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ABSTRACT 

The Reduced Instruction Set Computer (RISC) Project 
investigates an alternatrve to the general trend toward 
computers wrth increasingly complex instruction sets: With a 
proper set of instructions and a corresponding architectural 
design, a machine wrth a high effective throughput can be 
achieved. The simplicity of the instruction set and addressing 
modes allows most Instructions to execute in a single machine 
cycle, and the srmplicity of each instruction guarantees a short 
cycle time. In addition, such a machine should have a much 
shorter design trme. 

This paper presents the architecture of RISC I and its novel 
hardware support scheme for procedure call/return. 
Overlapprng sets of regrster banks that can pass parameters 
directly to subrouttnes are largely responsible for the excellent 
performance of RISC I. Static and dynamtc comparisons 
between this new architecture and more traditional machines 
are given. Although instructions are simpler, the average length 
of programs was found not to exceed programs for DEC VAX 
11 by more than a factor of 2. Preliminary benchmarks 
demonstrate the performance advantages of RISC. It appears 
possible to build a single chip computer faster than VAX 
11/780. 

INTRODUCTION 

A general trend in computers today is to increase the 

complexny of architectures commensurate with the 
increasing potential of implementation technologies, as 
exemplified by the complex successors of simpler 
machines. Compare, for example, VAX 11’ to PDP-11, 
IBM System/382 to IBM System/3, and Intel 
iAPX-4323 to 8086. The consequences of this 
complexity are increased design time, increased design 
errors, and inconsistent implementations.4 We call this 

class of computers, complex instruction set computers 
KISC). 

Investigations of VLSI architecture@ indicated that one 
of the major design limitations is the delay-power 

penalty of data transfers across chip boundaries and the 
still-limited amount of resources (devices) available on a 
single chip. Even a million transistors does not go far if 

a whole computer has to be built from it.‘j This raises 
the question as to whether the extra hardware needed 

to implement CISC is the best way to use this “scarce” 
resource. 

The above findings led to the Reduced Instruction Set 
Computer (RISC) Project. The purpose of the project is 
to explore alternatives to the general trend toward 
architectural complexity. The hypothesis is that by 

reducing the instruction set, VLSI architecture can be 
designed that uses the scarce resources more effectively 
than CISC. We also expect this approach to reduce 
design time, the number of design errors, and the 
execution time of individual instructions. 

Our initial version of such a computer is called RISC I. 
To meet our goals of simplicity and effective single-chip 
implementation, we placed the following “constraints” 
on the architecture: 

1. 

2. 

3. 

4. 

Execute one instruction per cycle. RISC I 
instructions should be about as fast as, and no 
more complicated than, micro instructions in 
current machines such as PDP-11 or VAX. 
Furthermore, this simplicity makes microcode 
control unnecessary. Skipping this extra level of 
interpretation appears to enhance performance 
while reducing chip size. 

All instructions are the same size. This again 
simplifies implementation. We intentionally 
postponed attempts to reduce program size. 

Only load and store instructions access memory; 
the rest operate between registers. This restriction 
simplifies the design. The lack of complex 
addressing modes also makes it easier to restart 
instructions. 

Support high-level languages (HLL). An 
explanation of the degree of support follows. Our 
intention is always to use high-level languages 
with RISC I. 

RISC I supports 32-bit addresses, 8-, 16-, and 32-bit 
data, and several 32-bit registers. We intend to 
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examine support for operating systems and 
floating-point calculations in successors to RISC I. 

It would appear that such constraints would result in a 
machine with substantially poorer code density or poorer 
performance or both. In spite of these constraints, the 
resulting architecture competes favorably with other 
state-of-the-art machines such as VAX 11/780. This is 
largely because of an innovative new scheme of register 
organization we call overlapped register windows. 

SUPPORT FOR HIGH-LEVEL LANGUAGES 

Clearly, new architectures should be designed with the 
needs of high-level language programming in mind. It 
should not matter whether a high-level language system 
is implemented mostly by hardware or mostly by 
software, provided the system hides any lower levels 
from the programmer.’ Given this framework, the role of 
the architect is to build a cost-effective system by 
deciding what pieces of the system should be in 
hardware and what pieces should be in software. 

The selection of languages for consideration in RISC I 
was influenced by our environment; we chose C and 
Pascal languages, because there is a larger user 
community and considerable local expertise. Given the 
limited number of transistors that can be integrated into 
a single-chip computer, most of the pieces of a RISC 
high-level language system are in software, with 
hardware support for only the most time-consuming 
events. 

To determine what constructs are used most frequently 
and, if possible, what constructs use the most time in 
average programs, we looked first at the frequency of 
classes of variables in high-level language programs. 
Figure 1 shows data collected by Goldwasser for Pascal 
language8 and by Cohen and Soiffer for C language.g 

The most important observation was that integer 
constants appeared almost as frequently as components 
of arrays or structures. What is not shown is that over 
80% of the scalars were local variables and over 90% 
of the arrays or structures were global variables. 

We also looked at the relative dynamic frequency of 
high-level language statements for the same eight 
programs: the ones with averages over 1% are shown 
in Figure 2. This information does not tell what 
statements use the most time in the execution of typical 
programs. To answer that question, we looked at the 
code produced by typical versions of each of these 

statements. A “typical” version of each statement was 
supplied by W. Wulf (private communication, Nov. 1980) 
as part of his study on judging the quality of compilers. 
We used C compilers for VAX, PDP-11, and 68000 to 
determine the average number of instructions and 
memory references. By multiplying the frequency of 
occurrence ,of each statement with the corresponding 
number of machine instructions and memory references, 
we obtained the data shown in Figure 3, which is 
ordered by memory references. 

The data in these tables suggests that the procedure 
CALL/return is the most time-consuming operation in 
typical high-level language programs. The statistics on 
operands emphasizes the importance of local variables 
and constants. RISC I attempts to make each of these 
constructs efficient, implementing the less-frequent 
operations with subroutines. 

BASIC ARCHITECTURE OF RISC I 

The RISC I instruction set contains a few simple 
operations (arithmetic, logical, and shift) that operate on 
registers. Instructions, data, addresses, and registers are 
32 bits. RISC instructions fall into four categories 
(Figure 4): arithmetic-logical (ALU), memory access, 
branch, and miscellaneous. The execution time of a 
RISC I cycle is given by the time it takes to read a 
register, perform an ALU operation, and store the result 
back into a register. Register 0, which always contains 
0. allows us to synthesize a variety of operations and 
addressing modes. 

Load and store instructions move data between registers 
and memory. These instructions use two CPU cycles. 
We decided to make an exception to our constraint of 
single-cycle execution rather than to extend the general 
cycle to permit a complete memory access. There are 
eight variations of memory access instructions to 
accommodate sign-extended or zero-extended 8-bit, 
16-bit. and 32-bit data. Although there appears to be 
only one addressing mode, in&x plus displacement, 
absolute and register indirect addressing can be 
synthesized using register 0 (Figure 5). (Using one 
register to always contain 0 dates back at least to 
CDC-6600 in 1964. It has also appeared in more recent 
designs.‘OI 

Branch instructions include CALL, return, conditional and 
unconditional jump. The conditional instructions are the 
standard set used originally in PDP-11 and are found in 
most 16-bit microprocessors today. Most of the 
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innovative features of RISC are found in CALL return, 
and jump: they will be discussed in subsequent sections. 

Figure 6 shows the 32-bit format used by 
register-to-register instructions and memory access 
instructions. For register-to-register instructions, DEST 
selects one of the 32 registers as the destination of the 
result of the operation, which itself is performed on the 
registers specified by SOURCE1 and SOURCEZ. If IMM 
equals 0, the low-order 5 bits of SOURCE2 specify 
another register: if IMM equals 1, SOURCE2 expresses 
a sign-extended, 13-bit constant. Because of the 
frequency of occurrence of integer constants in 
high-level language programs, the immediate field has 
been made an option in every instruction. SCC 
determines if the condition codes are set. Memory 
access instructions use SOURCE1 to specify the index 
register and SOURCE2 to specify the offset. One other 
format. which combines the last three fields to form a 
19-bit PC-relative address, is used primarily by the 
branch instructions. 

Although comparative measurements of benchmarks are 
the real test of effectiveness, the examples in Figure 5 
show that many of the important VAX instructions can 
be synthesized from simple RISC addressing modes and 
operation codes. Remember that register 0 (r0) always 
contains 0; specifying 10 as a destination does not 
change its value. 

Register Windows 

The previously mentioned investigations on using 
high-level languages indicate that the procedure CALL 
may be the most time-consuming operation in typical 
high-level language programs. Potentially, RISC 
programs may have an even larger number of calls. 
because the complex instructions found in ClSCs are 
subroutines in RISC. Thus, the procedure CALL must be 
as fast as possible, perhaps no longer than a few jumps. 
The RISC regisfer window scheme comes close to this 
goal. At the same time, this scheme also reduces the 
number of accesses to data memory. 

Using procedures involves two groups of 
time-consuming operations: saving or restoring 
nagisters on each CALL or return, and passing 
parameters and results to and from the procedure. 
Because our measurements on high-level language 
programs indicate that local scalars are the most 
frequent operands, we wanted to support the allocation 
of locals in registers. Basket+’ and Sites’* suggested 
that microprocessors keep multiple banks of registers on 

the chip to avoid register saving and restortng. Thus, 
each procedure CALL results in a new set of registers 
being allocated for use by that new procedure. The 
return just alters a pointer, which restores the old set. A 
similar scheme was adopted by RISC I; however, some 
of the registers are not saved or restored on each 
procedure CALL. These registers fr0 through r9) are 
called global registers. 

In addition, the sets of registers used by different 
processes are overlapped to allow parameters to be 
passed in registers. In other machines, parameters are 
usually passed on the stack with the calling procedure 
using a register (frame pointer) to point to the beginning 
of the parameters (and also to the end of the locals). 
Thus, all references to parameters are indexed 
references to memory. Our approach is to break the set 
of window registers (r10 to r31) into three parts (Figure 
7). Registers 26 through 31 (HIGH) contain parameters 
passed from “above” the current procedure; that is, the 
calling procedure. Registers 16 through 25 (LOCAL) are 
used for the local scalar storage exactly as described 
previously. Registers 10 through 15 (LOW) are used for 
local storage and for parameters passed to the 
procedure “below” the current procedure (the called 
procedure). On each procedure CALL a new set of 
registers, r10 to r31, is allocated; however, we want the 
LOW registers of the “caller” to become the HIGH 
registers of the “callee.” This is accomplished by 
having the hardware overlap the LOW registers of the 
calling frame with the HIGH registers of the called 
fmme: thus. without moving information, parameters in 
mgisters 10 through 15 appear in registers 25 through 
31 in the called frame. Figure 8 illustrates this approach 
for the case in which procedure A calls procedure B, 
which calls procedure c. 

Multiple register banks require a mechanism to handle 
the case in which there are no free register banks 
available. RISC I handles this with a separate register 
overflow stack in memory and a stack pointer to it. 
Overflow and underflow are handled with a trap to a 
software routine that adjusts that stack. Because this 
routine can save or restore several sets of registers, the 
overflow/underflow frequency is based on the local 
vsriations in the depth of the stack rather than on the 
absolute depth The effectiveness of this scheme 
depends on the relative frequency of overflows and 
underflows; studies by Halbert and Kessler13 indicate 
that ov8rflow will occur in less than 1% of the calls 
with only 4 to 8 register banks. (Other machines, such 
as BBN C/70, contain register banks, but they do not 
overlap their windows.) 
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The final step In allocating variables In registers is 
handling the problem of pornters. Pointers to variables 
require that variables have addresses. Because registers 
do not normally have addresses, one could let the 
compiler determine what variables have pointers and put 
such variables in memory. This precludes separate 
compilation, slows down access to these variables, and 
is beyond state-of-the-art compiler technology found in 
most companies and universities. RISC I solves that 
problem by giving addresses to the window registers. If 
we reserve a portion of the address space, we can 
determine, with one comparision, whether an address 
points to a register or to memory. Because the only 
instructions to access memory are load and store, and 
they take an extra cycle already, we can add this feature 
without reducing the performance of the load and store 
instructions. This permits the use of straightforward 
compiler technology and still leaves a large fraction of 
the variables in registers. 

Delayed Jump 

The normal RISC I instructron cycle is just long enough 
to execute the following sequence of operations: 

1. Read a register 

2. Perform an ALU operation 

3. Store the result back into a register 

We increase performance by prefetching the next 
instruction duing the execution of the current instruction. 
This introduces difficulties with branch instructions. 
Several high-end machines have elaborate techniques to 
prefetch the appropriate instruction after the branch,14 
but these techniques are too complicated for a 
single-chip RISC. Our solution was to redefine jumps so 
that they do not take effect until after the following 
instruction; we refer to this as the delayed jump. (This 
approach to branching dates back to MANIAC I in 1952 
and is now commonly used in microprogramming.) 

The delayed jump allows RISC I always to prefetch the 
next instruction during the execution of the current 
instruction. The machine language code is suitably 
arranged so that the desired results are obtained. 
Because RISC I is always intended to be programmed in 
high-level languages, we will not “burden” the 
programmer with this complexity: the burden will be 
carried by the programmers of the compiler, the 
optimizer, and the debugger. 

To illustrate how the delayed branch works, Figure 9a 
shows a sequence of instructtons, whrch, in machines 
with normal jumps, would be executed in the order 100, 
101, 102, 105. . . . . To get that same effect in RISC I, 
we would have to insert NOP (Figure 9b). In this case, 
the sequence of instructions for RISC I is 100, 101, 102, 
103, 106, . . . . In the worst case, every jump could take 
two instructions. The RISC I software, however, 
includes an optimizer that tries to rearrange the 
sequence of instructions to perform the equivalent 
operations without NOP. Such an optimized RISC I 
sequence is 100, 101, 102, 105, . . . (Figure 9c). Because 
the instruction following a jump is always executed, and 
the jump at 101 is not dependent on the ADD at 102, 
this sequence is equivalent to the original program 
segment in Figure 9a. 

EVALUATION 

We will now evaluate the register window scheme, the 
delayed branch, and the overall performance of RISC I. 

Register Windows 

The results of running two benchmarks have shown that 
the window registers have been effective in reducing the 
cost of using procedures. The puzzle and quickson 
programs, discussed below, are highly recursive 
routines. Figure 10 shows the maximum depth of 
recursion, the number of register window overflows and 
under-flows, and the total number of words transferred 
between memory and the RISC CPU as a result of the 
overflows and under-flows. It also shows the memory 
traffic caused by saving and restoring registers in VAX. 
For this simulation, we assumed that half of the 
registers were saved on an overflow and half were 
restored on an underflow. We found that for RISC I, an 
average 0.37 words were transferred to memory per 
procedure invocation for the puzzle program and 0.07 
for quicksort. Note that half of the data memory 
references in quicksort were the result of the 
CALL/return overhead of VAX. 

We also compared the performance of the RISC I 
procedure mechanism to that of more traditional 
machines. We chose VAX, PDP-11, and M68000 as 
representatives of modern computers. Figure 11 shows 
the numbers of instructions, their total sizes in bytes, 
and the numbers of register accesses and data memory 
accesses for these three computers and for RISC I. The 
data was collected by looking at the code generated by 
C compilers for these four machines for procedure CALL 
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and return statements, assuming that two parameters 
are passed and requiring that 3 registers must be saved. 
It appears that this scheme reduces the cost of using 
procedures significantly. 

This scheme also reduces off-chip memory accesses. In 
traditional machines, generally 30% to 50% of the 
instructions access data memory, with not more than 
20% of the instructions being register-to-register.r5 
Because RISC I arithmetic and logical instructions 
cannot access memory, it might be expected that even a 
higher fraction of the instructions would be data 
transfer. This was not the case. The static frequencies 
of RISC I instructions for nine typical C programs show 
that less than 20% of the instructions were loads and 
stores, and more than 50% of the instructions were 
register-to-register. RISC I has successfully changed 
the allocation of variables from memory into registers. 
This indicates that RISC I requires a lower number of 
the slower off-chip memory accesses. It also indicates 
that complex addressing modes are not necessary to 
obtain an effective machine. 

Delayed Jump 

The performance of our scheme can be evaluated by 
counting the number of NOP instructions in a program. 
Static figures before optimization show that in typical C 
programs, about 18% of the instructions are NOP 
instructions inserted after jump instructions. A simple 
peephole optimizer built by students reduced this to 
about 8%. The optimizer did well on unconditional 
branches (removing about 90% of NOP instructions), 
but not so well with conditional branches (removing only 
about 20% of NOP instructions). This optimizer was 
improved to replace NOP by the instruction at the target 
of a jump. This technique can be applied to conditional 
branches if the optimizer determines that the target 
instruction modifies temporary resources: for example, 
an instruction that only modifies the condition codes. In 
quicksort. this removes all NOP instructions except 
those that follow return instructions. The dynamic 
effectiveness of the delayed branch must now include 
the number of NOP instructions plus the number of 
instructions after conditional branches that need not be 
executed for a particular jump condition. The total 
percentages of either type of instruction for three 
programs discussed below are 7 % , 22 % , and 4 % . 

Overall Performance 

To judge the effectiveness of the RISC I architecture, 
we compared it with VAX, because it is an efficient 
and a popular modern machine, and PDP-11, because it 
was the first machine with a C compiler and many 
persons assume that it is an ideal C machine. (This 
assumption is not valid. Although the development of C 
language was somewhat influenced by the architecture 
of PDP-11, most features of C came from B language, 
which was an interpreted language not tailored to any 
architecture.) Figure 12 and 13 compare the static 
numbers of instructions and the static sizes for 11 
typical C programs for the three machines. The 
compilers used are similar: the VAX and RISC C 
compilers are both based on the UNIX portable C 
compiler1s the compiler for PDP-11 is based on the 
Ritchie C compiler.17 Experiments comparing the Ritchie 
and Portable C compilers for PDP-11 have shown that 
the average difference in the size of generated code is 
within 1 % (S. C. Johnson, private communication, Feb. 
1981). 

We found that on the average, RISC uses only 
two-thirds more instructions than VAX and about 
two-fifths more than PDP-11, in spite of the fact that 
RISC I has simple instructions and addressing modes. 
The most surprising result was that the RISC programs 
were only about 50% larger than the programs for the 
other machines even though size optimization was 
virtually ignored. 

Our main goal for RISC I was to obtain good 
performance; thus dynamic results are the most 
interesting. We used a C program developed by F. 
Basket-t (private communication, Nov. 1980) called 
“puzzle.” This program is essentially a recursive 
bin-packing program that solves a three-dimensional 
puzzle. It displays many features of typical programs. 
except that there are less than 0.2% procedure calls, 
the call stack gets deep (20 nested procedure calls). and 
there are a relatively large number of loops. There are 
several versions of this program. Version A, which we 
received from Baskett, accesses arrays with subscripts 
8nd does not declare register variables. (Register 
variables are hints, supplied by the programmer, to the 
C compiler that this variable will be used frequently and 
should be kept in a register). We produced version B by 
converting some local variables into register variables. In 
version C, we changed the way arrays are accessed 
from using subscripts to using pointers. The dynamic 
information about each version of this program is shown 
in Figures 14 and 15 . The statistics of VAX came from 
an instruction trace program developed by Henry.‘* 
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RISC I statistrcs came from a simulator developed by 
Tamir. 

The results of running the recursive quicksort program 
are also shown in Figure 14. This program sorts 2,800 
fixed-length character strings. The only unusual feature 
of this program is that it has relatively more memory 
references than most programs. The execution of this 
program results in 1,713 multiply operations and 1,712 
divide operations, which are subroutines in RISC I. 

There is much important information in Figure 14. The 
first is that it made no difference to RISC whether we 
used version A or 6 of the puzzle program. This is 
because the architecture makes it relatively simple for a 
compiler to allocate local scalars in registers, so there is 
no need for a language to give hints telling which should 
be used. Thus, a one-pass Pascal compiler, which does 
not normally allocate registers for machines like VAX, 
would likely allocate variables in registers for RISC I 
and, therefore, result in the same relative memory traffic 
as version A of the puzzle program. 

Note that most commercial compilers do little 
optimization. For example, even a three-pass, 
optimizing Pascal compiler for DEC 10 does not allocate 
locals or parameters in registers.lg It is unreasonable for 
architects to expect, in the near future, sophisticated 
optimization from production quality compilers. 

RISC I was successful in reducing the number of data 
accesses substantially in all programs. The number of 
instruction words accessed, however, increased. This is 
because of the number of NOP instructions executed 
and the inefficient encoding of RISC I instructions. We 
expect that successors to RISC I could reduce this 
difference. 

The final, and perhaps most important, figure of merit is 
execution time. This was easy to determine for VAX 
11/780, but difficult for RISC I as we do not have any 
hardware. Our execution time was based on low-level 
circuit simulations of early RISC I designs. Using 
student circuit designers, we estimated that a RISC 
cycle is 400 nsec: 100 nsec to read one of 135 
registers, 200 nsec to perform a 32-bit addition, and 
100 nsec to store the result in one of 135 registers. We 
can argue that this is both optimistic and pessimistic: it 
is optimistic because it is unlikely that students can 
successfully build something that fast in their first pass, 
and it is pessimistic because it is likely that an 
experienced IC design team could build a much faster 
machine. Nevertheless, the student-technology 

single-chip RISC I may still be faster than VAX 11/780 
for all benchmarks mentioned previously. 

We must mention that although our results are 
encouraging, they are estimates based upon simulations 
of only two programs. Further benchmarks must be 
finished before we can accurately characterize the 
performance of RISC I. 

MEMORY INTERFACE 

In most computers, the interface to memory is a main 
performance bottleneck, so this point must be given 
special consideration. In our discussions and 
simulations, we assumed that we can access main 
memory in a single RISC CPU cycle. Depending on the 
assumptions that we make for our CPU cycle time, and 
the size of the main memory, this assumption may be 
too optimistic. We thus reworked our benchmarks also 
under the assumption that two CPU cycles are required 
to access data memory. Performance degraded only 
lo%, because the register window scheme reduces the 
number of off-chip data references. Data references do 
not constitute a problem, but allowing two cycles to 
fetch instructions out of memory would reduce 
performance by almost a factor of 2. 

Clearly, this memory interface will be an increasingly 
critical point as the intrinsic speed of CPU increases 
with technologic advances. Accesses to memory can be 
forced to come mainly from on-chip, either with a large 
register file or with an on-chip cache and associated 
memory hierarchy.s 

An on-chip cache would be beneficial for RISC. It is 
sometimes forgotten that a cache is ineffective if it is 
too small. In our opinion, an effective data cache would 
have to be quite a bit larger than our planned register 
file, especially if it was to provide the same number of 
ports as the register file. More-complicated translation 
and decoding might even strech the basic CPU cycle 
time. Given the limited amount of circuitry we can place 
onto a chip at this point, and given the university 
environment and our student designers, a register file is 
clearly the safer way to go. 

Although the problem of. data accesses has been 
alleviated by the large number of registers and the 
effective window scheme, the number of instruction 
fetches has actually increased because of the simplicity 
of individual instructions. Instruction fetches from main 
memory are indeed a major speed-limiting factor. An 
instruction cache is a desirable commodity. Because 
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there is no need for CPU to wnte into this cache, its 
controller can be simpler than that of a data cache. We 
decided that RISC I should not be burdened with the 
design of a full-blown on-chip cache, but an instruction 
cache would definitely be a good idea for the 
next-generation RISC. 

SUMMARY 

From our limited experience based on the results of a 
few small programs, it appears that the reduced 
instruction set computer is a promising style of 
computer design. We have convinced ourselves that 
complicated addressing schemes are not a vital part of 
high-throughput machines. The register window scheme 
appears to make significant contributions toward the 
performance of our architecture and should be seriously 
considered in other machines. 

We have taken out most of the complexity of modern 
computers without sacrificing much in code density 
while improving performance. The loss of complexity 
has not reduced the functionality of RISC; the chosen 
subset, especially when combined with the register 
window scheme, emulates more complex machines. It 
also appears we can build a single-chip computer much 
sooner than the traditional architectures. We are 
encouraged by these results and have begun the design 
of a single-chip RISC I as part of a multiterm class 
project. 
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I 
‘I 

C I Pascal 
( Cl c2 c3 c4 I Pl P2 P3 P4 Ave , 

Integer Constant 

Scalar 

Array/Strut ture 

25 11 29 28 11 1s 6 1s 1s * 6 I ( 

37 45 66 62 70 72 62 63 SO iz 12 

3s 43 5 10 19 12 30 20 22 * 13 I 

Cl PCC - The Potible C Complier ior the VAX 
c2 CIFPLOT - a program that plots VLSI mask layouts on a dot plotter 
c3 NROFF - a text formatting program 
c4 SORT - the UNIX sorting program 
Tl COUP - A Pascal P-code s-Lyle compiler 
P2 MACRO - The macro expansion p.base of the SCALD i design system 
P3 PRINT - A prettyprinter for Pascal 
P4 DIFF - A program that finds the differences between two files 

Figure 1. Dynamic Percentage of Operands in C and Pascal 
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assign 
begin 
if 
Cdl 

with 
loop 
case 

p1 
32 
16 
29 
12 
2 
4 
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1 
statements I Cl 
assign i 22 
if I 59 
call 
loop 1 : 
got0 I g 
case ( 2 
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l- 
& 

c 
c2 
50 
31 
17 
2 
0 

Past 
-iii- 
42 
19 
24 
11 
0 
4 
0 

:a 

I 

f 

!- 
P3 
29 
18 
30 
13 
4 
4 
1 

z- 
40 
25 
12 
11 
10 
3 
0 

c3 I c4 
25 56 
61 22 

9 1s 
3 5 
1 1 

v 0 
L 

AVERAGE 
3s * 5 
20 l 3 
24 zt 7 
12 * 1 
4*4 
4*0 
l*l 

AVERAGE 
38 f: 15 
43 l 17 

12 * 5 
3*1 
3*4 

<l f 1 

i 
1 i 

Figure 2. Relative Frequency of Pascal and C Statements 
(Because statements can be nested, we count each occurrence of a statement. Loop statements are counted once 
per execution rather than once per iteration. For example, if two IF statements and three assignment statements 
appear in a loop that iterates 5 times, we would count 26 statements with 15 assignments, 10 IF statements, and 
om loop. Tha BEGIN statemmnt is counted only if it slloceta foolI vsriabk The WITH rtetomont quslifff a 
mcord turn..) 
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t statements , HLL WEIGHTED I WEIGHTED 
(# occurrence) 

p’# instr.) 
(# mem. ref.) 

P C C P C 
call/return 1 12*1 1225 3Ok3 33kl4 43k4 45kl9 
loops 4&O 3*1 40*3 32kS 32k2 2Si5 
assign 36*5 38*15 12i2 13*5 14i2 
if 24k7 43kl7 lli3 21*6 7&2 :z I 
begin 20*1 5*0 - 2*0 - 

I 

with 4*1 - l&O - l*O - ’ 
case lrl <l*l lil l*l l*l lil 
got0 3*1 - o*o - oio 

Figure 3. Weighted Relative Frequency of HLL Statements, Ordered by Memory References. 
(For the CALL statement, we counted passing parameters, saving/restoring general registers, and saving/restohg 
the progmm counter. The IF and CASE statements include instructions to evaluate expressions and to jump. For 
loop statements, we count all machine instructions executed during each iteration.) 

OR 
XOR 
SLA 
SRA 

:kk 

S lS2,Rd 
SlS2,Rd 
SlS2,Rd 

’ Sl.SZ.Rd 
Sl,SZ,Rd 
SlS2,Rd 
SlS2,Rd 

Comments 
Rd + Sl + S2 integer add 
Rd ,- Sl + S2 + carry add with carry 
RdeSl-S2 integer subtract 
Rd 6 Sl - S2 - carry subtract with carry 
Rd+Sl&S2 logical AND 
Rd + Sl 1 S2 logical OR 
RdtSlxorS2 logical EXCLUSIVE OR 
Rd + Sl shifted by S2 shift left arithmetic 
Rd + Sl shifted by S2 shift right arithmetic 
Rd + Sl shifted by S2 shift left logical 
Rd + Sl shifted by S2 shift right logical 
Rd .- M[Rx+X] load long 
Rd +- M[Rx+X] 
Rd .- M[Rx+X] 

load short unsigned 
load short signed 

Rd 6 M[Rx+X 
3 

load byte unsigned 
Rd ,- M[Rx+X load byte signed 
M[Rx+X] + Rm store long 
M[Rx+X] .- Rm store short 
MRx+X cRm store bvte 
pc +- x+Rm conditional jump 
pc 4- pc + Y conditional relative 
Rm 4- pc. next 
pc + x+Rn. CWP- 
Rm + pc, next 
pc + pc + Y, CWP- 
pc + Rm+x. CwP++ 
Rm+-1astpc get last pc 
Rm .- INR get interrupt number 

Figure 4. Assembly Language Definition for RISC 
(SUB and SUBC really represent two operation codes each, because the operations are not commutative.) 
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/ 
Addressing VAX RJSC equivalent 

Register Rn Rn 
Immediate #literal #literal 
Indexed Rx + displ Rx + displ 
Absolute @#address 
Reg Indirect (Rx) I fp,‘+“d”“’ 

Operation VAX RISC equivalent 
Compare cmpl Rm,Rn sub Rm,Rn,rO,\cj 
Reg-Reg Move movl Rm,Rn 

I 
add r0, Rm, Rn 

Compare to 0 tstt Rn sub Rn,rO,rO,~cj 
, tst1 A Id1 (rO>A,rO,[c{ 

Clear d-1 Rn add rO,rO,Rn 
clrl A stl r0. (rO)A 

Two’s Complement mnegl Rm,Rn sub rO,Rm.Rn 
One’s Complement mcoml Rm.Rn xor Rm#-1,Rn 
Load Const movl $N,Rm add rO,#N,Rm 
Increment incl Rn add Rn,#l,Rn 
Decrement decl Rn sub Rm#l,Rn 

Check index bounds, index sub 
(A[O:Ul) 

Rm,#p,#U, Rm,#U,rO\cj; 
#Lkk jmp lequ, OK; 

trap if error, movb @~),RP call error: 
& read A[Rm] OK: ldbu (Rm)A,Rp 

Figure 5. Synthesizing VAX Instructions 
(The approach to bounds checking shown in the last example is better than the normal algorithm. We can think of 
an index as an unsigned integer because 0 5 index s (J. A twos complement negative number (lX...X) is then a 
very large unsigned number, so we only need to make one unsigned test instead of two signed tests. Nonzero 
lower bounds are handled by repeating the sequence and including a multiply and an add. This idea resulted from a 
discussion between B. Joy, P. Kessler, and G. Taylor. Taylor coded the examples and found that on VAX 11/780. 
the sequence of simple instructions was always faster than the index instruction.) 

1 OPCODE<7> 1 SCC<l> 1 DESTcS> 1 SOURCEl<S> 1 IMM<l> 1 SOURCE2c13> / 

Figure 6. RISC I Basic Instruction Format 
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HIGH R31 
I 

Figure 7. Naming Within a Virtual RISC I Register Window 

Physical # 

137 

132 
131 

122 
121 

116 
LowA’HrGHB i 

I 

l--l LOCALB 

LOW&HIGH 
Cl 1 

GLOBAL 

Proc A Proc B Proc C 

R31A 

R26A 
R25A 

R16A 
RlsA mlg 

RlOA R26B 

R25B 

R16B 
R15B R31c 

RlOB R26C 

R25C 

Rl6C 
R15C 

RIOC 

RgA mB R% 

ROA ROB R°C 

Figure 8. Usage of Three Overlapped Register Windows 
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Address (a) Normal Jump (b) Delayed Jump ! (c) Optimized 
Delayed Jump 

100 LOAD X.A ’ LOAD X.A LOAD X.A 
101 ADD 1.A ADD l.A JUMP 105 
102 JUMP 105 106 
103 ADD A.B NOP 2E :*t? 
104 SUB C.B ADD A,B SUB C:B 
105 SroRE kZ SUB C,B j.sroRE kZ ’ 
106 SroRE AZ ! 

Figure 9. Normal and Delayed Jumps 

Calls + Maximum 1 RISC I Data Memory Traffic 
Returns Nested ’ overflows+ RISC I VAX 

% instrs Deoth 

/ puzzle 

underflows # words #words / 
43k 20 124 6k 444k 

0.6X 

[quicksort 
1oiYk 10 64 4k itit 
8.0% 1.07. 50.0% 

Figure 10. Memory Traffic Caused by CALL/Return 
(These are the results of the pointer version of puzzle. The subscripted versions, A and 0. use 235K words and 
363K words, respectively.) 

1 Instructions 
j 

Size 
1 

j 
Register Executed 

1 
* (bvtes) ! accesses I 

Data Memory 1 
accesses 1 

IVAXll / ! 16 j 59 19 
66000 
PDP-11 / 

12 
, 15 

1 RISC I 1 0.2 
L 

Figure 11. Procedure CALL/Return Overhead, Including Parameter Passing 

228 



Name VAX 
VAX 
rel 

acker 
I 

32 1 1.00 41 1.28 52 , 1.63 
brelse 1 30 1 

I 
1.00 39 1.30 63 2.10 

fun 9 1.00 15 1.33 
qsort 

1 

stats / 
101 

54 I ::z 1 
159 

::::: 
j 

1;: 
1.59 

98 I ::;t ’ 104 1.93 
sym I 

;“D 
1.00 72 

1 
1 83 1.93 / 

towers 1.00 
983; 

1.23 33 1.10 
/ 

1 
spell 774 1.00 1.27 1094 1.41 
sort 1213 , 1.00 1 1395 ; 1.15 / 1849 

1.00 1961 1.24 1 2598 
; 1.52 

finger 1578 ! 1.64 
puzzle t 381 1.00 496 1 1.30 1 617 1.62 
Average \ 386 i 1.0 it .o I 482 1 1.4 -fr .2 / 605 i 1.6 * .3 

Figure 12. Static Number of instructions: Absolute and Ratio to VAX 

r i Name 

/ 
’ brelse 

fun 
qsort 
stats 

I sym 
towers 
spell 
sort 

I VAX 
I 
i 

VAX 
rel 

11/70 I 

120 ’ 1.00 
172 1.00 
32 1.00 

436 1.00 
284 1.00 
204 1.00 
100 ’ 1.00 

2996 1.00 
4996 , 1.00 

130 
140 
4% 

462 i 
316 I 

1 l/70 
rel 

1.08 
0.81 
1.38 
1.06 
1.11 
1.08 
1.24 
1.04 
0.92 

I 
f 

finger ! 6544 1 1.00 6490 0.99 
puzzle 1669 1.00 / 2004 1.13 
Average i 1596 i 1.0 + .O 1 1602 1 1.1 c .1 

RISC 

208 
252 

48 
644 
416 
332 
132 

4376 
7396 

10352 
2465 

RISC 
rel 
1.73 
1.47 
1.50 
1.48 
1.46 
1.63 
1.32 
1.46 
1.48 
1.58 
1.48 

2420 i 1.5 * .l 

Figure 13. Program Size: Number of Bytes and Ratio to VAX 
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hLzzie (Subscnpk) 1 hzzk (Pointers) ’ 
A B A,B / C C 

@icksO;t . 

VAX VAX RISC I VAX RISC VfX RISC 1 
Time (sees) ’ 11.3 9.5 5.2 4.0 3.6 l.6 .8 

# internal Cycles (M) 65 56 13 22 9 9 2.0 
# Instr. Exec. (M) 10 6.2 11 5.3 7.2 1.0 # Instr. Words (M) 11 5.4 11 4 7.2 I .8 :.i 

1 # Data M em. Access (M) ; 5.6 3.4 1.7 1.4 1 1.4 :4 

Figure 14. Dynamic Statistics for C Programs for VAX and RISC 
(The number of internal cycles is the number of micro instructions executed on VAX [ = time/200 nseci and the 
number of basic register-to-register cycles on RISC.) 

L 
JUMP 

NOP 

CALL 

I 

INC/DEC 

ADD 

SUB 

j CIMP 

Puzzle (Sub~~ripLs) 

A B kB 
VAX VAX RISC 
2.52 1.68 1.73 

25% 20% 
o.‘oG 

0.02 0.02 OFE 

ctz 0:; c?z 
0.2% 0.2% 0.2% 

0.80 0.75 _ 
6% 9% 

1.53 1.53 3.32 
15% IBX 

0s - 
6% 

0.62 0.76 _ 
6% 9% 

SHF 
1.53 1.53 2.47 

15% 19% 24% 

STORE j - - 
0.04 
0.4% 
1.67 

0.88 0.66 _ 
MOV 1.65 0.82 _ 

10% 

PUSH 
0.04 0.‘: _ 

MISC 
/ czgd oz _ 

2.0% 2.4% 

TOTAL 1 10.01 6.23 10.11 
100% 1007. 1007. 

T 

, 

- 

I 
i- 

t 

L 

Arzzf e (f+hft7~~) 
C C 

VAX RISC 
1.66 1.73 
32p 

0:; 

0.02 0.; 
0.4% 

0.02 cz 
0.4% 0.3% 

0.00 s 

l% 2.47 
29% 

OE 
12% 

0.80 

OE 0.38 
1. IZ 5% 

0.04 
0.6% 

0.92 
13% 

0.66 

o:iE 

&Y 

CE 

3.6% 

5.33 7.10 
!UOZ 1009. 

T i 

?- 

L 
I 

Quickswt 
D D 

VAX RISC 
0.22 0.23 

21% 14% 
0.02 

; 

, 

i , 
, 

1 ’ i 
Ii 
, 

0.05 Ck: 
CE ci% 
4.8% 3.7% 

0.06 I 
0.:; 0.48 
1.9% 

0.04 0% 

CEi 

15% 

- 10% 
0.00 0.00 
0.1% 0.1% 

0.15 

0.; 
15% 

0.00 _ 

0.1% 
0.33 _ 

31% 
0.12 _ 

11% 
0.06 0.14 

6% 9% 
1.05 1.63 
100% iOO% 

Figure 15. Dynamic Instruction Mix for C Programs. Million Instructions 
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