
RISC I: A REDUCED INSTRUCTION SET VLSI COMPUTER

DAVID A. PATTERSON and CARLO H. SEQUIN

Computer Science Division
University of California

Berkeley, California

ABSTRACT

The Reduced Instruction Set Computer (RISC) Project
investigates an alternatrve to the general trend toward
computers wrth increasingly complex instruction sets: With a
proper set of instructions and a corresponding architectural
design, a machine wrth a high effective throughput can be
achieved. The simplicity of the instruction set and addressing
modes allows most Instructions to execute in a single machine
cycle, and the srmplicity of each instruction guarantees a short
cycle time. In addition, such a machine should have a much
shorter design trme.

This paper presents the architecture of RISC I and its novel
hardware support scheme for procedure call/return.
Overlapprng sets of regrster banks that can pass parameters
directly to subrouttnes are largely responsible for the excellent
performance of RISC I. Static and dynamtc comparisons
between this new architecture and more traditional machines
are given. Although instructions are simpler, the average length
of programs was found not to exceed programs for DEC VAX
11 by more than a factor of 2. Preliminary benchmarks
demonstrate the performance advantages of RISC. It appears
possible to build a single chip computer faster than VAX
11/780.

INTRODUCTION

A general trend in computers today is to increase the

complexny of architectures commensurate with the
increasing potential of implementation technologies, as
exemplified by the complex successors of simpler
machines. Compare, for example, VAX 11’ to PDP-11,
IBM System/382 to IBM System/3, and Intel
iAPX-4323 to 8086. The consequences of this
complexity are increased design time, increased design
errors, and inconsistent implementations.4 We call this

class of computers, complex instruction set computers
KISC).

Investigations of VLSI architecture@ indicated that one
of the major design limitations is the delay-power

penalty of data transfers across chip boundaries and the
still-limited amount of resources (devices) available on a
single chip. Even a million transistors does not go far if

a whole computer has to be built from it.‘j This raises
the question as to whether the extra hardware needed

to implement CISC is the best way to use this “scarce”
resource.

The above findings led to the Reduced Instruction Set
Computer (RISC) Project. The purpose of the project is
to explore alternatives to the general trend toward
architectural complexity. The hypothesis is that by

reducing the instruction set, VLSI architecture can be
designed that uses the scarce resources more effectively
than CISC. We also expect this approach to reduce
design time, the number of design errors, and the
execution time of individual instructions.

Our initial version of such a computer is called RISC I.
To meet our goals of simplicity and effective single-chip
implementation, we placed the following “constraints”
on the architecture:

1.

2.

3.

4.

Execute one instruction per cycle. RISC I
instructions should be about as fast as, and no
more complicated than, micro instructions in
current machines such as PDP-11 or VAX.
Furthermore, this simplicity makes microcode
control unnecessary. Skipping this extra level of
interpretation appears to enhance performance
while reducing chip size.

All instructions are the same size. This again
simplifies implementation. We intentionally
postponed attempts to reduce program size.

Only load and store instructions access memory;
the rest operate between registers. This restriction
simplifies the design. The lack of complex
addressing modes also makes it easier to restart
instructions.

Support high-level languages (HLL). An
explanation of the degree of support follows. Our
intention is always to use high-level languages
with RISC I.

RISC I supports 32-bit addresses, 8-, 16-, and 32-bit
data, and several 32-bit registers. We intend to

216

examine support for operating systems and
floating-point calculations in successors to RISC I.

It would appear that such constraints would result in a
machine with substantially poorer code density or poorer
performance or both. In spite of these constraints, the
resulting architecture competes favorably with other
state-of-the-art machines such as VAX 11/780. This is
largely because of an innovative new scheme of register
organization we call overlapped register windows.

SUPPORT FOR HIGH-LEVEL LANGUAGES

Clearly, new architectures should be designed with the
needs of high-level language programming in mind. It
should not matter whether a high-level language system
is implemented mostly by hardware or mostly by
software, provided the system hides any lower levels
from the programmer.’ Given this framework, the role of
the architect is to build a cost-effective system by
deciding what pieces of the system should be in
hardware and what pieces should be in software.

The selection of languages for consideration in RISC I
was influenced by our environment; we chose C and
Pascal languages, because there is a larger user
community and considerable local expertise. Given the
limited number of transistors that can be integrated into
a single-chip computer, most of the pieces of a RISC
high-level language system are in software, with
hardware support for only the most time-consuming
events.

To determine what constructs are used most frequently
and, if possible, what constructs use the most time in
average programs, we looked first at the frequency of
classes of variables in high-level language programs.
Figure 1 shows data collected by Goldwasser for Pascal
language8 and by Cohen and Soiffer for C language.g

The most important observation was that integer
constants appeared almost as frequently as components
of arrays or structures. What is not shown is that over
80% of the scalars were local variables and over 90%
of the arrays or structures were global variables.

We also looked at the relative dynamic frequency of
high-level language statements for the same eight
programs: the ones with averages over 1% are shown
in Figure 2. This information does not tell what
statements use the most time in the execution of typical
programs. To answer that question, we looked at the
code produced by typical versions of each of these

statements. A “typical” version of each statement was
supplied by W. Wulf (private communication, Nov. 1980)
as part of his study on judging the quality of compilers.
We used C compilers for VAX, PDP-11, and 68000 to
determine the average number of instructions and
memory references. By multiplying the frequency of
occurrence ,of each statement with the corresponding
number of machine instructions and memory references,
we obtained the data shown in Figure 3, which is
ordered by memory references.

The data in these tables suggests that the procedure
CALL/return is the most time-consuming operation in
typical high-level language programs. The statistics on
operands emphasizes the importance of local variables
and constants. RISC I attempts to make each of these
constructs efficient, implementing the less-frequent
operations with subroutines.

BASIC ARCHITECTURE OF RISC I

The RISC I instruction set contains a few simple
operations (arithmetic, logical, and shift) that operate on
registers. Instructions, data, addresses, and registers are
32 bits. RISC instructions fall into four categories
(Figure 4): arithmetic-logical (ALU), memory access,
branch, and miscellaneous. The execution time of a
RISC I cycle is given by the time it takes to read a
register, perform an ALU operation, and store the result
back into a register. Register 0, which always contains
0. allows us to synthesize a variety of operations and
addressing modes.

Load and store instructions move data between registers
and memory. These instructions use two CPU cycles.
We decided to make an exception to our constraint of
single-cycle execution rather than to extend the general
cycle to permit a complete memory access. There are
eight variations of memory access instructions to
accommodate sign-extended or zero-extended 8-bit,
16-bit. and 32-bit data. Although there appears to be
only one addressing mode, in&x plus displacement,
absolute and register indirect addressing can be
synthesized using register 0 (Figure 5). (Using one
register to always contain 0 dates back at least to
CDC-6600 in 1964. It has also appeared in more recent
designs.‘OI

Branch instructions include CALL, return, conditional and
unconditional jump. The conditional instructions are the
standard set used originally in PDP-11 and are found in
most 16-bit microprocessors today. Most of the

217

innovative features of RISC are found in CALL return,
and jump: they will be discussed in subsequent sections.

Figure 6 shows the 32-bit format used by
register-to-register instructions and memory access
instructions. For register-to-register instructions, DEST
selects one of the 32 registers as the destination of the
result of the operation, which itself is performed on the
registers specified by SOURCE1 and SOURCEZ. If IMM
equals 0, the low-order 5 bits of SOURCE2 specify
another register: if IMM equals 1, SOURCE2 expresses
a sign-extended, 13-bit constant. Because of the
frequency of occurrence of integer constants in
high-level language programs, the immediate field has
been made an option in every instruction. SCC
determines if the condition codes are set. Memory
access instructions use SOURCE1 to specify the index
register and SOURCE2 to specify the offset. One other
format. which combines the last three fields to form a
19-bit PC-relative address, is used primarily by the
branch instructions.

Although comparative measurements of benchmarks are
the real test of effectiveness, the examples in Figure 5
show that many of the important VAX instructions can
be synthesized from simple RISC addressing modes and
operation codes. Remember that register 0 (r0) always
contains 0; specifying 10 as a destination does not
change its value.

Register Windows

The previously mentioned investigations on using
high-level languages indicate that the procedure CALL
may be the most time-consuming operation in typical
high-level language programs. Potentially, RISC
programs may have an even larger number of calls.
because the complex instructions found in ClSCs are
subroutines in RISC. Thus, the procedure CALL must be
as fast as possible, perhaps no longer than a few jumps.
The RISC regisfer window scheme comes close to this
goal. At the same time, this scheme also reduces the
number of accesses to data memory.

Using procedures involves two groups of
time-consuming operations: saving or restoring
nagisters on each CALL or return, and passing
parameters and results to and from the procedure.
Because our measurements on high-level language
programs indicate that local scalars are the most
frequent operands, we wanted to support the allocation
of locals in registers. Basket+’ and Sites’* suggested
that microprocessors keep multiple banks of registers on

the chip to avoid register saving and restortng. Thus,
each procedure CALL results in a new set of registers
being allocated for use by that new procedure. The
return just alters a pointer, which restores the old set. A
similar scheme was adopted by RISC I; however, some
of the registers are not saved or restored on each
procedure CALL. These registers fr0 through r9) are
called global registers.

In addition, the sets of registers used by different
processes are overlapped to allow parameters to be
passed in registers. In other machines, parameters are
usually passed on the stack with the calling procedure
using a register (frame pointer) to point to the beginning
of the parameters (and also to the end of the locals).
Thus, all references to parameters are indexed
references to memory. Our approach is to break the set
of window registers (r10 to r31) into three parts (Figure
7). Registers 26 through 31 (HIGH) contain parameters
passed from “above” the current procedure; that is, the
calling procedure. Registers 16 through 25 (LOCAL) are
used for the local scalar storage exactly as described
previously. Registers 10 through 15 (LOW) are used for
local storage and for parameters passed to the
procedure “below” the current procedure (the called
procedure). On each procedure CALL a new set of
registers, r10 to r31, is allocated; however, we want the
LOW registers of the “caller” to become the HIGH
registers of the “callee.” This is accomplished by
having the hardware overlap the LOW registers of the
calling frame with the HIGH registers of the called
fmme: thus. without moving information, parameters in
mgisters 10 through 15 appear in registers 25 through
31 in the called frame. Figure 8 illustrates this approach
for the case in which procedure A calls procedure B,
which calls procedure c.

Multiple register banks require a mechanism to handle
the case in which there are no free register banks
available. RISC I handles this with a separate register
overflow stack in memory and a stack pointer to it.
Overflow and underflow are handled with a trap to a
software routine that adjusts that stack. Because this
routine can save or restore several sets of registers, the
overflow/underflow frequency is based on the local
vsriations in the depth of the stack rather than on the
absolute depth The effectiveness of this scheme
depends on the relative frequency of overflows and
underflows; studies by Halbert and Kessler13 indicate
that ov8rflow will occur in less than 1% of the calls
with only 4 to 8 register banks. (Other machines, such
as BBN C/70, contain register banks, but they do not
overlap their windows.)

218

The final step In allocating variables In registers is
handling the problem of pornters. Pointers to variables
require that variables have addresses. Because registers
do not normally have addresses, one could let the
compiler determine what variables have pointers and put
such variables in memory. This precludes separate
compilation, slows down access to these variables, and
is beyond state-of-the-art compiler technology found in
most companies and universities. RISC I solves that
problem by giving addresses to the window registers. If
we reserve a portion of the address space, we can
determine, with one comparision, whether an address
points to a register or to memory. Because the only
instructions to access memory are load and store, and
they take an extra cycle already, we can add this feature
without reducing the performance of the load and store
instructions. This permits the use of straightforward
compiler technology and still leaves a large fraction of
the variables in registers.

Delayed Jump

The normal RISC I instructron cycle is just long enough
to execute the following sequence of operations:

1. Read a register

2. Perform an ALU operation

3. Store the result back into a register

We increase performance by prefetching the next
instruction duing the execution of the current instruction.
This introduces difficulties with branch instructions.
Several high-end machines have elaborate techniques to
prefetch the appropriate instruction after the branch,14
but these techniques are too complicated for a
single-chip RISC. Our solution was to redefine jumps so
that they do not take effect until after the following
instruction; we refer to this as the delayed jump. (This
approach to branching dates back to MANIAC I in 1952
and is now commonly used in microprogramming.)

The delayed jump allows RISC I always to prefetch the
next instruction during the execution of the current
instruction. The machine language code is suitably
arranged so that the desired results are obtained.
Because RISC I is always intended to be programmed in
high-level languages, we will not “burden” the
programmer with this complexity: the burden will be
carried by the programmers of the compiler, the
optimizer, and the debugger.

To illustrate how the delayed branch works, Figure 9a
shows a sequence of instructtons, whrch, in machines
with normal jumps, would be executed in the order 100,
101, 102, 105. To get that same effect in RISC I,
we would have to insert NOP (Figure 9b). In this case,
the sequence of instructions for RISC I is 100, 101, 102,
103, 106, In the worst case, every jump could take
two instructions. The RISC I software, however,
includes an optimizer that tries to rearrange the
sequence of instructions to perform the equivalent
operations without NOP. Such an optimized RISC I
sequence is 100, 101, 102, 105, . . . (Figure 9c). Because
the instruction following a jump is always executed, and
the jump at 101 is not dependent on the ADD at 102,
this sequence is equivalent to the original program
segment in Figure 9a.

EVALUATION

We will now evaluate the register window scheme, the
delayed branch, and the overall performance of RISC I.

Register Windows

The results of running two benchmarks have shown that
the window registers have been effective in reducing the
cost of using procedures. The puzzle and quickson
programs, discussed below, are highly recursive
routines. Figure 10 shows the maximum depth of
recursion, the number of register window overflows and
under-flows, and the total number of words transferred
between memory and the RISC CPU as a result of the
overflows and under-flows. It also shows the memory
traffic caused by saving and restoring registers in VAX.
For this simulation, we assumed that half of the
registers were saved on an overflow and half were
restored on an underflow. We found that for RISC I, an
average 0.37 words were transferred to memory per
procedure invocation for the puzzle program and 0.07
for quicksort. Note that half of the data memory
references in quicksort were the result of the
CALL/return overhead of VAX.

We also compared the performance of the RISC I
procedure mechanism to that of more traditional
machines. We chose VAX, PDP-11, and M68000 as
representatives of modern computers. Figure 11 shows
the numbers of instructions, their total sizes in bytes,
and the numbers of register accesses and data memory
accesses for these three computers and for RISC I. The
data was collected by looking at the code generated by
C compilers for these four machines for procedure CALL

219

and return statements, assuming that two parameters
are passed and requiring that 3 registers must be saved.
It appears that this scheme reduces the cost of using
procedures significantly.

This scheme also reduces off-chip memory accesses. In
traditional machines, generally 30% to 50% of the
instructions access data memory, with not more than
20% of the instructions being register-to-register.r5
Because RISC I arithmetic and logical instructions
cannot access memory, it might be expected that even a
higher fraction of the instructions would be data
transfer. This was not the case. The static frequencies
of RISC I instructions for nine typical C programs show
that less than 20% of the instructions were loads and
stores, and more than 50% of the instructions were
register-to-register. RISC I has successfully changed
the allocation of variables from memory into registers.
This indicates that RISC I requires a lower number of
the slower off-chip memory accesses. It also indicates
that complex addressing modes are not necessary to
obtain an effective machine.

Delayed Jump

The performance of our scheme can be evaluated by
counting the number of NOP instructions in a program.
Static figures before optimization show that in typical C
programs, about 18% of the instructions are NOP
instructions inserted after jump instructions. A simple
peephole optimizer built by students reduced this to
about 8%. The optimizer did well on unconditional
branches (removing about 90% of NOP instructions),
but not so well with conditional branches (removing only
about 20% of NOP instructions). This optimizer was
improved to replace NOP by the instruction at the target
of a jump. This technique can be applied to conditional
branches if the optimizer determines that the target
instruction modifies temporary resources: for example,
an instruction that only modifies the condition codes. In
quicksort. this removes all NOP instructions except
those that follow return instructions. The dynamic
effectiveness of the delayed branch must now include
the number of NOP instructions plus the number of
instructions after conditional branches that need not be
executed for a particular jump condition. The total
percentages of either type of instruction for three
programs discussed below are 7 % , 22 % , and 4 % .

Overall Performance

To judge the effectiveness of the RISC I architecture,
we compared it with VAX, because it is an efficient
and a popular modern machine, and PDP-11, because it
was the first machine with a C compiler and many
persons assume that it is an ideal C machine. (This
assumption is not valid. Although the development of C
language was somewhat influenced by the architecture
of PDP-11, most features of C came from B language,
which was an interpreted language not tailored to any
architecture.) Figure 12 and 13 compare the static
numbers of instructions and the static sizes for 11
typical C programs for the three machines. The
compilers used are similar: the VAX and RISC C
compilers are both based on the UNIX portable C
compiler1s the compiler for PDP-11 is based on the
Ritchie C compiler.17 Experiments comparing the Ritchie
and Portable C compilers for PDP-11 have shown that
the average difference in the size of generated code is
within 1 % (S. C. Johnson, private communication, Feb.
1981).

We found that on the average, RISC uses only
two-thirds more instructions than VAX and about
two-fifths more than PDP-11, in spite of the fact that
RISC I has simple instructions and addressing modes.
The most surprising result was that the RISC programs
were only about 50% larger than the programs for the
other machines even though size optimization was
virtually ignored.

Our main goal for RISC I was to obtain good
performance; thus dynamic results are the most
interesting. We used a C program developed by F.
Basket-t (private communication, Nov. 1980) called
“puzzle.” This program is essentially a recursive
bin-packing program that solves a three-dimensional
puzzle. It displays many features of typical programs.
except that there are less than 0.2% procedure calls,
the call stack gets deep (20 nested procedure calls). and
there are a relatively large number of loops. There are
several versions of this program. Version A, which we
received from Baskett, accesses arrays with subscripts
8nd does not declare register variables. (Register
variables are hints, supplied by the programmer, to the
C compiler that this variable will be used frequently and
should be kept in a register). We produced version B by
converting some local variables into register variables. In
version C, we changed the way arrays are accessed
from using subscripts to using pointers. The dynamic
information about each version of this program is shown
in Figures 14 and 15 . The statistics of VAX came from
an instruction trace program developed by Henry.‘*

220

RISC I statistrcs came from a simulator developed by
Tamir.

The results of running the recursive quicksort program
are also shown in Figure 14. This program sorts 2,800
fixed-length character strings. The only unusual feature
of this program is that it has relatively more memory
references than most programs. The execution of this
program results in 1,713 multiply operations and 1,712
divide operations, which are subroutines in RISC I.

There is much important information in Figure 14. The
first is that it made no difference to RISC whether we
used version A or 6 of the puzzle program. This is
because the architecture makes it relatively simple for a
compiler to allocate local scalars in registers, so there is
no need for a language to give hints telling which should
be used. Thus, a one-pass Pascal compiler, which does
not normally allocate registers for machines like VAX,
would likely allocate variables in registers for RISC I
and, therefore, result in the same relative memory traffic
as version A of the puzzle program.

Note that most commercial compilers do little
optimization. For example, even a three-pass,
optimizing Pascal compiler for DEC 10 does not allocate
locals or parameters in registers.lg It is unreasonable for
architects to expect, in the near future, sophisticated
optimization from production quality compilers.

RISC I was successful in reducing the number of data
accesses substantially in all programs. The number of
instruction words accessed, however, increased. This is
because of the number of NOP instructions executed
and the inefficient encoding of RISC I instructions. We
expect that successors to RISC I could reduce this
difference.

The final, and perhaps most important, figure of merit is
execution time. This was easy to determine for VAX
11/780, but difficult for RISC I as we do not have any
hardware. Our execution time was based on low-level
circuit simulations of early RISC I designs. Using
student circuit designers, we estimated that a RISC
cycle is 400 nsec: 100 nsec to read one of 135
registers, 200 nsec to perform a 32-bit addition, and
100 nsec to store the result in one of 135 registers. We
can argue that this is both optimistic and pessimistic: it
is optimistic because it is unlikely that students can
successfully build something that fast in their first pass,
and it is pessimistic because it is likely that an
experienced IC design team could build a much faster
machine. Nevertheless, the student-technology

single-chip RISC I may still be faster than VAX 11/780
for all benchmarks mentioned previously.

We must mention that although our results are
encouraging, they are estimates based upon simulations
of only two programs. Further benchmarks must be
finished before we can accurately characterize the
performance of RISC I.

MEMORY INTERFACE

In most computers, the interface to memory is a main
performance bottleneck, so this point must be given
special consideration. In our discussions and
simulations, we assumed that we can access main
memory in a single RISC CPU cycle. Depending on the
assumptions that we make for our CPU cycle time, and
the size of the main memory, this assumption may be
too optimistic. We thus reworked our benchmarks also
under the assumption that two CPU cycles are required
to access data memory. Performance degraded only
lo%, because the register window scheme reduces the
number of off-chip data references. Data references do
not constitute a problem, but allowing two cycles to
fetch instructions out of memory would reduce
performance by almost a factor of 2.

Clearly, this memory interface will be an increasingly
critical point as the intrinsic speed of CPU increases
with technologic advances. Accesses to memory can be
forced to come mainly from on-chip, either with a large
register file or with an on-chip cache and associated
memory hierarchy.s

An on-chip cache would be beneficial for RISC. It is
sometimes forgotten that a cache is ineffective if it is
too small. In our opinion, an effective data cache would
have to be quite a bit larger than our planned register
file, especially if it was to provide the same number of
ports as the register file. More-complicated translation
and decoding might even strech the basic CPU cycle
time. Given the limited amount of circuitry we can place
onto a chip at this point, and given the university
environment and our student designers, a register file is
clearly the safer way to go.

Although the problem of. data accesses has been
alleviated by the large number of registers and the
effective window scheme, the number of instruction
fetches has actually increased because of the simplicity
of individual instructions. Instruction fetches from main
memory are indeed a major speed-limiting factor. An
instruction cache is a desirable commodity. Because

221

there is no need for CPU to wnte into this cache, its
controller can be simpler than that of a data cache. We
decided that RISC I should not be burdened with the
design of a full-blown on-chip cache, but an instruction
cache would definitely be a good idea for the
next-generation RISC.

SUMMARY

From our limited experience based on the results of a
few small programs, it appears that the reduced
instruction set computer is a promising style of
computer design. We have convinced ourselves that
complicated addressing schemes are not a vital part of
high-throughput machines. The register window scheme
appears to make significant contributions toward the
performance of our architecture and should be seriously
considered in other machines.

We have taken out most of the complexity of modern
computers without sacrificing much in code density
while improving performance. The loss of complexity
has not reduced the functionality of RISC; the chosen
subset, especially when combined with the register
window scheme, emulates more complex machines. It
also appears we can build a single-chip computer much
sooner than the traditional architectures. We are
encouraged by these results and have begun the design
of a single-chip RISC I as part of a multiterm class
project.

ACKNOWLEDGMENTS

This research was sponsored by the Defense Advance
Research Projects Agency (DOD), ARPA order No. 3803, and
monitored by Naval Electronic System Command under
contract No. N00039-78-G-0013-0004.

The RISC Project has been sustained by a large number of
students. We would like to thank all those in the Berkeley
community who have helped to push RISC from a concept to
an engineering experiment. The contributions of the following
penons were important to RISC: C statistics by E. Cohen and
N. Soiffer: Pascal statistics by S. Goldwasser: C compiler
initially by 0. Doucette and K. Shoens with extensive revisions
by R. Campbell: RISC 0 optimizer by D. Fitzpatrick: RISC I
optimizer by R. Campbell: assembler bY A. Campbell and later
revised by Y. Tamir: RISC 0 simulator bY R. Campbell, E. Lock,
and M. Hakam: RISC I simulator by Y. Tamir; ISPS description
bY G. Corcoran: window scheme based on an idea of F.
Baskett, but designed by D. Halbert and P. Kessler: and LSI
timing and suggested LSI implementation by M. Katevenis. We
would also like to thank L. Dickman. D. Ditzel, R. Hyerle, M.
Katevenis. J. Ousterhout, 0. Presono. D. Ungar, and K. Van
Dyke for their suggestions on this paper.

REFERENCES

‘W. D. Strecke . r VAX- 11/780: A virtual address extension to
the OEC PDP-11 famtly. Proceedings of NCC (June 1978).
967-980.

2B. G. Utlev et al. In IBM System/38 Technical Developments
(GS80-02371, 1978. l-110

% Colley et al. The object-based architecture of the Intel 432,
CbMPCON (Feb. 1981).

‘D. A. Patterson and D. R. Ditzel. The case for the reduced
instruction set computer, Computer Architecture News, 8 (15
Oct. 1980). 25-33.

5D. A. Patterson, E. S. Fehr, and C.H. 8&n. Design
considerations for the VLSI processor of X-tree. The 6th
Annual International Symposium on Computer Architecture
(April 1979).

sD. A. Patterson and C. H. 8&n. Design considerations for
single-chip computers of the future, IEEE Journal of
Sofid-State Circuits, SC-15 (Feb. 19801, 44-52: and IEEE
Transactions on Computers, C-29 (Feb. 19801. 108-l 16.
(Joint special issue on microprocessors and microcomputers.)

‘D. R. Ditzel and D. A. Panerson. Retrospective on high-level
language computer architecture, The 7th Annual International
Symposium on Computer Architecture (May 1980). 97-104.

sS. Goldwasser. Dynamic Pascal statistics (in progress. Sept.
19801.

@E. Cohen and N. Soiffer. Static and dynamic statistics of C
“CS 292R Final Reports” (University of California at Berkeley.
lSBO), 101-140.

%. C. Johnson. A 32-bit processor design (Computer science
technical report No. 80). Bell Laboratories. 1979.

“F. Basken. A VLSI Pascal machine (Public lecture). University
of California. 1978.

‘*R L Sites. How to use 1000 registers, Caltech Conference
0; VLSI (Jan. 19791.

13D. Halbert and P. Kessler. Windows of overlapping register
frames. “CS 292R Final Reports” (Universtty of California at
Berkelv, 1980). 82- 100.

14D. Morns and R. N. Ibben. The MU-5 Computer System
(Springer-VerlYg, 1979).

‘%I. C. Alexander and D. 8. Wortman. Static and dynamic
characteristics of XPL programs, Computer, 8 (Nov. 1975).
41-48

‘5. C. Johnson. A portable compiler: Theory and practice.
Proceedings of the Fifth Annual ACM Symposium of
Programming Languages (Jan. 19781, 97404.

“0. M. Ritchie. A tour through the UNIX C compiler
(Unpublished), 1975.

222

‘sR. R. Henry. Techniques to measure static and dynamic
operator and operand statistics on the VAX, (Unpublished
report), University of California at Berkeley, 1980.

lgR. N. Faiman and A. A. Kortesoja. An optimizing Pascal
compller, IEEE Transactions of Software Engineering. (Nov.
1980). 512-519.

223

I
‘I

C I Pascal
(Cl c2 c3 c4 I Pl P2 P3 P4 Ave ,

Integer Constant

Scalar

Array/Strut ture

25 11 29 28 11 1s 6 1s 1s * 6 I (

37 45 66 62 70 72 62 63 SO iz 12

3s 43 5 10 19 12 30 20 22 * 13 I

Cl PCC - The Potible C Complier ior the VAX
c2 CIFPLOT - a program that plots VLSI mask layouts on a dot plotter
c3 NROFF - a text formatting program
c4 SORT - the UNIX sorting program
Tl COUP - A Pascal P-code s-Lyle compiler
P2 MACRO - The macro expansion p.base of the SCALD i design system
P3 PRINT - A prettyprinter for Pascal
P4 DIFF - A program that finds the differences between two files

Figure 1. Dynamic Percentage of Operands in C and Pascal

r

statements+
assign
begin
if
Cdl

with
loop
case

p1
32
16
29
12
2
4
3

1

i

1
statements I Cl
assign i 22
if I 59
call
loop 1 :
got0 I g
case (2

I

l-
&

c
c2
50
31
17
2
0

Past
-iii-
42
19
24
11
0
4
0

:a

I

f

!-
P3
29
18
30
13
4
4
1

z-
40
25
12
11
10
3
0

c3 I c4
25 56
61 22

9 1s
3 5
1 1

v 0
L

AVERAGE
3s * 5
20 l 3
24 zt 7
12 * 1
4*4
4*0
l*l

AVERAGE
38 f: 15
43 l 17

12 * 5
3*1
3*4

<l f 1

i
1 i

Figure 2. Relative Frequency of Pascal and C Statements
(Because statements can be nested, we count each occurrence of a statement. Loop statements are counted once
per execution rather than once per iteration. For example, if two IF statements and three assignment statements
appear in a loop that iterates 5 times, we would count 26 statements with 15 assignments, 10 IF statements, and
om loop. Tha BEGIN statemmnt is counted only if it slloceta foolI vsriabk The WITH rtetomont quslifff a
mcord turn..)

224

t statements , HLL WEIGHTED I WEIGHTED
(# occurrence)

p’# instr.)
(# mem. ref.)

P C C P C
call/return 1 12*1 1225 3Ok3 33kl4 43k4 45kl9
loops 4&O 3*1 40*3 32kS 32k2 2Si5
assign 36*5 38*15 12i2 13*5 14i2
if 24k7 43kl7 lli3 21*6 7&2 :z I
begin 20*1 5*0 - 2*0 -

I

with 4*1 - l&O - l*O - ’
case lrl <l*l lil l*l l*l lil
got0 3*1 - o*o - oio

Figure 3. Weighted Relative Frequency of HLL Statements, Ordered by Memory References.
(For the CALL statement, we counted passing parameters, saving/restoring general registers, and saving/restohg
the progmm counter. The IF and CASE statements include instructions to evaluate expressions and to jump. For
loop statements, we count all machine instructions executed during each iteration.)

OR
XOR
SLA
SRA

:kk

S lS2,Rd
SlS2,Rd
SlS2,Rd

’ Sl.SZ.Rd
Sl,SZ,Rd
SlS2,Rd
SlS2,Rd

Comments
Rd + Sl + S2 integer add
Rd ,- Sl + S2 + carry add with carry
RdeSl-S2 integer subtract
Rd 6 Sl - S2 - carry subtract with carry
Rd+Sl&S2 logical AND
Rd + Sl 1 S2 logical OR
RdtSlxorS2 logical EXCLUSIVE OR
Rd + Sl shifted by S2 shift left arithmetic
Rd + Sl shifted by S2 shift right arithmetic
Rd + Sl shifted by S2 shift left logical
Rd + Sl shifted by S2 shift right logical
Rd .- M[Rx+X] load long
Rd +- M[Rx+X]
Rd .- M[Rx+X]

load short unsigned
load short signed

Rd 6 M[Rx+X
3

load byte unsigned
Rd ,- M[Rx+X load byte signed
M[Rx+X] + Rm store long
M[Rx+X] .- Rm store short
MRx+X cRm store bvte
pc +- x+Rm conditional jump
pc 4- pc + Y conditional relative
Rm 4- pc. next
pc + x+Rn. CWP-
Rm + pc, next
pc + pc + Y, CWP-
pc + Rm+x. CwP++
Rm+-1astpc get last pc
Rm .- INR get interrupt number

Figure 4. Assembly Language Definition for RISC
(SUB and SUBC really represent two operation codes each, because the operations are not commutative.)

225

/
Addressing VAX RJSC equivalent

Register Rn Rn
Immediate #literal #literal
Indexed Rx + displ Rx + displ
Absolute @#address
Reg Indirect (Rx) I fp,‘+“d”“’

Operation VAX RISC equivalent
Compare cmpl Rm,Rn sub Rm,Rn,rO,\cj
Reg-Reg Move movl Rm,Rn

I
add r0, Rm, Rn

Compare to 0 tstt Rn sub Rn,rO,rO,~cj
, tst1 A Id1 (rO>A,rO,[c{

Clear d-1 Rn add rO,rO,Rn
clrl A stl r0. (rO)A

Two’s Complement mnegl Rm,Rn sub rO,Rm.Rn
One’s Complement mcoml Rm.Rn xor Rm#-1,Rn
Load Const movl $N,Rm add rO,#N,Rm
Increment incl Rn add Rn,#l,Rn
Decrement decl Rn sub Rm#l,Rn

Check index bounds, index sub
(A[O:Ul)

Rm,#p,#U, Rm,#U,rO\cj;
#Lkk jmp lequ, OK;

trap if error, movb @~),RP call error:
& read A[Rm] OK: ldbu (Rm)A,Rp

Figure 5. Synthesizing VAX Instructions
(The approach to bounds checking shown in the last example is better than the normal algorithm. We can think of
an index as an unsigned integer because 0 5 index s (J. A twos complement negative number (lX...X) is then a
very large unsigned number, so we only need to make one unsigned test instead of two signed tests. Nonzero
lower bounds are handled by repeating the sequence and including a multiply and an add. This idea resulted from a
discussion between B. Joy, P. Kessler, and G. Taylor. Taylor coded the examples and found that on VAX 11/780.
the sequence of simple instructions was always faster than the index instruction.)

1 OPCODE<7> 1 SCC<l> 1 DESTcS> 1 SOURCEl<S> 1 IMM<l> 1 SOURCE2c13> /

Figure 6. RISC I Basic Instruction Format

226

HIGH R31
I

Figure 7. Naming Within a Virtual RISC I Register Window

Physical #

137

132
131

122
121

116
LowA’HrGHB i

I

l--l LOCALB

LOW&HIGH
Cl 1

GLOBAL

Proc A Proc B Proc C

R31A

R26A
R25A

R16A
RlsA mlg

RlOA R26B

R25B

R16B
R15B R31c

RlOB R26C

R25C

Rl6C
R15C

RIOC

RgA mB R%

ROA ROB R°C

Figure 8. Usage of Three Overlapped Register Windows

227

Address (a) Normal Jump (b) Delayed Jump ! (c) Optimized
Delayed Jump

100 LOAD X.A ’ LOAD X.A LOAD X.A
101 ADD 1.A ADD l.A JUMP 105
102 JUMP 105 106
103 ADD A.B NOP 2E :*t?
104 SUB C.B ADD A,B SUB C:B
105 SroRE kZ SUB C,B j.sroRE kZ ’
106 SroRE AZ !

Figure 9. Normal and Delayed Jumps

Calls + Maximum 1 RISC I Data Memory Traffic
Returns Nested ’ overflows+ RISC I VAX

% instrs Deoth

/ puzzle

underflows # words #words /
43k 20 124 6k 444k

0.6X

[quicksort
1oiYk 10 64 4k itit
8.0% 1.07. 50.0%

Figure 10. Memory Traffic Caused by CALL/Return
(These are the results of the pointer version of puzzle. The subscripted versions, A and 0. use 235K words and
363K words, respectively.)

1 Instructions
j

Size
1

j
Register Executed

1
* (bvtes) ! accesses I

Data Memory 1
accesses 1

IVAXll / ! 16 j 59 19
66000
PDP-11 /

12
, 15

1 RISC I 1 0.2
L

Figure 11. Procedure CALL/Return Overhead, Including Parameter Passing

228

Name VAX
VAX
rel

acker
I

32 1 1.00 41 1.28 52 , 1.63
brelse 1 30 1

I
1.00 39 1.30 63 2.10

fun 9 1.00 15 1.33
qsort

1

stats /
101

54 I ::z 1
159

:::::
j

1;:
1.59

98 I ::;t ’ 104 1.93
sym I

;“D
1.00 72

1
1 83 1.93 /

towers 1.00
983;

1.23 33 1.10
/

1
spell 774 1.00 1.27 1094 1.41
sort 1213 , 1.00 1 1395 ; 1.15 / 1849

1.00 1961 1.24 1 2598
; 1.52

finger 1578 ! 1.64
puzzle t 381 1.00 496 1 1.30 1 617 1.62
Average \ 386 i 1.0 it .o I 482 1 1.4 -fr .2 / 605 i 1.6 * .3

Figure 12. Static Number of instructions: Absolute and Ratio to VAX

r i Name

/
’ brelse

fun
qsort
stats

I sym
towers
spell
sort

I VAX
I
i

VAX
rel

11/70 I

120 ’ 1.00
172 1.00
32 1.00

436 1.00
284 1.00
204 1.00
100 ’ 1.00

2996 1.00
4996 , 1.00

130
140
4%

462 i
316 I

1 l/70
rel

1.08
0.81
1.38
1.06
1.11
1.08
1.24
1.04
0.92

I
f

finger ! 6544 1 1.00 6490 0.99
puzzle 1669 1.00 / 2004 1.13
Average i 1596 i 1.0 + .O 1 1602 1 1.1 c .1

RISC

208
252

48
644
416
332
132

4376
7396

10352
2465

RISC
rel
1.73
1.47
1.50
1.48
1.46
1.63
1.32
1.46
1.48
1.58
1.48

2420 i 1.5 * .l

Figure 13. Program Size: Number of Bytes and Ratio to VAX

229

hLzzie (Subscnpk) 1 hzzk (Pointers) ’
A B A,B / C C

@icksO;t .

VAX VAX RISC I VAX RISC VfX RISC 1
Time (sees) ’ 11.3 9.5 5.2 4.0 3.6 l.6 .8

internal Cycles (M) 65 56 13 22 9 9 2.0
Instr. Exec. (M) 10 6.2 11 5.3 7.2 1.0 # Instr. Words (M) 11 5.4 11 4 7.2 I .8 :.i

1 # Data M em. Access (M) ; 5.6 3.4 1.7 1.4 1 1.4 :4

Figure 14. Dynamic Statistics for C Programs for VAX and RISC
(The number of internal cycles is the number of micro instructions executed on VAX [= time/200 nseci and the
number of basic register-to-register cycles on RISC.)

L
JUMP

NOP

CALL

I

INC/DEC

ADD

SUB

j CIMP

Puzzle (Sub~~ripLs)

A B kB
VAX VAX RISC
2.52 1.68 1.73

25% 20%
o.‘oG

0.02 0.02 OFE

ctz 0:; c?z
0.2% 0.2% 0.2%

0.80 0.75 _
6% 9%

1.53 1.53 3.32
15% IBX

0s -
6%

0.62 0.76 _
6% 9%

SHF
1.53 1.53 2.47

15% 19% 24%

STORE j - -
0.04
0.4%
1.67

0.88 0.66 _
MOV 1.65 0.82 _

10%

PUSH
0.04 0.‘: _

MISC
/ czgd oz _

2.0% 2.4%

TOTAL 1 10.01 6.23 10.11
100% 1007. 1007.

T

,

-

I
i-

t

L

Arzzf e (f+hft7~~)
C C

VAX RISC
1.66 1.73
32p

0:;

0.02 0.;
0.4%

0.02 cz
0.4% 0.3%

0.00 s

l% 2.47
29%

OE
12%

0.80

OE 0.38
1. IZ 5%

0.04
0.6%

0.92
13%

0.66

o:iE

&Y

CE

3.6%

5.33 7.10
!UOZ 1009.

T i

?-

L
I

Quickswt
D D

VAX RISC
0.22 0.23

21% 14%
0.02

;

,

i ,
,

1 ’ i
Ii
,

0.05 Ck:
CE ci%
4.8% 3.7%

0.06 I
0.:; 0.48
1.9%

0.04 0%

CEi

15%

- 10%
0.00 0.00
0.1% 0.1%

0.15

0.;
15%

0.00 _

0.1%
0.33 _

31%
0.12 _

11%
0.06 0.14

6% 9%
1.05 1.63
100% iOO%

Figure 15. Dynamic Instruction Mix for C Programs. Million Instructions

230

