
Squaring the Circle
A Case Study in the History    
            of Mathematics



The Problem

Using only a compass and straightedge, construct for 
any given circle, a square with the same area as the 
circle.

The general problem of constructing a square with the same 
area as a given figure is known as the Quadrature of that figure.
So, we seek a quadrature of the circle.



The Answer
It has been known since 1822 that the quadrature of a 
circle with straightedge and compass is impossible.

Notes: First of all we are not saying that a square of equal 
area does not exist. If the circle has area A, then a square 
with side √A clearly has the same area.

   Secondly, we are not saying that a quadrature of a 
circle is impossible, since it is possible, but not under the 
restriction of using only a straightedge and compass. 



Precursors
It has been written, in many places, that the quadrature 
problem appears in one of the earliest extant mathematical 
sources, the Rhind Papyrus (~ 1650 B.C.).

   This is not really an accurate statement. If one means by 
the “quadrature of the circle” simply a quadrature by any 
means, then one is just asking for the determination of the 
area of a circle. This problem does appear in the Rhind 
Papyrus, but I consider it as just a precursor to the 
construction problem we are examining.



The Rhind Papyrus
The papyrus was found in Thebes 
(Luxor) in the ruins of a small 
building near the Ramesseum.1 It 
was purchased in 1858 in Egypt 
by the Scottish Egyptologist A. 
Henry Rhind and  acquired by the 
British Museum after his death.

 The papyrus, written in hieratic, 
the cursive form of hieroglyphics, 
is a single roll which was 
originally about 5.4 meters long 
by 32 cms wide (~18 feet by 13 
inches).



The Rhind Papyrus
However, when the British Museum 
acquired it, it was shorter and in two 
pieces, missing the central portion. 
About 4 years after Rhind made his 
purchase, the American Egyptologist 
Edwin Smith bought, in Egypt, what he 
thought was a medical papyrus. This 
was given to the New York Historical 
Society in 1932, where it was 
discovered that beneath a fraudulent 
covering lay the missing piece of the 
Rhind Paprus.

The Society then gave the scroll to the British Museum.2



The Ahmes (Rhind) Papyrus
The Rhind Papyrus has been dated to about 1650 B.C. and  there 
is only one older mathematical papyrus, the Moscow Papyrus 
dated 1850 B.C.
   The papyrus was written by an Egyptian scribe A'h-mosè, 
commonly called Ahmes by modern writers. It appears to be a 
copy of an older work.

“ Accurate reckoning of entering into things, knowledge of 
existing things all, mysteries, secrets all. Now was copied book 
this in year 33, month four of the inundation season, [under the 
majesty] of the king of [Upper and] Lower Egypt, 'A-user-Rê' 
[15th Dynasty reign of the Hyksos Pharaoh, Apepi I], endowed 
with life, in likeness to writings of old made in the time of the 
king of Upper [and Lower] Egypt, Ne-ma'et-Rê' [Amenemhet 
III (1842 - 1797 B.C.)]. Lo the scribe A'h-mosè writes copy 
this.” 3



The Ahmes (Rhind) Papyrus
The scroll consists of 87 problems (with solutions) and is a rich 
primary source of ancient Egyptian mathematics, describing the 
Egyptian methods of multiplying and dividing, the Egyptian 
use of unit fractions, their employment of false position, and 
many applications of mathematics to practical problems. 



The Ahmes (Rhind) Papyrus
Our concern is with problem 50 which reads:
    A circular field has diameter 9 khet. What is its area?
   (A khet is a length measurement of about 50 meters.)

Photo of Problem 50



The Ahmes (Rhind) Papyrus
   This problem (and solution) as well as all the other 
problems is phrased in terms of specific numbers. Does 
this mean that the problems are meant to be illustrative 
of general methods, or are all problems with different 
parameters considered different?

   Examination of other problems indicates that a 
definite algorithm was being used since the same 
technique is applied to different parameters.



Ahmes Papyrus: Problem 50
Ahmes' solution is:

   Take away thou 1/9 of it, namely 1; the remainder is 8. Make thou the 
multiplication 8 times 8; becomes it 64; the amount of it, this is, in area 64 
setat.

If we take this solution as a general formula, then in modern notation we 
obtain the “formula” for the area A of a circle of diameter d as:

A = d− d
9


2

= 64
81

d 2 .

From this we deduce (since A = π d2/4) that the ancient Egyptians 
implicitly used the value
                             π = 256/81 = (4/3)4 = 3.160493827...



Ahmes Papyrus: Problem 48



Ahmes Papyrus: Problem 48
Problem 48 is the only problem in the papyrus which does not 
have a statement. It consists only of a diagram and a calculation of 
82 and 92.
  Chace's interpretation is “This problem compares the areas of a 
circle of radius[sic] 9 and the circumscribing square.”
  Gillings4 challenges this interpretation, pointing out how well the 
circles of problems 50 and 41 are drawn.

         Prob. 48                           Prob. 50                   Prob. 41



Ahmes Papyrus: Problem 48
Gillings' interpretation of this problem is that Ahmes is providing 
the justification of the rule for finding the area of a circle.

He proceeds to show how the rule could be obtained by 
examining the areas of an octagon (which would be “close” to the 
area of a circle) and the square which circumscribes it.

In his discussion he makes the “tongue in cheek” comment that 
Ahmes should be considered the first circle squarer!5 Others have 
seemingly missed the point that Gillings was joking, and have in 
all seriousness claimed this honor for Ahmes.



Earliest Greek Study

To talk about the quadrature problem with straightedge and 
compass, one must turn to the ancient Greeks; for these were the 
tools of the Greek geometers.

   The first Greek known to be connected to the problem is 
Anaxagoras (c. 499 – c. 427 B.C.). Although his chief work was 
in philosophy, where his prime postulate was “reason rules the 
world,” he was interested in mathematics and wrote on the 
quadrature of the circle and perspective. Plutarch (c.46 - c.120) 
reports that he did this mathematical work while he was in jail 
(for being a Persian sympathizer)6. Only fragments of his work 
are extant, and it is unclear what his contribution actually is. 



Lunes of Hippocrates
Hippocrates of Chios (c. 440 B.C.) was a contemporary of 
Anaxagoras and was described by Aristotle as being skilled in 
geometry but otherwise stupid and weak7. [Not to be confused with 
Hippocrates of Cos who also lived around this time on an island 
not far from the island of Chios and is considered to be the “father 
of medicine”; originator of the Hippocratic Oath.]

Hippocrates of Chios is mentioned by ancient writers as the first to 
arrange the propositions of geometry in a scientific fashion and as 
having published the secrets of Pythagoras in the field of 
geometry. Proclus (c. 460) credits him with the method of 
reduction ... reducing a problem to a simpler one, solving the 
simpler problem and then reversing the process.



Lunes of Hippocrates

Hippocrates enters our story because he provided the first example 
of a quadrature of a curvilinear figure (one whose sides are not line 
segments). He worked with certain lunes (crescents) formed by 
two circular arcs.

  This work is also historically important, since it is the first known 
“proof”. We don't have Hippocrates' original words, rather 
Simplicius' summary (530 A.D.) of Eudemus' account (335 B.C.) 
in his now lost History of Geometry, of Hippocrates' proof (440 
B.C.)8.



Lunes of Hippocrates
Hippocrates' proof uses three preliminary results:
       1. The Pythagorean Theorem  (a2 + b2 = c2)
       2. An angle subtended by a semicircle is a right angle.
       3. The ratio of the areas of two circles is the same as the ratio   
           of the squares of their diameters. (Euclid XII.2)

The first two of these were well known to geometers of 
Hippocrates' time. Eudemos (again via Simplicus) credits 
Hippocrates with the third result, but Archimedes (c. 225 B.C.) 
implies that the result is due to Eudoxus (408 – c. 355 B.C.)9. This 
puts the credit for the proof in doubt and current thinking is that 
Hippocrates probably didn't have a rigorous proof.



Euclid XII 2
Before we examine Hippocrates' lunes, let's consider this result on 
the areas of circles.

  We examine the result as given in Euclid's (c. 300 B.C.) 
masterpiece, The Elements. It is clear that this work is, at least in 
part, a compilation of earlier Greek work. The second proposition 
in book XII (out of 13) is:
    Circles are to one another as the squares on the diameters.

Notice how the proposition is phrased in geometrical terms – not 
the “squares of the diameters” an algebraic operation, but the 
“squares on the diameters” referring to the geometric square with 
side equal to a diameter. The ancient Greeks had only a 
rudimentary algebraic notation and relied almost exclusively on 
geometric ideas in their writing and thinking.



Euclid XII 2
Today we would state the result as:
  The ratio of the areas of two circles equals the ratio of the squares 
of their diameters.

  This phrasing underlines the more algebraic way in which we 
view such problems. One needs to be careful in studying ancient 
mathematics not to dismiss the difficulties that were overcome by 
the ancients because they appear simple to us. This simplicity is a 
result of a viewpoint that took thousands of years to develop.

   Euclid's proof is an example of the method of exhaustion, a technique 
used several times in Euclid and according to Archimedes, perfected by 
the mathematician Eudoxus. Simply put, the idea is to “exhaust” the area 
of a given circle by inscribing in it polygons of increasingly many sides. 
This is combined with a double reductio ad absurdum, that is, he proves 
A = B by showing that A < B and B < A both lead to contradictions.



Quadrature of Hippocrate's Lunes
Given an isosceles right triangle, the area of the lunes determined 
by the semicircle on the hypotenuse and the semicircles on the 
sides of the triangle is equal to the area of the triangle.

The theorem remains true for any right triangle, but Hippocrates 
does not seem to be aware of this.



Lunes of Hippocrates

Consider a regular hexagon inscribed in a circle whose side is ½ 
of the diameter of the circle. The figure above can be thought of 
in two ways:  circle + 6 lunes = hexagon + 6 semicircles .
Since the diameter of the red semicircles is ½ the diameter of 
the blue circle,  circle = 4 circles = 8 semicircles. So, we get
          1 circle = 2 semicircles = hexagon – 6 lunes.
So if we can square these lunes, we can square a circle ....
   ... but these are not Hippocrates' lunes!



A Literary Aside
Arguments such as this may have engendered a hope that 
with enough work a quadrature of the circle could be 
accomplished.

The desire to find such a quadrature must have been well 
known to the general Greek populace, and not just the 
small set of mathematicians, for we find it referenced in 
one of Aristophanes famous comedies.

Not only is the problem known, but in order to achieve the 
comic effect, it must have been known as a fruitless 
endeavor.



Aristophanes
In the Birds, performed in 414 BC, a new city has to be founded 
from scratch. The main character, Peisthetaerus, is visited by 
various people who offer their services.11

Enter
METON: I come amongst you ...
PEISTHETAERUS: Some new misery this! Come to do what? 
What's your scheme's form and outline? What's your design? What 
buskin's on your foot?
METON: I come to land-survey this Air of yours, and mete it out 
by acres.
PEISTHETAERUS: Heaven and earth! Whoever are you?
METON: Whoever am I? I'm Meton, known throughout Hellas and 
Colonnus.
PEISTHETAERUS: Aye, and what are these?



Aristophanes

METON: They're rods for Air-surveying. I'll just explain. The Air's, 
in outline, like one vast extinguisher; so then, observe, applying here 
my flexible rod, and fixing my compass there, - you understand?
PEISTHETAERUS: I don't.
METON: With the straight rod I measure out, that so the circle may 
be squared; and in the centre a market-place; and streets be leading 
to it straight to the very centre; just as from a star, though circular, 
straight rays flash out in all directions.
PEISTHETAERUS: Why, the man's a Thales!



π
It is lost in the mists of pre-history who first realized that the ratio 
of the circumference of a circle to its diameter is a constant. All 
the ancient civilizations knew this fact. Today we call this ratio π 
and express this relationship by saying that for any circle, the 
circumference C and the diameter d satisfy:  C = πd.
    The use of the symbol “π” for this ratio is of relatively recent 
origin; the Greeks did not use the symbol.
    “π� was first used by the English mathematicians Oughtred 
(1647), Isaac Barrow (1664) and David Gregory (1697) to 
represent the circumference of a circle. The first use of “π” to 
represent the ratio of circumference to diameter was the English 
writer William Jones (1706). However, it did not come into 
common use until Euler adopted the symbol in 1737.1 



Archimedes
Euclid XII.2 says that the ratio of the area of any circle to the 
square of its diameter is also a constant, but does not determine the 
value of this constant.

   It was Archimedes (287 – 212 B.C.) who determined the constant 
in his remarkable treatise Measurement of a Circle. There are only 
three propositions in this short work (or at least, that is all of that 
work that has come down to us) and the second proposition is out 
of place – indicating that what we have is probably not the original 
version.2

   We shall look at the first and third proposition.



Archimedes
A few preliminary ideas:
   The area of a regular polygon is easily determined if you know 
that the area of a triangle = ½bh (b the length of a side, h the length 
of the altitude drawn to that side). In a regular polygon of n sides 
(all sides equal, all angles equal), draw the lines from the center to 
each of the vertices creating n congruent triangles. 

apothem

The area is thus n times the area of one of 
the triangles = n(½sa) where s is the 
length of a side and a the length of an 
apothem (line drawn from center 
perpendicular to a side). Since ns is the 
perimeter (Q) of the polygon we get :
             A = ½aQ.



Archimedes
Consider a regular polygon inscribed in a circle. Let K be the 
difference in the areas (area of circle – area of polygon). If you now 
double the number of sides of the polygon, the area you have added 
to the original polygon is more than ½K.

By repeating the procedure, you can make the area difference as 
small as you like, or in other words, for any positive number K, you 
can find a regular polygon (with enough sides) inscribed in a circle 
so that the area difference is less than K. This is Eudoxus' method of 
exhaustion. It also works for circumscribed polygons.



Archimedes
Archimedes has proved that for any circle, A = ½rC, and since we 
know that C = πd, we get A = ½r(πd) = ½r(π2r) = πr2 our familiar 
high school formula.

Even though Archimedes showed the equivalence of a circle with a 
rectilinear figure, easily converted to a square, this is not a solution 
of the quadrature problem. The proof is indirect, it does not give a 
means for constructing the triangle with straightedge and compass.

Before looking at Proposition 3, let's consider one of several 
methods known to the Greeks of using curves to perform a 
quadrature of the circle – however, the curves used in this way can 
not themselves be constructed with straightedge and compass!



Archimedes
In proposition 3 Archimedes turns his attention to the 
circumference of a circle. Again using inscribed and circumscribed 
regular polygons, their perimeters provide upper and lower bounds 
for the circumference of the circle. This gives him a means of 
calculating bounds for the number π.

Proposition 3: The ratio of the circumference of any circle to its 
diameter is less than 3 1/7 (22/7) but greater than 3 10/71 (223/71). 
                       (3.140845... < π < 3.142857...)
What is remarkable about this result is not the underlying idea, but 
rather the skill of Archimedes in carrying out the computations. He 
started with inscribed and circumscribed hexagons, then doubled 
the size, and again, and again and yet again, ending with 96-sided 
polygons. At each step he calculates the perimeters. This involves 
approximating radicals which is where he shows his genius.



The Computation of π �  Early Phase
There has always been an interest in the precise value of π. As we 
have seen, the ancient Egyptians used π = 3.1604938... . Other 
ancient civilizations were not as precise, generally using π = 3. 
This can be seen in Babylonian clay tablets and in the Bible (I 
Kings: 7:23)
     Then He made the molten sea (circular), ten cubits from brim
      to brim, while a line of 30 cubits measured it around.

After Archimedes improvements were made by taking larger and 
larger polygons (except for the Romans – not very concerned with 
precision, they dropped back to the value 3 1/8)6.



The Computation of π �  Early Phase7

ca. 150 A.D. - The first improvement over Archimedes values was 
given by Claudius Ptolemy of Alexandria in the Almagest, the most 
famous Greek work on astronomy. Ptolemy gives a value of π = 
377/120 = 3.1416 ....

ca. 480 – The early Chinese worker in mechanics, Tsu Ch'ung-chih, 
gave the approximation π = 355/113 = 3.1415929 ... correct to 6 
decimal places.

ca. 530 – The early Hindu mathematician Āryabhata gave π = 
62,832/20,000 = 3.1416 ... as an approximation. It is not known 
how this was obtained, but it could have been calculated as the 
perimeter of a regular inscribed polygon of 384 sides.



The Computation of π �  Early Phase
ca. 1150 – The later Hindu mathematician Bhāskara gave several 
approximations. He gave 3927/1250 as an accurate value, 22/7 as an 
inaccurate value, and √10 for ordinary work.

1429 – Al-Kashi, astronomer royal to Ulugh Beg of Samarkand, 
computed π to sixteen decimal places using perimeters.

1579 – The eminent French mathematician François Viète found π 
correct to nine decimal places using polygons having 393,216 sides.

1593 – Adriaen van Roomen, more commonly known as Adrianus 
Romanus, of the Netherlands, found π  correct to 15 places using 
polygons having 230 sides.



The Computation of π �  Early Phase
1610 – Ludolph van Ceulen of the Netherlands computed π to 35 
decimal places using polygons having 262 sides. He spent a large 
part of his life on this task, and his achievement was considered so 
extraordinary that his widow had the number engraved on his 
tombstone (now lost). To this day, the number is sometimes 
referred to as “the Ludophine number.”

1621 – The Dutch physicist Willebrord Snell, best known for his 
discovery of the law of refraction, devised a trigonometric 
improvement of the classical method so that from each pair of 
bounds given by the classical method he was able to obtain 
considerably closer bounds. By his method, he was able to get van 
Ceulen's 35 places using a polygon with only 230 sides.



The Computation of π �  Early Phase

1630 – Grienberger, using Snell's refinement, computed π 
to 39 decimal places. This was the last major attempt to 
compute π by the method of Archimedes.


