Why is entropy a fundamental measure of
information content?
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Figure 1: The binary entropy function H(p, 1 —p) as a func-
tion of p.

We will verify the validity of H(X) as a measure of in-
formation by relating H(X) to the actual number of bits
needed to specify the outcome of an experiment.?

An ensemble ‘X’ is arandom variable x with a set of pos-
sible outcomes, Ax={ai,...,ar}, having probabilities
Px = {p1,...,pr}, with P(z=a;) = p;, pi > 0 and
Z.’L‘E-AX P(Jj) =1

Number of elements in a set .4 is denoted by |A|.

The entropy of X is defined by:

3 P(r)logﬁ,

rEAXx

H(X)=

with the convention for P(z)=0 that 0 x log1/0 = 0,
since limg_, ¢+ 0 log 1/6=0.

Note that entropy is additive for independent variables.

Perfect information content of X is:
Ho(X) = log, [Ax|

Hy(X) is a lower bound for the number of binary ques-
tions that are guaranteed to identify the outcome. It is
an additive quantity: Ho(X,Y) = Ho(X) + Ho(Y).
This measure of information content does not include
any probabilistic element.

Essential information. We relax the exhaustive require-
ment, and define:

Hs(X) =logmin{|T|: T C Ax,Pr(x € T) > 1-4}.

Here the minimization seeks out the smallest possible
subset T of outcomes that have the biggest possible
probability. P(z & T) < 4.
Note that Hg(X) is the special case of Hs(X) with § =
0, if p(z) > 0 for all z € X.

OThese and previous lecture notes are also available by www or ftp
at: ftp://131.111.48.24/pub/mackay/info-theory/course.html

T am indebted to Yaser Abu-Mostafa for the following presentation
of the source coding theorem.

Example 1:

Let Px = {1/4,1/4,1/4,3/16,1/64,1/64,1/64,1/64}.
Then Ho(X) = 3 bits, Hy/16(X) = 2 bits. So if we are
willing to run a risk of § = 1/16 of not having a name for z,
then we can get by with half as many names as are needed
if every # € Ax must have a name.

Example 2: Consider x = (21,22...2n) where z; €
{0, 1}, with probabilities pg=0.9,p1=0.1. The most prob-
able strings x are those with most 0’s. If r(x) is the number
of 1’s in x then
P(x|po,p1) = py " pp™.

To evaluate Hs(X) we must find the smallest possible subset
T such that P(x € T') < 4. Clearly, this minimal subset will
contain all x with r(x) = 0,1,2..., up to some rmax(d).
Figure 2 shows a graph of H;(X) against J for the cases
N =4 and N = 10. The cusps are the points where ryax
changes by 1.
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Figure 2: Hs(X) (vertical axis) against § (horizontal), for
N =4 and N = 10 binary variables with p; = 0.1.



AsSYMPTOTIC EQUIPARTITION AND SOURCE CODING

We will prove the following:

Assymptotic Equipartition Principle (AEP): for an
ensemble of N independent identically distributed
(i.i.d.) random variables X = (X1, X5, ... Xy), with
N sufficiently large, the outcome x = (21, 22, ...2N) is
almost certain to belong to a subset of AY having only

2NH(X) members, and all having probability ‘close to’
9-NH(X)

If H(X) < Ho(X) then 2VH(X) is a tiny fraction of the
number of possible outcomes |AY| = [Ax|Y = 9NHo(X)

The AEP is equivalent to

Shannon’s source coding theorem: N i.i.d. random
variables each with entropy H can be compressed into
more than N H bits with negligible loss of information,
as N — oo; conversely if they are compressed into fewer

than N H bits there is a dramatic fall-off of information.

because we can define a compression algorithm that gives a

distinct name of VH bits to each x in the probable subset.
We will prove the AEP by showing that for any given §

there is a sufficiently big N such that Hs(XV)~ NH.

Theorem 1 Let X be an ensemble with entropy H(X) = H
bits. Given ¢ > 0 and 0 < & < 1, there exists a positive
integer Ng such that for N > Ny,

1
‘NH(;(XN)—H‘ <e.

Sketch of proof. The random variable % log ﬁ is very
likely to have value very close to H. Define a subset
T of AY to be the ‘typical’ elements of AY that have
probability very close to 27 VH (note that T does not
include the most probable elements of A%, but we will
show that they contribute negligible probability). Show
that we can achieve P(T') = 1 — § using only ‘typical’
outcomes. If P(T) ~ 1, it must be that the number of
elements of T is |T'| ~ 2VH

We can therefore capture practically all the probability of
XN using an asymptotically negligible fraction of its ele-
ments.

THE LAW OF LARGE NUMBERS

Mean and variance of a random variable? are Efu] =
u = Y, P(u)u and var(u) = o2 = E[(u — u)?] =
> Plu)(u—u)?.

Chebyshev’s inequality 1. Let ¢t be a non-negative real

random variable, and let o be a positive real number.
Then P(t > a) < t/a.

2Technical note: strictly I am assuming here that u is a function
u(z) of a sample z from a finite discrete ensemble X. Then the summa-
tions Zu P(u)f(u) should be written ZI P(z) f(u(z)). This means
that P(u) is a finite sum of delta functions. This restriction guaran-
tees that the mean and variance of u do exist, which is not the case
for general P(u).

Proof: P(t > a) =3, P(t). We multiply each term
by t/a > 1 and obtain: P(t > a) < 3,5, P(t)t/c.
We add the (non-negative) missing terms and obtain:

Pt>a)<Y ,Pt)t/a=1t/a.

Chebyshev’s inequality 2. Let =z be a random vari-
able, and let a be a positive real number. Then
P((z—12)?>a)<dl/a.

Proof: Take t = (2 —z)? and apply the previous propo-
sition.

Weak law of large numbers. Take = to be the average
of N independent random variables hy, ..., hy, hav-
ing common mean h and common variance oi: z =
%an\;l h,. Then P((z — h)? > a) < 02/aN.

Proof: obtained by showing that Z = h and that ¢2 =
oZ/N.

We are interested in being very close to the mean (o very
small). No matter how large o7 is, and no matter how small
the required « is, and no matter how small the probability

of (z —h)? > « is desired to be, we can always achieve it by
taking N large enough.

PROOF OF THE THEOREM

We apply the law of large numbers to the random variable
% log ﬁ defined for x drawn from the ensemble X~ . This
random variable can be written as the average of N terms
log(1/P(z,)), each of which is a random variable with mean
H = H(X) and variance ¢ = var[log(1/P(z,))]. We define

a ‘typical’ subset with parameters N and [ thus:

2
— H] < 62} .
For all x € Typ, 2-NH+E) < P(x) < 27NWH=F) And by
the law of large numbers,

1 1
Tnp = {x €AY : [Nlog )

2
P(xeTng)>1- 7N
Part 1 of theorem. +H;(X™) < H +e.

We show how small Hs(X") must be by calculating the
largest cardinality that Ty could have. Since the small-
est possible probability that a member of Tz can have is
2~ N(H+F) "and the largest total probability that Tnp could
contain is 1, we can bound

|Twg| < 2NHFA)

Setting 5 = € and Ny such that % <4, so that P(Tnp)
1 — 9, Tnp becomes a witness to the fact that Hs(XN)
N(H +¢).

Part 2 of theorem. +Hs(XN) > H —e.

We prove that an alternative smaller subset T' having
|T"| < 2N(H=28) and achieving P(x € T') > 1 — § cannot
exist (for N greater than an Ny that we will specify). The
probability of the subset 7" is P(x € T NTwng) + P(x €
T'NTnp), where Tig denotes the complement {x & Tngs}.

2
<




The maximum value of the first term is found if 79 N Tvg
contains 2V(H=26) outcomes all with the maximum proba-
bility, 2= NH=F)  The maximum value of the second term
is P(x ¢ Tng):

—0-2 — 9~ NP —+ —0-2 .

P T < 9~ NH=B)9N(H-2p)
(xeT) s TN 7N

We set 3 = ¢/2 and Ny such that P(x € T") < 1 —4. This
establishes that any subset 7" such that |77| < 2N(H-¢)
has probability less than 1 — §, so by the definition of Hj,
Hs(XN) > N(H — ).

COMMENT

The theorem has two parts, %H(;(XN) — H < ¢, and H —
%H(;(XN) < €. Both results are interesting.

The first part tells us that even if § is extremely small, the
number of bits per outcome needed to specify x with van-
ishingly small error probability, %H5(XN), does not have
to exceed H + € bits. We only need to have a tiny tolerance
to error, and the number of bits required drops significantly
from NHo(X) to N(H + ¢).

What happens if we are yet more tolerant to compression
errors? Part 2 tells us that even if § is very close to 1,
so that an error is made most of the time, the number of
bits per outcome needed to specify x still must be at least
H — e bits. These two extremes tell us that regardless of our
specific allowance for error, the number of bits per outcome
needed to specify X boils down to H bits; no more and no
less.

Thus for large enough N, 1 Hs(X ™) is essentially a con-
stant function of §. Figure 3 illustrates this assymptotic
tendency for the example discussed earlier with N binary
variables with p; = 0.1. As N increases, %H(;(XN) be-
comes an increasingly flat function, except for tails at § = 0
and 1. The limiting value of the plateau is H(X) = 0.47.

Figure 3: + Hs(X) (vertical axis) against § (horizontal), for
N =10,...,1010 binary variables with p; = 0.1.

In the next lecture we will discuss more practical data
compression schemes that are practical for small block sizes
and are guaranteed to function without error.
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Figure 4: Anatomy of the typical set T’

For N = 200 and p; = 0.1, these graphs show the number
of strings containing r 1s (top), the probability of a single
string that contains r 1s (middle), and the total probabil-
ity of all strings that contain r 1s (bottom). The bottom
graph is the product of the upper two. The number r is on
the horizontal axis. The typical set used in the proof is all
strings that contain about 20 1s. Note that this set does not
include the most probable strings, which have fewer 1s. We
do not bother including them because they have negligible
total probability.



