number MaxRSS MAC Address 

Figure 4.3: Reference WAPs database structure used to enable floor estimation  
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Even for none fingerprinting system, maintaining the reference WAPs data is 

essential to support a dynamic and adaptive solution. Therefore, we have 

implemented the system to simultaneously update WAPs records in the database to 

keep track of maximum reported RSSI for each WAP, recorded in MaxRSS field in the 

database. This field is then used during any floor estimation to eliminate the effect of 

variation in transmitters power levels and various receiver’s manufacturers. Hence, 

we employed a procedure for selecting the best reference WAPs based on the 

difference between MaxRSS and the reported RSSI during the online phase. Similar 

to KNN algorithm we then pick up WAPs that have the smallest RSSI distance 

compared to each observation in online phase. 

 In this research we have used k=3 as a guide for matching the floor number with the 

reference database. The selection of this value was due to the nature of floor 

selection. Basically, to resolve any conflict when the selected WAPs disagree on best 

matching floor, we would need more than two WAPs. Choosing only one WAP, as per 

k=1, would present risk of selecting the wrong floor based on outlier.  However, any 

number over three would also start to propagate an effect of weak signals into the 

decision-making process.  

Below we present the pseudo-code for the proposed nearest floor algorithm 

implementation. 

Algorithm 4.1: Detailed implementation of nearest floor algorithm in a form of pseudo-code 

Input WAPs list from observation data 

Set k to 3 

SET available_waps to empty list 

Query reference database to get Ref_WAPs 

Foreach mi in WAPs list  

      IF  Ref_WAPs[mi] exists 

 Set  mi[rank] to Ref_WAPs[mi] [maxrssi] - mi[rssi] 

 Set mi[floor] to Ref_WAPs[mi] [floor] 
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Add  mi to available_waps  

      END IF 

END FOR 

SORT available_waps by rank value ascending 

SET Floors to empty list 

SET i to 0 

FOR i=1 to k  

     Set top_record to POP(available_waps) 

     Set floor_estimate to top_record[floor] 

     IF Floors [floor_estimate ] exists  

          Increment Floors [floor_estimate ] by 1 

     ELSE 

          Set Floors [floor_estimate ] to 1 

    END IF 

Sort Floors by count Descending 

Set floor_keys to KEYS(Floors) 

Set Estimate1 to POP(floors) 

Set Estimate2 to POP(floors) 

IF (Estimate1 equals Estimate2) AND |floor_keys[1] – floor_keys[2]|>1 

         RETURN Ceiling((Estimate1+Estimate2)/2) 

ELSE 

        RETURN Estimate1 

Someone might see KNN implementation limited to vertical distribution of the WiFi 

access points. Our initial tests in University buildings were subject to distribution of 

access points in a vertically aligned uniform. However, in further tests, shown in 

results section, we did verify that the algorithm does not require any vertical 

alignment, but it will benefit from more spread distributing the access points 

horizontally in each floor to maintain a strong WiFi coverage. 

4.3.4 Group Variance Algorithm 

Some of the observations that we had while testing the nearest floor algorithm have 

brought to our attention the need for additional statistical parameters. For example, 

during our walk near an elevation transition point, we notice signal strength variation 
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between floors became randomly favouring one floor over another. In addition, areas 

where all WiFi RSSI values are weak enough, finding a distinction between floors only 

based on strongest signal is not utilising all potential information made available to 

the phone. Even more, we have also recorded variation of RSSI from one side of the 

building to another and between rooms. Therefore, we concluded that more 

statistical parameters are required to assist or replace MaxRSS. 

Looking into various statistical parameters, we have selected the range, the variance 

and the availability. Those three parameters will use the WiFi RSSI readings to provide 

an indication of the floor number which the user is in. The novelty of the group 

variance algorithm comes by considering the distribution of the RSSI values in each 

floor rather than the usual distance measurement as discussed earlier.  

4.3.5 How does the group variance algorithm work? 

We configured the mobile device to make request for floor determination by 

collecting observation over time window of 10 seconds. The system will then use the 

reference WAPs database to assign floor number to each mac address reported. The 

algorithm starts by grouping, or clustering, list of mac addresses by the assigned floor 

number, to apply the selected statistical models on each floor separately. As we 

mentioned earlier this model consist of three parameters: range, variance and 

availability. The variance S2, shown in (4.8), is representative of variation of RSSI 

values in each floor. The range R and availability A% are shown in equations (4.9) and 

(4.10) respectively.   

𝑅𝑆𝑆̅̅ ̅̅ ̅(𝑥)  =  
1

𝑁
 .  ∑𝑅𝑆𝑆𝐼𝑖

𝑁

𝑖=1

(4.7) 

𝑆2(𝑥)  =  
1

𝑁 − 1
 .  ∑{(𝑅𝑆𝑆𝐼}𝑖    −    𝑅𝑆𝑆̅̅ ̅̅ ̅)

𝑁

𝑖=1

(4.8) 

𝑅(𝑥) =   𝑚𝑎𝑥
𝑖<𝑁

(𝑅𝑆𝑆𝐼𝑖)      −   𝑚𝑖𝑛
𝑖<𝑁
(𝑅𝑆𝑆𝐼𝑖)   (4.9) 

𝐴%(𝑥)   =   
𝑁

𝑀
 .  100 (4.10) 
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N is the number of distinct mac addresses seen for floor x. 

M is the number of mac addresses recorded in the reference WAPs database for 
floor x. 

 

 

 

The values of these three parameters will present WiFi signals distribution pattern 

for each floor.  This should enable us to estimate which floor we are on. Depending 

on the structure and the building materials used in multi-story buildings, WiFi signals 

will never spread equally in all directions. Therefore, in such buildings the horizontal 

and vertical signals distributions will certainly be different. This encouraged us to 

examine floor determination based on the selected RSSI statistical features.  The 

estimation of floor number works by selecting the floor that maximise values for 

variance, range and availability. However, we have realised that the three parameters 

do not always indicate to the same floor. Therefore, we proposed adding 

normalisation stage to convert each parameter estimation into probability ranging 

between 0 and 1. 

Figure 4.4: Group Variance Algorithm Explained in Step by Step Block Diagram 
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Once the three probabilities are calculated a weightage value is assigned to each 

parameter to combine the three values in simplistic floor voting system. The 

equations below demonstrate the process of obtaining the final probability P(f), 

where f is a given floor number, by combining the probabilities of these three 

parameters.  This is of course only possible under the assumption that these three 

parameters are independent in their probability distribution. 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑓𝑖) =∝. 𝑃𝑣𝑎𝑟(𝑓𝑖)  +  𝛽.  𝑃𝑅(𝑓𝑖)   +   𝛾.  𝑃𝐶(𝑓𝑖) (4.11)  

𝑃𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑓𝑖)   =   
∑ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐹 = 𝑓𝑖

∑ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐴𝑙𝑙 𝐹𝑙𝑜𝑜𝑟𝑠

(4.12) 

To select a weightage for each parameter, we randomly picked 20% of our labelled 

reference data, keeping the rest for testing, aiming to measure the significance of 

each parameter. Using each floor data, we then calculated the coefficient factor for 

correct floor estimation of each parameter separately. Then the weight value for each 

parameter was calculated as the percentage of the sum of values with correct 

estimations to total values. Basically, if any parameter would always indicate to the 

correct floor, it will get the weightage of one. After normalisation of three weightage 

values, we updated the total probability equation as per the following: 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑓𝑖) = 0.41. 𝑃𝑣𝑎𝑟(𝑓𝑖)  +  0.36.  𝑃𝑅(𝑓𝑖)   +   0.23.  𝑃𝐶(𝑓𝑖) (4.13) 

These figures clearly give priority to the variance if the three parameters estimate 

three different floors. However, it is still favouring any two parameters when they 

agree on given floor. 

4.3.6 Combined solution: 

Based on our initial results [69] we produce for Arlick building in the university, 

further research was required to examine the possibility of combining the two 

algorithms into one floor estimation solution. Therefore, we set to test such scenario 
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by retraining the model in equation (4.13) to include probability measure based on 

the percentage of WAPs with strongest RSSI each floor claim. To start we determined 

an RSSI cut off value that offer the maximum probability to correspond to the correct 

floor. Therefore, we used the same training data set and plotted the probability 

distribution of RSSI to floor estimation. The graph below demonstrates this analysis. 

 

Figure 4.5: Analysis of correct and incorrect floor estimation based on RSSI cut off number. 

The Figure 4.5 shows that using WAPs with RSSI stronger than -55 or -60 dbm provides 

the best percentage of correct estimation using this modified version of KNN. 

Considering that the no estimation is better than wrong estimation, we chose -55dbm 

to select input data for KNN. This means only WAPs that has been detected with RSSI 

≥ -55 will be used to compute Pknn as a function of each candidate floor as per 

equation (4.14). To conclude, our new trained model for the combined solution is set 

as per the details in equation (4.15).   

𝑃𝑘𝑛𝑛(𝑓𝑖)   =  1 −   
∑ (𝑅𝑆𝑆𝐼𝑚𝑎𝑥 − 𝑅𝑆𝑆𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑)𝐹 = 𝑓𝑖

∑ (𝑅𝑆𝑆𝐼𝑚𝑎𝑥 − 𝑅𝑆𝑆𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑)𝐴𝑙𝑙 𝐹𝑙𝑜𝑜𝑟𝑠

(4.14) 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑓𝑖) = 0.31. 𝑃𝑣𝑎𝑟(𝑓𝑖)  +  0.15.  𝑃𝑅(𝑓𝑖)   +   0.09.  𝑃𝐶(𝑓𝑖)  +  0.46 . 𝑃𝑘𝑛𝑛(𝑓𝑖)(4.15)  
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Furthermore, to reduce false floor determination is edge cases where two floors 

show very close probability, we added a validation check before confirming to floor 

fi.  The proposed validation criteria measure the significance of top two candidate 

floors as per the following: 

Significance(𝑓𝑖)   =    
𝑃𝑡𝑜𝑡𝑎𝑙(𝑓𝑖)

∑ (𝑃𝑡𝑜𝑡𝑎𝑙(𝑓))𝑇𝑜𝑝 𝑡𝑤𝑜

(4.16) 

If the floor didn’t score Significance > 0.6, we do not confirm the device to any floor. 

4.3.7 Test results and discussion 

Unlike all previous sections, in this case we didn’t use WAPs database constructed by 

the crowd-sourcing observations due to the absence of 3D attributes in it. Instead, 

we created another copy of reference WAPs database as per the structure in Figure 

4.3. To obtain floor number assigned to each WAP, we just reversed the KNN 

algorithm to run per WAP rather than per observation. The reversed KNN elected the 

floor number that claim higher percentage of observations with RSSI>-55dbm 

considering all observations assigned to any given WAP. such arrangements are 

temporary as with the latest generations of smart phones equipped with pressure 

sensors, the crowd-sourcing algorithms in Chapter3 would be able to generate 3D 

labelled WAPs. In the meantime, we justified that reversed KNN provides accurate 

labelled WAPs data, when its input is labelled to the correct floor, by comparing the 

results of 24 mac addresses located in university buildings that we could verify from 

IT team. Hence, we used the reverse KNN on all test venues considering that any error 

in labelled WAPs is neglectable. 

The table below provides an overview of test venues we used to compare floor 

determination algorithm proposed in this section. All buildings are in Edinburgh, UK 

and were accessible to us during data collection. The data is collected using variations 

of smart phones with different brands (Nokia, HTC, LG and Motorola).  WiFi 

observations are recorded by running “WiFi Stumbler” application for dedicated time 
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slot per floor while manually recording floor number and time in separate file. Tests 

are then performed by running log files through code scripts on server VM to 

generate labelled WAPs initially then output floor estimation per observations. Floor 

labels in each observation are then used to test each estimation and add line per 

observation in results log file. Each line provides the comparison result indicating if 

the estimated floor were correct, false or not available.  

Table 4.5: An overview of test venues used to validate the proposed algorithms for floor 

determination algorithms 

VENUE 
FLOORS 

TESTED  

LABELLED 

OBSERVATIONS 

TOTOAL 

FLOORS 
LABELLED WAPS 

ALRICK BUILDING, UK 2 186 6 12 

FARADY BUILDING, UK 3 154 4 12 

ST.JAMES, UK 5 547 6 62 

OCEAN TERMINAL, UK 3 432 3 167 

To compare the performance of proposed algorithms, we performed three separate 

runs of same test data and recorded results for KNN algorithm, Group Variance 

algorithm and the combined algorithm.  The percentage comparisons of these results 

are compiled in Table 4.6. 

Table 4.6: Compiled test results comparing KNN algorithm with Group Variance algorithms and the 

Combined Probability algorithm 

VENUE KNN GROUP VARIANCE COMBINED 

True False NA True False NA True False NA 

ALRICK  
86% 14% 0% 72% 28% 0% 92% 3% 5% 

FARADY  89% 11% 0% 78% 22% 0% 98% 1% 1% 

ST.JAMES 78% 17% 5% 76% 19% 5% 86% 6% 8% 

OCEAN TERMINAL 72% 25% 3% 74% 23% 3% 89% 4% 7% 
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Table 4.6 clearly shows that selecting nearest floor based on KNN algorithm mostly 

performed better in all venues, except Ocean Terminal. This can be explained due to 

openings between floors that is only present in this venue.  On the other hand, it also 

proofs that Group variance probability method are more robust and less sensitive to 

building structure and layout. The results show significant improvements achieved 

through the new combined algorithm. Nevertheless, this success is dependent on the 

training of weightage parameters and might not be transferable globally without 

further research. In addition, looking into the percentage of “NA”, both KNN and 

Group Variance tend to always provide floor estimation, unless WAPs in observations 

are not mapped in reference WAPs database. On the other hand, the combined 

solution produces slightly higher percentage of “NA” due to the validation of 

probability we have added. 

4.4 Conclusion 

In this chapter we set various models to utilise our generated database of WAPs. We 

focused on three different implementations of such database. The first was 

estimating mobile units position using Handover algorithm. In the second part of the 

chapter, we examined the ability of estimating errors in database and positioning by 

modelling various quality metrics. Finally, we set to try mitigating floor ambiguity as 

separated algorithm from 2D position estimation, as we earlier discussed in chapter 

three. 

 In terms of positioning estimation of mobile units, we reported on different results 

between venues and explained the variation as due to the differences in crowd-

sourcing, size, WAP count and layout. However, as the main purpose was to verify 

the quality of WAPs database, we believe that the results are satisfactory without 

expanding more advanced analysis. We also highlighted that mass-spring would be 

better fit for performing indoor positioning when utilising WAPs database derived 

from crowd-sourcing as it outperforms the Handover algorithm proposed in this 

chapter. However, it was also clear that the work we did on Handover had improved 
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the results over the implementation of traditional weighted centroid. Finally, we 

explained that a better result could be expected by combining handover with mass-

spring.  

In terms of modelling errors in radio-maps and position estimation, we presented 

comprehensive study and designed custom model tailored for crowd-sourcing 

deployment. However, the main contribution of our model was presenting error 

estimation as self-evaluation problem that was hardly covered in literature. We 

strongly believe that similar models should be adopted by active research groups 

working on indoor positioning. More importantly, any positioning framework or 

hybrid deployment proposal, should be able to provide quality metrics as well as 

positioning data. Finally, the model we presented only deal with errors in circular 

format and do not present multi-dimensional errors. To provide more realistic error 

estimation more work would be required to fit our proposed model into multi-

dimensional frame. 

Finally, solving floor ambiguity has been confronted in this chapter by testing two 

different theories. Our implementation and experimental results would enable global 

deployment of multi-dimensional indoor positioning system once reference floor can 

be assigned to enough WAPs in crowd-sourced database. Further work on this topic 

would focus on utilization of barometer readings into crowd-sourcing frame. Recent 

research [35], [70] have already started considering barometer measure. However, 

the main challenge remains in the absence of continuity when it comes to collecting 

user’s data during crowd-sourcing. This limitation will certainly affect barometer 

models that require ground floor reference on the same device to detect floor change 

events or work out how many floors are in the building. Furthermore, the absence of 

unified ground floor definition makes the indexing of floors even more complicated 

and run into problems of usability of these indexes. In some countries, ground floors 

are labelled to start from 0, while other countries start labelling from 1. Therefore, 
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some input from maps are expected to play important part in the utilization of 

multidimensional crowd-sourcing in the coming years. 
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5 Conclusion and Future Research 

During our research, we focused on testing the feasibility of crowd-sourcing WiFi 

signal sources in a global scale. Our research has provided evidence to justify the 

validity of such concept. We also addressed the research problem by employing 

unsupervised learning techniques to estimate WAPs signal attributes and locations. 

Our learning is performed using large scale data with global distribution and 

independent from maps layout or any user specified environmental parameters. In 

summary, we study the effectiveness of managing local signal attributes by adopting 

grid approach. Along with the large-scale data available to us, the employed data 

clustering and classification algorithms enabled local optimization of each area on its 

own. Furthermore, we presented the details of our framework implementation 

including grid formation and data structure.  To validate results, we proposed using 

sanity tests to accommodate the absence of ground truth data outside the university 

lab. Our described sanity tests provide enough confidence of emulated ground truth 

reference coverage area close to signal sources physical presence. Compared to the 

state of the art, our research is the first to address this problem with implementation 

justification and large-scale test data. 

To further study the optimization of signal sources estimated positions, we presented 

a method that involve modeling signal sources and reference clusters as graph. We 

then proved that using mass-spring relaxation algorithm to optimize the graph is 

applicable to this research target. Our research then went on testing mass-spring with 

limited freedom and different levels of graph connectivity. Particularly, we have 

proofed that restraining mass-spring to limited area of freedom of each node in the 

graph would provide the best performance. Finally, we presented our results for 

running the proposed algorithms on dataset covering different WAPs density and 

building sizes. To justify signal sources positioning quality, we compared the position 

of each mac address to the extracted coverage area from ground truth data. One can 

argue that our results could be affected by the flexibility of coverage area estimation. 
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However, as a sanity tests, the presented results supported our theory to enable large 

scale crowd-sourcing of signal sources.  

In the last chapter, we have also examined three different ways to utilize WAPs 

database. Firstly, we presented our Handover algorithm that proved to provide 

better weighting over traditional weighted centroid. However, to further test 

Handover algorithm accuracy we also compared it to mass-spring. The presented 

results identified mass-spring as better fit for crowd-sourcing. We then presented our 

own model for estimating positioning errors based on quality measures of crowd-

sourcing. We compared our model with two models appeared in literature but 

previously used for fingerprinting. We then provided justification that the proposed 

model is better tailored for radio-maps created via crowd-sourcing.  

Finally, we tested the possibility of providing floor estimation to complement location 

attributes. As we search for valid solution, we compared KNN implementation, 

tailored to WAPs database utilization, with our own statistical model. Initial results 

showed that KNN outperform the proposed statistical model. However, after further 

modification to KNN to provide probability estimation per floor, a combined solution 

was proposed. As a conclusion, our results show that combining floor probabilities 

from all the features we examined, KNN, variance, range and availability, provides 

best performance. To conclude, the brief discussion of floor estimation was inspired 

by the importance of the topic. Nevertheless, we still think that to support critical 

emergency services, less than 1% error in floor estimation is required. Hence, further 

research would be required to enable an efficient floor identification.   

5.1 Future research 

Given the opportunity for conducting future research, we would examine more 

advanced data clustering and classification algorithm. Particularly, the recent 

development of deep learning techniques as functional descriptive, or unsupervised 

learning, should motivate researchers to try artificial neural networks as a way to 
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describe signal propagation in unknown territories. The primary target of such 

functions would be to generate multi-layers network of neurons that would identify 

valid clusters from large set of signal observations collocated in limited area. This 

could save segmentation efforts and substitute for fine global grid. Hence such 

research would also need to be coupled with rough geocaching system that utilize 

roads and open GIS data to divide the earth into linked sections. In a way, the 

computational requirements in realization of such solution would be much more than 

proposed solution. However, it might allow implementing priorities when processing 

incoming data to create batches with different frequencies. 

 Further research concept can also test the validity of coupling mass-spring relaxation 

with fuzzy frame. The main thinking behind that is due to the amount of noise present 

in crowd-sourced input data. Considering the constructed graph for mass-spring, 

edges in a form of fuzzy data can add flexibility to reach global minima compared to 

crisp data. This research has demonstrated that allowing level of freedom to each 

node would also improve results. Hence, transforming all input data into fuzzy values 

before executing mass-spring would produce more distributed input across the 

venue. In addition to mass-spring, fuzzy frame can also play a part in improving data 

classification and clustering. Estimating the belongingness of any signal measurement 

to a given geoindex can be easily translated into fuzzy input. With set of defined 

ownership degrees, clustered data in each geoindex can claim new signal 

measurements as they are streamed in. 

 Finally, more advanced 3D algorithms utilizing barometer readings in large scale 

deployment is certainly the most urgent research topic that should be conducted. We 

would argue that efforts in crowd-sourcing floor transition features in unknown 

topology or layout is valid topic for future research. Such methods will help assigning 

relative floors to WAPs without the need for user inputs or detail layouts from maps.  
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