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Simultaneous Robot-World and Hand-Eye Calibration

Fadi Dornaika and Radu Horaud, Member, IEEE

Abstract— Recently, Zhuang, Roth, & Sudhakar [1] proposed a
method that allows simultaneous computation of the rigid trans-
formations from world frame to robot base frame and from hand

frame to camera frame. Their method attempts to solve a ho-

mogeneous matrix equation of the form AX = ZB. They use
quaternions to derive explicit linear solutions for X and Z. In
this short paper, we present two new solutions that attempt to
solve the homogeneous matrix equation mentioned above: (i) a
closed-form method which uses quaternion algebra and a positive
quadratic error function associated with this representation and
(ii) a method based on non-linear constrained minimization and
which simultaneously solves for rotations and translations. These
results may be useful to other problems that can be formulated
in the same mathematical form. We perform a sensitivity anal-
ysis for both our two methods and the linear method developed
by Zhuang et al. [1]. This analysis allows the comparison of the
three methods. In the light of this comparison the non-linear
optimization method, which solves for rotations and translations
simultaneously, seems to be the most stable one with respect to
noise and to measurement errors.

Keywords— hand/eye calibration, robot/world calibration,

quaternion algebra.

I. INTRODUCTION

In order to use a gripper-mounted sensor (such as a cam-
era) for a robot task, the position and orientation of the sensor
frame with respect to the gripper frame must be known. The
problem of determining this relationship is referred to as the
hand-eye calibration problem. One can find this relationship
by moving the robot and observing the resulting motion of the
sensor. This calibration problem yields a homogeneous matrix
equation of the form AX = XB. Several closed-form solutions
were proposed in the past to solve for X [2], [3], [4], [5] as well
as a non-linear optimization method [6].

Recently, Zhuang et al. [1] proposed a method that allows
the simultaneous estimation of both the transformations from
the world-centered frame to the robot-base frame and from the
gripper frame to camera frame. The identification problem is
cast into the problem of solving a system of homogeneous matrix
equations of the form AX = ZB, where X is the gripper-to-
camera rigid transformation and Z is the robot-to-world rigid
transformation. Quaternion algebra is applied to derive explicit
linear solutions for X and Z.

The mathematical framework of AX = ZB allows one to
solve for at least two types of robotic configurations. These
configurations are shown on Figure 1 and Figure 2. It is worth-
while to notice that matrices X and Z can be estimated either
sequentially or simultaneously. Therefore two approaches are
possible:

1. X is estimated first using any hand-eye (or camera-
gripper) calibration method and Z is estimated by solving
the equation AX = ZB, or

2. X and Z are simultaneously estimated by solving AX =
ZB where both X and Z are unknowns.
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Fig. 1. Robot/world (Z) and hand/eye (X) calibration. The camera is

mounted onto the gripper and camera motions are determined using
a calibration pattern. The world frame is the frame of the calibration
pattern.
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Fig. 2. Robot/eye (Z) and hand/tool (X) calibration. The tool is
mounted onto the gripper and tool motions are determined by ob-
serving tool feature points with a camera. The world frame is, in this
case, identical with the camera frame.

This paper describes both a closed-form solution and a non-
linear solution for the system of matrix equations AX = ZB.
These solutions solve for two rotations and two translations that
are associated with the matrices X and Z. Likewise the lin-
ear method [1] the closed-form and non-linear methods yield a
unique solution provided that the robot performs two motions
with distinct rotation axes. The main differences between the
linear method and the closed-form method introduced in this
paper are the followings:

o The linear method first solves linearly for the components
of two quaternions and second it normalizes these quater-
nions such that they represent rotations. The closed-form
method solves directly for two unit quaternions and hence
the constraint that these quaternions must represent two
rotations is built in the resolution method.

o The linear method is not feasible for some special configu-
rations (see [1] and below). We show that the closed-form
method remains feasible for such special configurations.

We perform a sensitivity analysis for both our methods and
for the linear method of Zhuang et al. [1]. This analysis allows
the comparison of the three methods. In the light of both sim-
ulated and real experiments, it appears that the non-linear op-
timization method, which solves for rotations and translations
simultaneously, performs better than the closed-form method



which in turn performs slightly better than the linear method.

The remainder of this paper is organized as follows. Section II
briefly recalls the problem formulation and presents the linear
solution suggested by Zhuang et al. [1]. The closed-form and
non-linear methods are described in Section ITI. Section IV com-
pares the three methods through a sensitivity analysis. Finally,
Section V describes some experimental results and Section VI
provides a short discussion.

II. PROBLEM FORMULATION

We consider an arbitrary position of the robotic system (refer
to Figures 1 and 2). From these figures we can write:

AX =ZB (1)

In the particular case of a camera, the matrix A is obtained
by calibrating the camera with respect to a fixed calibrating ob-
ject and its associated frame, called the calibration frame. The
matrix B is computed using the manipulator’s forward kine-
matics whose parameters are supposed to be known (see [7] for
an approach which attempts to estimate simultaneously these
kinematic parameters and the hand-eye transformation). Let
R4, Rp, Rx, and Rz be the respective 3x3 rotation matrices
of A, B, X, and Z, and let ta, tB, tx, and tz be the respective
3x1 translational vectors. Equation (1) can then be written as:

Rx tx | _ | Rz tz Rp ts

o 1 |7 |[0o" 1 0" 1
and one may easily decompose this equation into a rotation
equation and a position equation:

Ra ta
oT 1

RsRx =
Ratx+ta =

RzRpB (2)
Rzts +tz (3)

Equation (3) is a linear equation in ¢x and ¢tz if Rz is known.

A. Linear solution

This solution was suggested in [1]. Let ¢4, g5, gx, and q,
be unit quaternions that correspond to the rotation matrices
R4, R, Rx, and Rz [8]. Since quaternions can be written
as a combination of a scalar and a 3-vector, we have g5 =
[ao,aT] and so forth. The matrix equation R4Rx = RzRpB
is equivalent to the following quaternion equation:

ds*qdx =44z *qp (4)

Expanding eq. (4) using quaternion products yields two con-
straints: a scalar equation and a vector equation:

Zobo—b-z (5)
20b+boz—bxz (6)

aoo —a - T

ax+roat+axxer =

where - and x denote the dot-product and the vector product
in the space of 3-vectors.

If ag # 0, zo can be solved from (5):

zo = (a/ao) - & + (bo/ao) zo — (b/ao) - z (7

By substitution of eq. (7) into eq. (6) and using the matrix
representation to describe the vector and dot products yields:

(a0l + aa” Jao + Q(a)) z+
(=boI —ab” Jag + Qb)) z = 20b — 2 (bo/ao) @

where (a) is the skew-symmetric matrix associated with the
3-vector a.

Therefore, we obtain (with zo # 0):

J u
3x6 6x1

= 20 (b — (bo/ao0) a) (8)

where u” = [a:T, zT].

Equation (8) consists of three linear constraints with six un-
knowns. Therefore, a unique solution for u requires multiple
measurements.

The solution of w can be obtained using standard linear al-
gebra techniques. After u is obtained, the components of both
gx and g, can be determined using the constraints ||gx|*> =
llgz|I” = 1 and eq. (7).

Following the solution of Rx and Rz, the computation of
tx and tz becomes trivial. Each position of the hand provides
three linear equations with six unknowns (the components of
tx and tz).

III. PROBLEM SOLUTION

In this section we propose two alternatives for estimating Rx,
Rz, tx,and tz: A closed-form method and a non-linear method
which do not suffer from the above limitations, e.g., ag # 0 and
z0 75 0.

The closed-form method uses algebraic properties associated
with quaternions to cast a sum of squares error function into a
positive semi-definite quadratic form whose minimization uses
two Lagrange multipliers. The non-linear method solves for
all the unknowns simultaneously using standard minimization
techniques. Interesting enough, the closed-form method is sim-
ilar but not equivalent to the problem of optimally estimating
rigid motion from 3-D to 3-D point or line correspondences [§],
[9]. The method introduced in this paper solves simultaneously
for two rotations in closed form while the methods developed in
the past solved for one rotation in closed form.

A. Closed-form method

We start by building a positive error function that is derived
from equation (4) as follows. Since the quaternion multipli-
cation can be written in matrix form and with the notations
introduced in [8] we have:

Q(qa4;) ax
W(gg:)az

qai*49x =

4z *4dp; =

By substituting these equations into (4), we obtain:

Q(in)QX - W(qBi)qZ =0



With matrices Q(q) and W (q) being defined by:

go —qz —qy —q:

_ qz q —qz y

@) Qy gz q0 —Qz
qz —Qqy qz qo

g —Qqz —qy —q:
gz qo 9z —qy
W =
(q) Qy —9qz qo 9z
q: qy —Qqz qo

Moreover, these two matrices are orthogonal and for a unit
quaternion q we have:

Q@) Qq) =g"qI=1
W(a)'W(g)=q"ql=1

The square norm of the corresponding error vector is given
by the following positive quadratic form:

1Q(g.4:) ax — W (as:) az” =
[Q(g4:) ax — W(gg;) ‘IZ]T Qlaa)ax —W(agi)az]l =
qﬁQ(in)TQ(QAi)qX + ng(qBi)TW(qBi)qZ -
2z W (@5:)" Q(@a)ax —axQ(q4:)" W (a5:)a

Let v be an 8-vector given by:
T_ [T T
v = [a%, 4]

Thus, we can write:

1Q(q4;) ax — W(gp;) ‘12”2 = ’UTSi v

with S; being an 8x8 positive semi-definite symmetric matrix:

I C;
Si‘[c? 1]

where C; = —Q(q.4;)" W(qp,;) is an orthogonal matrix of rank
equal to 4.

(9)

Finally, the error function that will allow us to compute q
and g, becomes (n is the number of different positions of the
robot):

flax,az) =) v"Siv=0o" (Z Si> v=2v"Sv  (10)
i=1 i=1

with:
S— [

Notice that C = 2:21 C; is the sum of n orthogonal matrices.
In the general case C has full rank and there may be geometric
configurations for which C is rank deficient. However, such geo-
metric configurations are very rare in practice and, without loss
of generality, one may assume that C has always full rank. The
function f(gx,q,) is a positive semi-definite quadratic form
and one way to minimize it is to use two Lagrange multipliers:

nl C
ct I

. . T
min f = min S +
> f qx,qz((fb( qaz) S(ax az)

M (1—qxax)+ X (1—qzqz))

By developing and grouping terms we obtain:

flax,4z) = (0 —M)axqx + (0 — X2)azaz +

4xCa; +47C qx + A + X2 (11)
This function passes through a minimum when the first deriva-
tives vanish. By differentiating with respect to the components
of g and g, we obtain:

(n—XA1)gx+Cq, = 0 (12)
(n—2X2)q, + CT‘IX =0 (13)
From equation (12) we obtain:
-1 C (14)
dx = )\1 —_n qz
and by substituting g, in equation (13) we obtain:
CTCQZ = (M —n)(A2 —n)g, (15)

Therefore g, is an eigenvector of the symmetric positive semi-
definite matrix CT C. Such a matrix has four real positive eigen-
values a;, i = {1...4} and we have an eigenvector e; for each
eigenvalue:

CTC& = ;€;
Notice that by substituting equations (14) and (15) into equa-

tion (11) we obtain the value of the error function at the point
where the first derivatives vanish:

flax,az) =M+ A2

Therefore, we must choose an eigenvalue a; which minimizes
A1+ A2. Let us consider the fact that gy must be a unit quater-
nion. We obtain from equations (12) and (15):

1
1 T A2 —n
_ o — = =1
EYEE az(A1 —n)(A2 —n)gy N7
Hence, we must have:
A=A #0

The relationship between A1 = A2 = X and «;, i.e., equation (15)
is:

A—n)’=a;

which yields the following solutions for A:

A=n+a;

Since A must be a positive number, one has to select among the
four positive eigenvalues, the eigenvalue a; such that n £+ \/a;
is the smallest positive number.

Once the rotations, Rx and Rz, have been determined, the
problem of determining the best translations, tx and tz, be-
comes a linear least-squares problem that can be easily solved
using standard linear algebra techniques.



A.1. Configurations defeating the linear method.  There are
two configurations for which the linear method fails to provide
a solution: zp = 0 and ap = 0 (see Section II-A). Clearly the
closed-form solution is able to deal with situations for which
zo = 0. The case ap = 0 is a little bit more complex to analyze.
First, notice that the 4x4 matrices Q(q) and W(q) have full
rank for all non null quaternions g. Let, for some i, g4, =
[0,a]". Q(q4;) becomes a skew-symmetric matrix of full rank
for all @a; # 0. Hence, the rank of S; in equation (9) is not
affected by such a special case. However there is an ambiguity
associated with purely imaginary unit quaternions because the
quaternions q4; = [0,af]” and q4; = [0,—af]T describe the
same rotation matrix R4;. Hence, one has two consider two
distinct matrices associated with this special configuration:

_ I -C;
D] O

Therefore, any time such a special configuration is present in the
data, one has two consider two distinct error functions. There
will be two two distinct solutions for gy and g,. One may sim-
ply consider, among these two solutions, the solution yielding
the smallest minimum.

St =

2

I C;
ct 1

B. Non-linear method

There are several disadvantages associated with the above
methods:

1. The unknowns are estimated in sequence, rotations first
and then translations. Errors from the first stage propa-
gate to the second stage;

2. It is well known that the performance of linear resolution
methods degrades in the presence of noise, and

3. Unlike non-linear minimization, linear and closed-form so-
lutions do not allow a characterization of both the quality
of the solution and the confidence associated with the so-
lution.

In this Section, we propose to overcome the disadvantages
mentioned above. For this purpose we estimate simultaneously
the rotations and translations associated with X and Z. This
leads to a non-linear minimization problem. There are 24 pa-
rameters associated with two rotation matrices (18 parameters)
and two translation vectors (6 parameters). The initialization of
these unknowns is straightforward because one can use either of
the two methods outlined above. Non-linear minimization pro-
vides information about both the quality of the solution (the
depth of the global minimum) and the confidence associated
with this solution (the width of the global minimum).

If we have n positions of the robot, the calibration problem
becomes the problem of solving for a set of 2n non-linear con-
straints derived from equations (2) and (3), or equivalently, the
problem of minimizing the following error function:

f(RX;RZ;tX;tZ) =
p1 Z (IR Rx — Rp:iRz|”) +
i=1
M2 Z (”RAi tx +tai —Rztpi — tz||2) +
i=1

ps |[RxRY —I||” + pa |[RzRS — I|?

The criterion to be minimized is of the form:

min ¢ f(x) = %Z@?(w) .z € R*
j=1

Therefore, the problem becomes a classical non-linear least-
squares constrained minimization problem and one can apply
standard non-linear optimization techniques, such as Newton’s
method and Newton-like methods [10], [11]. In this error func-
tion, the terms ®; are quadratic in the unknowns. Notice that
the last two terms are penalty functions which constrain the ma-
trices Rx and Rz to be rotations. The parameters p1 through
pa are real positive numbers. High values for ps and p4 enforce
the role of the penalty functions In all our experiments we have
set these parameters to the following values: p1 = p2 = 1 and
w3 = pa = 10°® In the next two sections we give some results ob-
tained with the Levenberg-Marquardt non-linear minimization
method as described in [12] and in [11].

IV. SENSITIVITY ANALYSIS AND METHOD COMPARISON

One of the most important merits of any calibration method
is its sensitivity with respect to various perturbations. In our
problem, there are two main sources of perturbations: errors
associated with camera calibration and errors associated with
the robot position. Indeed, the parameters of both the direct
and inverse kinematic models of robots are not perfect. In order
to investigate the behavior of the methods in the presence of
measurement noise we designed a sensitivity analysis based on
the following grounds:

e Nominal values for the parameters of both the hand-eye
transformation X and the robot-to-world transformation
Z are provided;

o Also are provided n matrices A1, ... A, from which n hand
positions can be computed with:

B; =Z 'A;X

o Either Gaussian noise or uniform noise is added to both
camera and robot positions; the homogeneous transforma-
tions, (X and Z), are estimated in the presence of this
noise using the three methods described in this paper: the
linear method, the closed-form method and the non-linear
method, and

o We study the variations of the estimation of the hand-eye
transformation and the robot-to-world transformation as a
function of the noise being added and/or as a function of
the number of positions (n).

Since both rotations and translations may be represented as
vectors, adding noise to a transformation consists of adding ran-
dom numbers to each one of the vectors’ components. Random
numbers simulating noise are obtained using a random num-
ber generator either with a uniform distribution in the interval
[-C/2,+C/2], or with a Gaussian distribution with a standard
deviation equal to o. Therefore the level of noise that is added
is associated either with the value of C' or with the value of o
(or, more precisely, with the value of 2¢). In what follows the
level of noise is in fact represented as a ratio: the amplitude of
the actual random numbers (C or 20) divided by the nominal
values of the perturbed parameters.

In the case of a rotation, the vector (quaternion) associated
with this rotation has a module equal to 1 and therefore the



ratio is simply either C or 2¢. In the case of a translation the
ratio is computed with respect to a nominal value estimated
over all the perturbed translations:

2 i (ltasll + I s:1)

2n

||tn0minal|| =

where t4, is the translation vector associated with A;.

For each noise level and for a large number N of trials we
compute the errors as follows. These errors are: orientation er-
ror and position error. The orientation error is defined as the
rotation angle in degrees required to align the coordinate sys-
tem of X or Z in its computed orientation with the coordinate
system in its theoretical orientation. The position error is de-
fined as the norm of the vector which represents the difference
between the two translation vectors: the computed one and the
theoretical one, divided by the norm of the second vector.

In all our simulations we set N = 500, [|tx|| = 229mm, and
[tz]| = 768mm.

The following figures show the average of the above errors as
a function of the percentage of noise. The percentage of noise
varies from 1% to 6%. The full curves (—) correspond to the
method in [1], the dotted curves (...) correspond to the closed-
form method, and the dashed curves (- - -) correspond to the
non-linear method.

Figures 3 and 4 correspond to three positions (n = 3) of the
robot while on Figure 5 the number of positions varies from 3
to 8.

Figure 3 shows the rotation and translation errors as a func-
tion of uniform noise added to the rotational part of the robot
and camera positions. Figure 4 shows the rotation and trans-
lation errors as a function of Gaussian noise added to the ro-
tational part of the hand and camera positions. These errors
are obtained with the three methods. We can conclude that the
closed-form method is more accurate than the linear method
proposed in [1].

As other authors have done in the past, it is interesting to
analyze the behavior of calibration methods with respect to the
number of positions. In order to perform this analysis we have
to fix the percentage of noise. Figure 5 shows the rotational
and translational errors as a function of the square root of the
number of motions (y/n varies from 1.732 to 2.828). The noise
ratio has been fixed to the worst case for rotations, e.g., 6% and
to 2% for translations. Both rotational and translational noise
distributions are Gaussian.

V. EXPERIMENTAL RESULTS

In this Section we report some experimental results obtained
with two sets of data. The first data set was obtained with
17 different positions of the hand-eye device with respect to a
calibrating object. The second data set was obtained with 7
such positions. In order to calibrate the camera we used the
classical method proposed by Faugeras & Toscani described in

[9]-

Our tests compare the linear method [1] with the two methods
developed in this paper. Table I and Table II summarize the
results obtained with the two data sets mentioned above. The
second columns of these tables show the sum of squares of the
absolute error in rotation, ER:

ERp = Z |IRaRx —RzRa|

N
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x
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(a) Orientation errors.
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3

2

1

Average Relative Position Error

o

Noise Level
(b) Relative position errors.
Fig. 3. Errors in orientations and positions in the presence of uniform
noise perturbing the rotation axes. The full curves (—) correspond

to the method outlined in section II and the dashed curves (— —)
correspond to the non-linear method.

The third columns show the relative error in translation, Ey:

Ey — STI(Ratx +ta — Rzt —tz]? 1/2
S Ratx + tal?

It is worthwhile to notice that the robots being used in the
two experiments summarized in the tables above are not identi-
cal. The first data set (Table I) was obtained with a PPPRRR
robot (three prismatic and three rotational joints) while the sec-
ond data set (Table II) was obtained with a RRRRRR robot.
Unlike the simulated data, these two experiments do not allow
one to conclude that the closed-form solution outperforms the
linear solution. In the first experiment the linear solution yields
a smaller translation error than the translation error associated
with the closed-form method. In the second experiment the
translation error associated with the linear method does not
seem to be affected by a large rotation error.

These experimental results seem however to confirm that the
non-linear method provides a better estimation of the transla-
tion vectors at the cost of slightly larger rotation errors. This
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(b) Relative position errors.

Fig. 4. Errors in orientations and positions in the presence of Gaussian
noise perturbing the rotation axes. The full curves (—) correspond to
the method outlined in section II, the dotted curves (...) correspond
to the closed-form solution and the dashed curves (— —) correspond
to the non-linear method.

is due to the fact that the robot’s kinematic chain is not per-
fectly calibrated and therefore there are errors associated with
the robot’s translation parameters. Obviously, these errors do
not obey the noise models used for simulations.

VI. DiscuUssiON

In this paper we addressed the problem of robot-to-world and
hand-eye calibration. As it was proposed in [1] this problem is
formulated as solving a system of homogeneous transformation
equations of the form AX = ZB.

We develop two resolution methods, the first one solves for
rotations and then for translations while the second one solves
simultaneously for rotations and translations. The first method
leads to a closed-form solution while the second one leads to
non-linear optimization.

Both the sensitivity analysis and the results obtained with
experimental data show that the closed-form method slightly
outperforms the linear method of Zhuang et al. [1]. This is

9.7
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Average Orientation Error
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Square root of the Number of Poses

(a) Orientation errors.
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3
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1
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Square root of the Number of Poses

(b) Relative position errors.

Fig. 5. Errors in orientations and positions as a function of the number
of positions. A Gaussian noise is added both to the robot and camera
positions. The full curves (—) correspond to the method outlined in
section IT and the dashed curves (— —) correspond to the non-linear
method.

most probably due to the Euclidean nature of the error func-
tion suggested in Section ITI-A. However, there is no evidence
that with real data the closed-form method will always perform
better than the linear method: One can therefore conclude that
the two methods have comparable performances.

The non-linear minimization method suggested in Section III-
B yields the most accurate results and outperforms both the
linear and closed-form methods. The solution obtained with
either the linear or closed-form methods can be used to initialize
the non-linear minimization method.

The two methods proposed in this paper together with [1]
may be useful to other problems that can be formulated into
homogeneous transformation equations of the form AX = ZB.
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