
COPYRIGHT NOTICE:
David A. Kendrick, P. Ruben Mercado, and Hans M. Amman:
Computational Economics

is published by Princeton University Press and copyrighted, © 2006, by Princeton
University Press. All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher, except for reading
and browsing via the World Wide Web. Users are not permitted to mount this file on any
network servers.

Follow links Class Use and other Permissions. For more information, send email to:
permissions@pupress.princeton.edu

http://www.pupress.princeton.edu/class.html
http://www.pupress.princeton.edu/permissions.html

C H A P T E R 3

Partial Equilibrium in Mathematica

It is customary to begin the study of microeconomics with market behavior in a par-

tial equilibrium setting. This is done by analyzing the determination of price and

quantity in a single competitive market under the assumption that all other influ-

ences from the rest of the economy remain constant. Such a study usually begins with

the theory of the consumer and the derivation of demand curves and then proceeds

to the theory of the firm and the derivation of supply curves. Then demand and sup-

ply are brought together to study market equilibrium. This is the standard approach

we follow here. We are interested primarily in the derivation of analytical results and

graphical representations, for which Mathematica, owing to its power to deal with

symbolic mathematics problems and to its plotting capabilities, is a very useful tool.

3.1. UTILIT Y AND PRODUCTION FUNCTIONS

The starting point of consumer theory is the specification of preferences and

their representations by means of a utility function, whereas the starting point of

the theory of the firm is the specification of technology and its representation by

means of a production function. While many theoretical results are derived for very

general forms of those functions, in most examples and in applications we com-

monly work with a few functional specifications. Leontief and Cobb-Douglas func-

tions are probably the most popular, and they can be used to represent preferences or

technology. We present both of them and focus on the two-good case since this is

the one that can be easily handled in graphical representations, although the results

can be generalized to more goods and displayed analytically.

3.1.1. Leontief Function

A Leontief function for a two-good case is

f (x1, x2) = min(a1x1, a2 x2) (1)

37

where f is the function, a1 and a2 are parameters, and x1 and x2 are interpreted as

goods consumed, if we use the function to represent preferences as in consumer’s

theory. Alternatively, they may be interpreted as inputs if we use the function to rep-

resent technology as in the theory of the firm. This function specifies that no sub-

stitution is possible between goods or between inputs. The consumer always spends

all of his or her income in fixed proportions between the two goods, and similar be-

havior is displayed by the firm in connection with its inputs. As we will see later, this

implies a peculiar form for the consumer’s indifference curves and for the firm’s pro-

duction isoquants.

The graphical representation of such a function in Mathematica is straightfor-

ward and it is available in the Leontief.nb file on the book web site. If you are already

familiar with Mathematica you can begin with that notebook file, but if you are a

first-time user, we recommend that you type in the commands. The instructions for

running Mathematica are in Appendix B at the end of this book.

We begin by assigning values to the parameters a1 and a2. In this case we give

them both the value 1. Start Mathematica and on the Untitled-1 window that opens

type

a1 = 1

followed by Return and then

a2 = 1

followed by Shift-Enter. Mathematica acts as an interpreter and commands are

processed one at a time. Using Return at the end of the line in effect asks Mathe-

matica to postpone the processing while you enter another command on the next

line, whereas Shift-Enter at the end of the line asks the program to process all of

the input since the last Shift-Enter. Mathematica then responds by converting

your input to

IN[1]:=	 a1 = 1

a2 = 1

The symbols IN[]:= in Mathematica denote input and the other expressions are

the input to be evaluated. The output statements corresponding to the input are

Out[1]:=	 1

Out[2]:=	 1

Thus Mathematica displays the result of the assignments as output. Note that sepa-

rate output is generated for each statement, regardless of whether we write the inputs

38 C H A P T E R 3

in a single input prompt or in separate ones. Note also the sequential numbering of

inputs and outputs.

The outputs of the previous evaluations are quite simple and redundant. To

avoid the display of output, we could have added a semicolon, ;, at the end of the

statement whose output we wanted to suppress.

Next we assign to the variable Leontief the corresponding Mathematica func-

tion Min[] that yields the numerically smallest of its arguments:

IN[3]:= Leontief = Min[a1 x1, a2 x2]

In Mathematica two symbols can be multiplied either by using the asterisk operator

as a1*x1 or simply by juxtaposing the two symbols with a space between them as a1

x1. When you finish typing the line above be sure to strike Shift-Enter. This yields

the output

OUT[3]:= Min[x1,x2]

Note that Mathematica replaced the parameters a1 and a2 with their numerical

values of 1 while keeping everything else the same, since, for the time being, the

evaluation of the statement cannot be carried out beyond this point.

Next we ask Mathematica to generate a three-dimensional plot of the function

within given numerical intervals for x1 and x2 using the Mathematica function

Plot3D[f,{x,xmin,xmax},{y,ymin,ymax}], where f is the function to be plotted over

the variables x and y between their specified minimum and maximum values. Type

IN[6]:= Plot3D[Leontief,{x1,0,1},{x2,0,1}]

Be careful not to misspell Leontief or the program will give you more error messages

than you care to see. Also, be sure to end the line with Shift-Enter. The resulting

graph is shown in Figure 3.1.

Finally, with the statement

IN[8]:= ContourPlot[Leontief,{x1,0,1},{x2,0,1}]

we obtain the contour plot of the Leontief function shown in Figure 3.2, which il-

lustrates the consumer’s indifference curves or, equivalently, the firm’s isoquants.

Contour plots produced by Mathematica are by default shaded, and regions with

higher functional values are lighter. Contour curves for the Leontief function form

90° angles. Note that the graph shows the kinks with some error as we get farther

away from the origin.

Whenever you run a program in Mathematica it is important that you wipe out

any previous values associated with the parameters and variables of the problem.

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 39

This can be achieved by adding the following statement at the beginning of the

program:

IN[]:= Clear[a1,a2,x1,x2,Leontief];

3.1.2. Cobb-Douglas Function

A Cobb-Douglas function with constant returns to scale (we use a special case) is

40 C H A P T E R 3

Figure 3.1. Leontief function.

0
0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0
0.25
0.5

0.75

1

0
0.25

0.5

0.75

1

Figure 3.2. Leontief function contour lines.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1–ρ (2)f (x1, x2) = x1
ρx2

where f is the function, x1 and x2 are goods or inputs, and ρ is a parameter. In con-

sumer theory ρ and 1– ρ represent the consumer’s expenditure shares on each good.

In the theory of the firm, the fact that the two exponents of the inputs add up to

one implies that the technology the function represents displays constant returns-

to-scale. Unlike the Leontief function, the Cobb-Douglas function allows for smooth

substitution between goods or between inputs.

The Mathematica statements corresponding to the graphical representation of

the Cobb-Douglas function are shown below and are available in the CobbDouglas.nb

file on the book web site. This time we recommend that you open the input file and

use it to follow the discussion. When you open the notebook file you see a bunch of

brackets on the right-hand side of the window. You can execute the program by se-

lecting these brackets and striking Shift-Enter. For example, selecting the bracket

opposite the lines

Clear[x1,x2,ρ];

ρ = 0.7;

CD = x1^ρ x2^(1-ρ);

Plot3D[CD,{x1,0,1},{x2,0,1}]

ContourPlot[CD,{x1,0,1},{x2,0,1}]

and striking Shift-Enter causes the lines to be processed and results in their being

reprinted as

In[1]:=

Clear[x1,x2,ρ];

ρ = 0.7;

CD = x1^ρ x2^(1-ρ);

Plot3D[CD,{x1,0,1},{x2,0,1}]

ContourPlot[CD,{x1,0,1},{x2,0,1}]

with input prompt In[1]:= now showing. In this way you can use the notebook file

to modify the input and rerun the program. For example, you might change ρ from

0.7 to 0.8, select the bracket to its right, and type Shift-Enter. Be aware, however,

that only that part of the program covered by the bracket you select is rerun. There-

fore, if you want to redo the plots you must select one of the more inclusive brackets

on the right before striking Shift-Enter.

The foregoing statements follow the pattern presented in the previous section.

We named the function CD and assigned a value of 0.7 to the ρ parameter. Unlike the

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 41

program for the Leontief function, here we put all the statements together in one

input prompt and suppressed output using semicolons at the end of the first three

statements. Note that Mathematica allows you to enter Greek letter symbols such as

ρ. To do so, and also to enter formulas in a mathematical form instead of the text

form we used here, you have to use a palette you can access from the File/Palettes/

BasicInput main menu option.

Figures 3.3 and 3.4 show the corresponding three-dimensional and contour

graphs. If you are following along with Mathematica, you might close all the files

42 C H A P T E R 3

Figure 3.3. Cobb-Douglas function.

0
0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0
0.25
0.5

0.75

1

0
0.25

0.5

0.75

1

Figure 3.4. Cobb-Douglas function contour lines.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

you have opened so far to reduce the clutter on your computer desktop and give

yourself a fresh start in the next section.

3.2. CONSUMER THEORY

The standard theory of consumer’s behavior poses the problem faced by the

consumer as one of maximizing utility subject to a budget constraint. That is, given

a bundle of goods, their prices, and a certain amount of income, the consumer buys

those goods according to her preferences while trying to maximize her utility, a

quantity that is supposed to measure the level of consumer satisfaction.

In formal terms, and for a two-good example that can be easily generalized, the

problem can be stated as

max u(x1, x2)
(3)

subject to p1x1 + p2x2 = m

where u is the utility function, x1 and x2 are goods, p1 and p2 are prices, and m is

income.

From here on we work with a Cobb-Douglas function. Thus, using Eq. (2) we can

restate the foregoing problem as

max u = x1
1–ρρ x2 (4)

subject to p1x1 + p2 x2 = m

An equivalent but simpler expression for the utility function is obtained by

taking logs:

log u = ρ log(x1) + (1 – ρ) log(x2) (5)

We start the Mathematica program of the consumer’s problem—available in

the Consumer.nb file—by inputting the utility function

In[]:= logu = ρ Log[x1] + (1-ρ) Log[x2];

and the budget constraint

In[]:= bc = m - (p1 x1 + p2 x2);

Note that we give a name to the budget constraint, i.e., bc, and then assign all its

elements. We will soon see the usefulness of that.

The next step is to form the Lagrangian corresponding to the maximization

problem. Thus we write

In[]:= eqL = L == logu + λ bc

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 43

assigning the expression

L == logu + λ bc

to the variable eqL. The presence of the double equal symbol == indicates that the

expression is an equation, not an assignment to the variable L. The corresponding

output is the content of the variable eqL with the expressions for logu and bc re-

placed by their definitions1:

Out[]= L == (m - p1 x1 - p2 x2) λ + ρ Log[x1]+(1-ρ)Log[x2]

If instead of writing the budget constraint in the way we did previously, we write

it in a more standard way, that is,

In[]:=	 m = p1 x1 + p2 x2;

to later write the Lagrangian as

In[]:=	 eqL = L == logu + λ (m - p1 x1 - p2 x2)

the output generated by Mathematica would be

Out[]=	 L == ρ Log[x1] + (1 – ρ) Log[x2]

Indeed, when evaluating the part of the input expression corresponding to (m ­

p1 x1 - p2 x2), Mathematica replaces the variable m with its definition. Then this

part of the expression becomes (p1 x1 + p2 x2 - p1 x1 - p2 x2). Thus, it would

be equal to zero. It was to avoid this kind of problem that we defined the variable

bc in the way we did.

Once we form the Lagrangian, we compute the first-order conditions of the

problem as follows:

In[]:=	 foc1 = D[eqL, x1]

foc2 = D[eqL, x2]

foc3 = D[eqL, λ]

The Mathematica function D computes the partial derivatives of a function. In

this case, we ask Mathematica to compute the partial derivatives of the expression eqL

w.r.t. (with respect to) the variable of choice. The corresponding outputs are

1. It is common in Lagrangian functions to put the objective term first followed by the λ and the constraint,
but given the sequence of commands we used, Mathematica does things in reverse order. This causes no problem
except for making the output below slightly harder to comprehend at first.

44 C H A P T E R 3

Out[]=
ρ

0 == -plλ+———
x1

Out[]=
1 - ρ

0 == -p2λ+————–—
x2

Out[]= 0 == m - p1 x1 - p2 x2

Using the Mathematica function Solve, we can obtain the goods’ demand func-

tions from the system of equations formed by the first-order conditions. Within this

function, we first have to specify the equations and then the variables over which

they are solved:

In[]:=	 Solve[{foc1,foc2,foc3},{x1,x2,λ}]

The previous statement generates the output

1 mρ m - mρ
Out[]=	 {{λ → —–, x1 → —––, x2 → ————–——}}m p1 p2

Finally, we want to plot the goods’ demand functions. Since the standard pro-

cedure is to plot quantities on the horizontal axis and prices on the vertical axis,

we have to solve the demand functions for the corresponding prices. Starting with

good 1, the Mathematica statements are:

In[]:=	 p1 = ρ m / x1;

Plot[p1 /. {ρ → 0.7, m → 0.1},

{x1,0.01,0.1},

AxesLabel → {“x1”, “p1”},

PlotLabel → “Demand Curve for x1”]

We use the replacement operator /. in the first line of the Plot[] function. This

operator, whose general form is “expression /. Rules” applies a rule or list of rules

in an attempt to transform each subpart of an expression. In our case the transfor-

mation rules are ρ → 0.7 and m → 0.1, which are used to give particular values to

the parameters ρ and m. To write the arrows, you must type -> as a pair of characters,

with no space in between.

The second line of the Plot function contains the specification of the range for

the horizontal axis, writing first the name of the corresponding variable and then the

minimum and the maximum values for the plot. Finally, the last two lines label the

axes and assign a label to the plot by means of the options AxesLabel and PlotLabel.

The plot generated is shown in Figure 3.5.

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 45

p1

0.02 0.04 0.06 0.08 0.1
x1

1

2

3

4

5

6

7

Figure 3.5. Demand curve for x1.

p2

0.02 0.04 0.06 0.08 0.1
x2

0.5

1

1.5

2

2.5

3

Figure 3.6. Demand curve for x2.

In an analogous way, we generate a plot for the demand function of good x2,

shown in Figure 3.6:

In[]:=	 p2 = (m - ρ m) / x2;

Plot[p2 /. {ρ → 0.7, m → 0.1},

{x1,0.01,0.1},

AxesLabel → {“x2”, “p2”},

PlotLabel → “Demand Curve for x2”]

3.3. THE THEORY OF THE FIRM

The standard theory of firm behavior assumes that the main goal of a firm is to

maximize profits given technology and the prices of output and inputs. To develop

a simple example, let us assume that the firm produces a single output x1 with price

p1, using labor L as a single input whose price is the wage w. Let us also assume that

46 C H A P T E R 3

the production function is of the form TLb, where T and b are parameters and let us

denote profits by π.

In formal terms the problem of the firm can be stated as

max π = p1x1 – wL
(6)

subject to x1 = TLb

Substituting the production function into the profit function, we obtain the

first input for the Mathematica representation of the problem—available in the

Firm.nb file—as

In[]:= pi = p1 T L^b - w L;

Note that we write pi instead of π since the Greek letter π is a reserved symbol in

Mathematica.

Next we solve the first-order condition of the problem for L. By means of the

D[] function we compute the partial derivative of the profit function w.r.t. the vari-

able labor and set the result equal to zero. Finally, we nest this operation within a

Solve[] function:

In[]:= Solve[D[pi,L]==0,L]

The resulting output is the labor demand function

——––—
w –1+b }
Out[]= L → ——–—–——{ (b p1 T)
1

Next we assign the expression for the labor demand function to the temporary

variable tempL using the replacement operator /.. The % symbol in the following

statement refers to the last result generated, and [[1]] refers to the first solution

from the output list, which in this case contains only one solution. Thus, tempL is

equal to L, where L is replaced by the solution generated in the previous output line.

In[]:= tempL = L /.%[[1]]

Substituting tempL—that is, the labor demand function—into the production

function in Eq. (6), we obtain the supply function for x1 that we assign to the tem-

porary variable tempx1:

In[]:= tempx1 = T tempL^b

The resulting output is

1 b
——––—
w –1+b)
Out[]= T ——–—–——
((b p1 T)

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 47

p1

0.02 0.04 0.06 0.08 0.1
x1

2

4

6

8

Figure 3.7. Supply curve for x1.

Having obtained the good supply and the labor demand functions, we want to

plot them in the standard way, that is, with price and wage on the vertical axis in the

respective plots. We begin with the good supply function. In the next two state-

ments we (1) create an equation setting x1 equal to the expression contained in the

temporary variable tempx1, and (2) assign the result of solving the equation for p1 to

the variable plotx1:

In[]:=	 eqx1 = x1 == tempx1;

plotx1 = Solve[eqx1,p1]

The result is the inverted good supply function in which p1 appears as a func-

tion of x1:

1 1–b
—–
x1 b)
w((——–)
T

Out[]= {{pl→ ——————————————}}

bT

Finally, we assign the above result to the temporary variable tempp1, give nu-

merical values to the parameters, and generate the corresponding plot, obtaining

the graph shown in Figure 3.7.

In[]:= tempp1 = p1 /. plotx1[[1]];

Plot[tempp1 /. {b → 0.4, T → 1, w → 100} ,

{x1,0.01,0.1},

AxesLabel → {“x1”, “p1”},

PlotLabel → “Supply Curve for x1”]

48 C H A P T E R 3

w

0.02 0.04 0.06 0.08 0.1
L

3

4

5

6

Figure 3.8. Labor demand curve.

In a similar way, with the following statements we generate the plot for the

labor demand curve shown in Figure 3.8:

In[]:=	 eqL = L == tempL;

plotL = Solve[eqL, w];

tempw = w /. plotL[[1]]

Plot[tempw /. {b → 0.4, T → 1, p1 → 1},

{L,0.01,0.1},

AxesLabel → {“L”, “w”},

PlotLabel → “Labor Demand Curve”]

Now we are in a position to turn our attention to the market equilibrium.

3.4. MARKET EQUILIBRIUM

Having derived demand and supply curves, we can put them together to analyze

the resulting market equilibrium. We do so for the case of good x1. We begin from

the corresponding demand and supply curves obtained in the previous sections

with a slight modification: the variable p1 from the demand curve is renamed p1d,

while the variable p1 from the supply curve is renamed p1s.

We begin the Mathematica representation of the model of partial market

equilibrium—available in the MarketEquil.nb file—with the statements

In[]:=	 p1d = ρ m / x1;

p1s = w (((x1 / T)^(1 / b))^(1-b)) / (b T);

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 49

Then we solve for the equilibrium quantity when demand equals supply,

In[]:=	 equilx1 = Solve[p1d == p1s,x1]

obtaining as output

T–1/b –b
w

Out[]=	 {{x1→(———————) }}b m p

The equilibrium price can then be obtained by substituting the solution for x1

into p1d:

In[]:=	 equilp1 = p1d /. equilx1[[1]]

T–1/b b
w

Out[]=	 m(———————) ρ

b m p

Next we assign values to the parameters and to the wage variable and compute

the corresponding numerical values for the equilibrium quantity and the price. To

do so, we write the variables equilx1 and equilp1 without semicolons, since Math-

ematica automatically replaces each parameter with its value, and performs the

corresponding calculations:

In[]:=	 ρ = 0.7;

m = 0.1;

T = 1;

b = 0.4;

w = 100;

equilx1

equilp1

Out[]= {{x1 → 0.0379196}}

Out[]= 1.84601

Finally we plot jointly the demand and supply curves, obtaining the graph shown

in Figure 3.9:

In[]:=	 Plot[{p1d, p1s},

{x1,0.01,0.1},

AxesLabel → {“x1”, “p1”},

PlotLabel → “Market for x1”]

50 C H A P T E R 3

p1

0.02 0.04 0.06 0.08 0.1
x1

2

4

6

8

Figure 3.9. Market for x1.

Once we obtain the graphical representation of market equilibrium, it is inter-

esting to engage in some comparative static exercises. To do so, we use a statement

of the form

Plot[Evaluate[Table[]]]

This statement nests three Mathematica functions. The function

Table[expr, {i, imin, imax, di}]

makes a list of the values of an expression expr with i running from imin to imax

in steps of di. The function

Evaluate[expr]

causes the expression expr to be evaluated. Finally the function Plot[] is the one

we have used before. Thus, the statement

In[]:=	 Plot[Evaluate[Table[{p1d ,p1s},{T,1,1.2,0.1}]],

{x1,0.01,0.1},

AxesLabel → {“x1”, “p1”},

PlotLabel → “Market for x1”]

first generates a list of three elements, one corresponding to each value of the tech-

nology parameter T, then evaluates the expression in each element of the list, and

finally generates the plot shown in Figure 3.10.

Figure 3.11 shows the result of a similar experiment, but with the demand func-

tion share parameter ρ changed in the following way:

{ρ,0.5,0.9,0.2}

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 51

p1

0.02 0.04 0.06 0.08 0.1
x1

2

4

6

8

Figure 3.10. Comparative statics changing parameter T.

p1

0.02 0.04 0.06 0.08 0.1
x1

2

4

6

8

Figure 3.11. Comparative statics changing parameter ρ.

Finally, we perform the same comparative static exercise now with an animated

plot using the following statement:

In[]:=	 Table[Plot[{p1d ,p1s},

{x1,0.01,0.1},

PlotRange → {0,8},

AxesLabel → {“x1”, “p1”},

PlotLabel → “Market for x1”],{T,1,1.2,0.1}]

Note that here we have a Plot[] function nested within a Table[] function.

Thus, the table contains a sequence of plots controlled by the evolution of the T pa-

rameter. The output of the statement is such a sequence. Double click on the first

graph of the sequence and you see the resulting animation. You can control the

speed of the animation with the buttons that appear at the bottom of the notebook.

52 C H A P T E R 3

Note that here we fixed the range for the vertical axis with the option PlotRange.

Otherwise, each plot may generate variable values for that range, creating the false

impression that the demand curve is also shifting (to see this, eliminate that option

from the statement and see what happens). Also note that if you perform other com-

parative static exercises changing any of the parameters other than T, you may have

to adjust the PlotRange option accordingly, as well as the range for x1, setting differ-

ent minimum and/or maximum values.

3.5. EXPERIMENTS

A simple set of experiments would be to perform more comparative static exer-

cises changing some of the model parameters. You may also want to add parameters

to the model (e.g., taxes) and see how this affects the outcome of the comparative

statics.

Another popular function used to represent preferences or technology is the con-

stant elasticity of substitution (CES) function

—α + x2
1

f (x1, x2) = (x1
α) α

As we did with the Leontief and Cobb-Douglas functions, you may want to gen-

erate the contour plot of this function and see what happens as the parameter α goes

from a value near zero to one near minus infinity.

Finally, you may want to develop an analysis analogous to the one we did in this

chapter substituting the CES function for the Cobb-Douglas function.

3.6. FURTHER READING

For an introduction to Mathematica see Wolfram (2003). Consumer theory and

the theory of the firm as well as competitive market equilibrium are at the core of

most microeconomics textbooks. Later in this book we deal with duopoly models

in Mathematica and general equilibrium models in GAMS.

PA R T I A L E Q U I L I B R I U M I N M AT H E M AT I C A 53

