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C  H A P T E R  3  

Partial Equilibrium in Mathematica


It is customary to begin the study of microeconomics with market behavior in a par-

tial equilibrium setting. This is done by analyzing the determination of price and 

quantity in a single competitive market under the assumption that all other influ-

ences from the rest of the economy remain constant. Such a study usually begins with 

the theory of the consumer and the derivation of demand curves and then proceeds 

to the theory of the firm and the derivation of supply curves. Then demand and sup-

ply are brought together to study market equilibrium. This is the standard approach 

we follow here. We are interested primarily in the derivation of analytical results and 

graphical representations, for which Mathematica, owing to its power to deal with 

symbolic mathematics problems and to its plotting capabilities, is a very useful tool. 

3.1.  UTILIT Y AND PRODUCTION FUNCTIONS 

The starting point of consumer theory is the specification of preferences and 

their representations by means of a utility function, whereas the starting point of 

the theory of the firm is the specification of technology and its representation by 

means of a production function. While many theoretical results are derived for very 

general forms of those functions, in most examples and in applications we com-

monly work with a few functional specifications. Leontief and Cobb-Douglas func-

tions are probably the most popular, and they can be used to represent preferences or 

technology. We present both of them and focus on the two-good case since this is 

the one that can be easily handled in graphical representations, although the results 

can be generalized to more goods and displayed analytically. 

3.1.1. Leontief Function 

A Leontief function for a two-good case is 

f (x1, x2) = min(a1x1, a2 x2) (1) 
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where f is the function, a1 and a2 are parameters, and x1 and x2 are interpreted as 

goods consumed, if we use the function to represent preferences as in consumer’s 

theory. Alternatively, they may be interpreted as inputs if we use the function to rep-

resent technology as in the theory of the firm. This function specifies that no sub-

stitution is possible between goods or between inputs. The consumer always spends 

all of his or her income in fixed proportions between the two goods, and similar be-

havior is displayed by the firm in connection with its inputs. As we will see later, this 

implies a peculiar form for the consumer’s indifference curves and for the firm’s pro-

duction isoquants. 

The graphical representation of such a function in Mathematica is straightfor-

ward and it is available in the Leontief.nb file on the book web site. If you are already 

familiar with Mathematica you can begin with that notebook file, but if you are a 

first-time user, we recommend that you type in the commands. The instructions for 

running Mathematica are in Appendix B at the end of this book. 

We begin by assigning values to the parameters a1 and a2. In this case we give 

them both the value 1. Start Mathematica and on the Untitled-1 window that opens 

type 

a1 = 1 

followed by Return and then 

a2 = 1 

followed by Shift-Enter. Mathematica acts as an interpreter and commands are 

processed one at a time. Using Return at the end of the line in effect asks Mathe-

matica to postpone the processing while you enter another command on the next 

line, whereas Shift-Enter at the end of the line asks the program to process all of 

the input since the last Shift-Enter. Mathematica then responds by converting 

your input to 

IN[1]:=	 a1 = 1


a2 = 1


The symbols IN[]:= in Mathematica denote input and the other expressions are 

the input to be evaluated. The output statements corresponding to the input are 

Out[1]:=	 1


Out[2]:=	 1


Thus Mathematica displays the result of the assignments as output. Note that sepa-

rate output is generated for each statement, regardless of whether we write the inputs 
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in a single input prompt or in separate ones. Note also the sequential numbering of 

inputs and outputs. 

The outputs of the previous evaluations are quite simple and redundant. To 

avoid the display of output, we could have added a semicolon, ;, at the end of the 

statement whose output we wanted to suppress. 

Next we assign to the variable Leontief the corresponding Mathematica func-

tion Min[] that yields the numerically smallest of its arguments: 

IN[3]:= Leontief = Min[a1 x1, a2 x2]


In Mathematica two symbols can be multiplied either by using the asterisk operator 

as a1*x1 or simply by juxtaposing the two symbols with a space between them as a1 

x1. When you finish typing the line above be sure to strike Shift-Enter. This yields 

the output 

OUT[3]:= Min[x1,x2]


Note that Mathematica replaced the parameters a1 and a2 with their numerical 

values of 1 while keeping everything else the same, since, for the time being, the 

evaluation of the statement cannot be carried out beyond this point. 

Next we ask Mathematica to generate a three-dimensional plot of the function 

within given numerical intervals for x1 and x2 using the Mathematica function 

Plot3D[f,{x,xmin,xmax},{y,ymin,ymax}], where f is the function to be plotted over 

the variables x and y between their specified minimum and maximum values. Type 

IN[6]:= Plot3D[Leontief,{x1,0,1},{x2,0,1}]


Be careful not to misspell Leontief or the program will give you more error messages 

than you care to see. Also, be sure to end the line with Shift-Enter. The resulting 

graph is shown in Figure 3.1. 

Finally, with the statement 

IN[8]:= ContourPlot[Leontief,{x1,0,1},{x2,0,1}]


we obtain the contour plot of the Leontief function shown in Figure 3.2, which il-

lustrates the consumer’s indifference curves or, equivalently, the firm’s isoquants. 

Contour plots produced by Mathematica are by default shaded, and regions with 

higher functional values are lighter. Contour curves for the Leontief function form 

90° angles. Note that the graph shows the kinks with some error as we get farther 

away from the origin. 

Whenever you run a program in Mathematica it is important that you wipe out 

any previous values associated with the parameters and variables of the problem. 
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This can be achieved by adding the following statement at the beginning of the

program:

IN[]:= Clear[a1,a2,x1,x2,Leontief];

3.1.2. Cobb-Douglas Function

A Cobb-Douglas function with constant returns to scale (we use a special case) is
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Figure 3.1. Leontief function.
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Figure 3.2. Leontief function contour lines.
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1–ρ (2)f (x1, x2) = x1 
ρx2 

where f is the function, x1 and x2 are goods or inputs, and ρ is a parameter. In con-

sumer theory ρ and 1– ρ represent the consumer’s expenditure shares on each good. 

In the theory of the firm, the fact that the two exponents of the inputs add up to 

one implies that the technology the function represents displays constant returns-

to-scale. Unlike the Leontief function, the Cobb-Douglas function allows for smooth 

substitution between goods or between inputs. 

The Mathematica statements corresponding to the graphical representation of 

the Cobb-Douglas function are shown below and are available in the CobbDouglas.nb 

file on the book web site. This time we recommend that you open the input file and 

use it to follow the discussion. When you open the notebook file you see a bunch of 

brackets on the right-hand side of the window. You can execute the program by se-

lecting these brackets and striking Shift-Enter. For example, selecting the bracket 

opposite the lines 

Clear[x1,x2,ρ]; 

ρ = 0.7; 

CD = x1^ρ x2^(1-ρ); 

Plot3D[CD,{x1,0,1},{x2,0,1}]


ContourPlot[CD,{x1,0,1},{x2,0,1}]


and striking Shift-Enter causes the lines to be processed and results in their being 

reprinted as 

In[1]:=


Clear[x1,x2,ρ];


ρ = 0.7;


CD = x1^ρ x2^(1-ρ);


Plot3D[CD,{x1,0,1},{x2,0,1}]


ContourPlot[CD,{x1,0,1},{x2,0,1}]


with input prompt In[1]:= now showing. In this way you can use the notebook file 

to modify the input and rerun the program. For example, you might change ρ from 

0.7 to 0.8, select the bracket to its right, and type Shift-Enter. Be aware, however, 

that only that part of the program covered by the bracket you select is rerun. There-

fore, if you want to redo the plots you must select one of the more inclusive brackets 

on the right before striking Shift-Enter. 

The foregoing statements follow the pattern presented in the previous section. 

We named the function CD and assigned a value of 0.7 to the ρ parameter. Unlike the 
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program for the Leontief function, here we put all the statements together in one

input prompt and suppressed output using semicolons at the end of the first three

statements. Note that Mathematica allows you to enter Greek letter symbols such as

ρ. To do so, and also to enter formulas in a mathematical form instead of the text

form we used here, you have to use a palette you can access from the File/Palettes/

BasicInput main menu option.

Figures 3.3 and 3.4 show the corresponding three-dimensional and contour

graphs. If you are following along with Mathematica, you might close all the files
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Figure 3.3. Cobb-Douglas function.
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Figure 3.4. Cobb-Douglas function contour lines.
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you have opened so far to reduce the clutter on your computer desktop and give 

yourself a fresh start in the next section. 

3.2.  CONSUMER THEORY 

The standard theory of consumer’s behavior poses the problem faced by the 

consumer as one of maximizing utility subject to a budget constraint. That is, given 

a bundle of goods, their prices, and a certain amount of income, the consumer buys 

those goods according to her preferences while trying to maximize her utility, a 

quantity that is supposed to measure the level of consumer satisfaction. 

In formal terms, and for a two-good example that can be easily generalized, the 

problem can be stated as 

max u(x1, x2) 
(3)

subject to p1x1 + p2x2 = m 

where u is the utility function, x1 and x2 are goods, p1 and p2 are prices, and m is 

income. 

From here on we work with a Cobb-Douglas function. Thus, using Eq. (2) we can 

restate the foregoing problem as 

max u = x1 
1–ρρ x2 (4)

subject to p1x1 + p2 x2 = m 

An equivalent but simpler expression for the utility function is obtained by 

taking logs: 

log u = ρ log(x1) + (1 – ρ) log(x2) (5) 

We start the Mathematica program of the consumer’s problem—available in 

the Consumer.nb file—by inputting the utility function 

In[]:= logu = ρ Log[x1] + (1-ρ) Log[x2]; 

and the budget constraint 

In[]:= bc = m - (p1 x1 + p2 x2);


Note that we give a name to the budget constraint, i.e., bc, and then assign all its 

elements. We will soon see the usefulness of that. 

The next step is to form the Lagrangian corresponding to the maximization 

problem. Thus we write 

In[]:= eqL = L == logu + λ bc 
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assigning the expression 

L == logu + λ bc 

to the variable eqL. The presence of the double equal symbol == indicates that the 

expression is an equation, not an assignment to the variable L. The corresponding 

output is the content of the variable eqL with the expressions for logu and bc re-

placed by their definitions1: 

Out[]= L == (m - p1 x1 - p2 x2) λ + ρ Log[x1]+(1-ρ)Log[x2] 

If instead of writing the budget constraint in the way we did previously, we write 

it in a more standard way, that is, 

In[]:=	 m = p1 x1 + p2 x2;


to later write the Lagrangian as 

In[]:=	 eqL = L == logu + λ (m - p1 x1 - p2 x2) 

the output generated by Mathematica would be 

Out[]=	 L == ρ Log[x1] + (1 – ρ) Log[x2] 

Indeed, when evaluating the part of the input expression corresponding to (m ­

p1 x1 - p2 x2), Mathematica replaces the variable m with its definition. Then this 

part of the expression becomes (p1 x1 + p2 x2 - p1 x1 - p2 x2). Thus, it would 

be equal to zero. It was to avoid this kind of problem that we defined the variable 

bc in the way we did. 

Once we form the Lagrangian, we compute the first-order conditions of the 

problem as follows: 

In[]:=	 foc1 = D[eqL, x1]


foc2 = D[eqL, x2]


foc3 = D[eqL, λ]


The Mathematica function D computes the partial derivatives of a function. In 

this case, we ask Mathematica to compute the partial derivatives of the expression eqL 

w.r.t. (with respect to) the variable of choice. The corresponding outputs are 

1. It is common in Lagrangian functions to put the objective term first followed by the λ and the constraint, 
but given the sequence of commands we used, Mathematica does things in reverse order. This causes no problem 
except for making the output below slightly harder to comprehend at first. 
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Out[]= 
ρ 

0 == -plλ+——— 
x1 

Out[]= 
1 - ρ 

0 == -p2λ+————–— 
x2 

Out[]= 0 == m - p1 x1 - p2 x2 

Using the Mathematica function Solve, we can obtain the goods’ demand func-

tions from the system of equations formed by the first-order conditions. Within this 

function, we first have to specify the equations and then the variables over which 

they are solved: 

In[]:=	 Solve[{foc1,foc2,foc3},{x1,x2,λ}] 

The previous statement generates the output 

1 mρ m - mρ
Out[]=	 {{λ →  —–, x1 → —––, x2 → ————–——}}m  p1  p2 


Finally, we want to plot the goods’ demand functions. Since the standard pro-

cedure is to plot quantities on the horizontal axis and prices on the vertical axis, 

we have to solve the demand functions for the corresponding prices. Starting with 

good 1, the Mathematica statements are: 

In[]:=	 p1 = ρ m / x1;


Plot[p1 /. {ρ →  0.7, m → 0.1},


{x1,0.01,0.1},


AxesLabel → {“x1”, “p1”},


PlotLabel → “Demand Curve for x1”]


We use the replacement operator /. in the first line of the Plot[] function. This 

operator, whose general form is “expression /. Rules” applies a rule or list of rules 

in an attempt to transform each subpart of an expression. In our case the transfor-

mation rules are ρ →  0.7 and m → 0.1, which are used to give particular values to 

the parameters ρ and m. To write the arrows, you must type -> as a pair of characters, 

with no space in between. 

The second line of the Plot function contains the specification of the range for 

the horizontal axis, writing first the name of the corresponding variable and then the 

minimum and the maximum values for the plot. Finally, the last two lines label the 

axes and assign a label to the plot by means of the options AxesLabel and PlotLabel. 

The plot generated is shown in Figure 3.5. 
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Figure 3.5. Demand curve for x1. 

p2 

0.02 0.04 0.06 0.08 0.1 
x2 

0.5 

1 

1.5 

2 

2.5 

3 

Figure 3.6. Demand curve for x2. 

In an analogous way, we generate a plot for the demand function of good x2, 

shown in Figure 3.6: 

In[]:=	 p2 = (m - ρ m) / x2;


Plot[p2 /. {ρ → 0.7, m → 0.1},


{x1,0.01,0.1},


AxesLabel → {“x2”, “p2”},


PlotLabel → “Demand Curve for x2”]


3.3.  THE THEORY OF THE FIRM 

The standard theory of firm behavior assumes that the main goal of a firm is to 

maximize profits given technology and the prices of output and inputs. To develop 

a simple example, let us assume that the firm produces a single output x1 with price 

p1, using labor L as a single input whose price is the wage w. Let us also assume that 
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the production function is of the form TLb, where T and b are parameters and let us 

denote profits by π. 

In formal terms the problem of the firm can be stated as 

max π = p1x1 – wL 
(6)

subject to x1 = TLb 

Substituting the production function into the profit function, we obtain the 

first input for the Mathematica representation of the problem—available in the 

Firm.nb file—as 

In[]:= pi = p1 T L^b - w L;


Note that we write pi instead of π since the Greek letter π is a reserved symbol in 

Mathematica. 

Next we solve the first-order condition of the problem for L. By means of the 

D[ ] function we compute the partial derivative of the profit function w.r.t. the vari-

able labor and set the result equal to zero. Finally, we nest this operation within a 

Solve[ ] function: 

In[]:= Solve[D[pi,L]==0,L]


The resulting output is the labor demand function 

——––—
w –1+b }
Out[]= L → ——–—–——{ (b p1 T) 
1


Next we assign the expression for the labor demand function to the temporary 

variable tempL using the replacement operator /.. The % symbol in the following 

statement refers to the last result generated, and [[1]] refers to the first solution 

from the output list, which in this case contains only one solution. Thus, tempL is 

equal to L, where L is replaced by the solution generated in the previous output line. 

In[]:= tempL = L /.%[[1]]


Substituting tempL—that is, the labor demand function—into the production 

function in Eq. (6), we obtain the supply function for x1 that we assign to the tem-

porary variable tempx1: 

In[]:= tempx1 = T tempL^b


The resulting output is 

1 b
——––—
w –1+b )
Out[]= T ——–—–——
((b p1 T)


PA R T I A L  E Q U I L I B R I U M  I N  M AT H E M AT I C A  47  



p1 

0.02 0.04 0.06 0.08 0.1 
x1 

2 

4 

6 

8 

Figure 3.7. Supply curve for x1. 

Having obtained the good supply and the labor demand functions, we want to 

plot them in the standard way, that is, with price and wage on the vertical axis in the 

respective plots. We begin with the good supply function. In the next two state-

ments we (1) create an equation setting x1 equal to the expression contained in the 

temporary variable tempx1, and (2) assign the result of solving the equation for p1 to 

the variable plotx1: 

In[]:=	 eqx1 = x1 == tempx1;


plotx1 = Solve[eqx1,p1]


The result is the inverted good supply function in which p1 appears as a func-

tion of x1: 

1 1–b
—–
x1 b)
w((——–)
T

Out[]= {{pl→ ——————————————}}


bT


Finally, we assign the above result to the temporary variable tempp1, give nu-

merical values to the parameters, and generate the corresponding plot, obtaining 

the graph shown in Figure 3.7. 

In[]:= tempp1 = p1 /. plotx1[[1]]; 

Plot[tempp1 /. {b → 0.4, T → 1, w → 100} , 

{x1,0.01,0.1}, 

AxesLabel → {“x1”, “p1”}, 

PlotLabel → “Supply Curve for x1”] 
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Figure 3.8. Labor demand curve. 

In a similar way, with the following statements we generate the plot for the 

labor demand curve shown in Figure 3.8: 

In[]:=	 eqL = L == tempL;


plotL = Solve[eqL, w];


tempw = w /. plotL[[1]]


Plot[tempw /. {b → 0.4, T → 1, p1 → 1},


{L,0.01,0.1},


AxesLabel → {“L”, “w”},


PlotLabel → “Labor Demand Curve”]


Now we are in a position to turn our attention to the market equilibrium. 

3.4.  MARKET EQUILIBRIUM 

Having derived demand and supply curves, we can put them together to analyze 

the resulting market equilibrium. We do so for the case of good x1. We begin from 

the corresponding demand and supply curves obtained in the previous sections 

with a slight modification: the variable p1 from the demand curve is renamed p1d, 

while the variable p1 from the supply curve is renamed p1s. 

We begin the Mathematica representation of the model of partial market 

equilibrium—available in the MarketEquil.nb file—with the statements 

In[]:=	 p1d = ρ m / x1;


p1s = w (((x1 / T)^(1 / b))^(1-b)) / (b T);
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Then we solve for the equilibrium quantity when demand equals supply, 

In[]:=	 equilx1 = Solve[p1d == p1s,x1]


obtaining as output 

T–1/b –b
w

Out[]=	 {{x1→(———————) }}b m p 


The equilibrium price can then be obtained by substituting the solution for x1 

into p1d: 

In[]:=	 equilp1 = p1d /. equilx1[[1]]


T–1/b b
w

Out[]=	 m(———————) ρ 

b m p 


Next we assign values to the parameters and to the wage variable and compute 

the corresponding numerical values for the equilibrium quantity and the price. To 

do so, we write the variables equilx1 and equilp1 without semicolons, since Math-

ematica automatically replaces each parameter with its value, and performs the 

corresponding calculations: 

In[]:=	 ρ = 0.7;


m = 0.1;


T = 1;


b = 0.4;


w = 100;


equilx1


equilp1


Out[]= {{x1 → 0.0379196}}


Out[]= 1.84601


Finally we plot jointly the demand and supply curves, obtaining the graph shown 

in Figure 3.9: 

In[]:=	 Plot[{p1d, p1s},


{x1,0.01,0.1},


AxesLabel → {“x1”, “p1”},


PlotLabel → “Market for x1”]
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Figure 3.9. Market for x1. 

Once we obtain the graphical representation of market equilibrium, it is inter-

esting to engage in some comparative static exercises. To do so, we use a statement 

of the form 

Plot[Evaluate[Table[ ] ] ]


This statement nests three Mathematica functions. The function 

Table[expr, {i, imin, imax, di}]


makes a list of the values of an expression expr with i running from imin to imax 

in steps of di. The function 

Evaluate[expr]


causes the expression expr to be evaluated. Finally the function Plot[ ] is the one 

we have used before. Thus, the statement 

In[]:=	 Plot[Evaluate[Table[{p1d ,p1s},{T,1,1.2,0.1}]],


{x1,0.01,0.1},


AxesLabel → {“x1”, “p1”},


PlotLabel → “Market for x1”]


first generates a list of three elements, one corresponding to each value of the tech-

nology parameter T, then evaluates the expression in each element of the list, and 

finally generates the plot shown in Figure 3.10. 

Figure 3.11 shows the result of a similar experiment, but with the demand func-

tion share parameter ρ changed in the following way: 

{ρ,0.5,0.9,0.2} 
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Figure 3.10. Comparative statics changing parameter T. 
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Figure 3.11. Comparative statics changing parameter ρ. 

Finally, we perform the same comparative static exercise now with an animated 

plot using the following statement: 

In[]:=	 Table[Plot[{p1d ,p1s},


{x1,0.01,0.1},


PlotRange → {0,8},


AxesLabel → {“x1”, “p1”},


PlotLabel → “Market for x1”],{T,1,1.2,0.1}]


Note that here we have a Plot[ ] function nested within a Table[ ] function. 

Thus, the table contains a sequence of plots controlled by the evolution of the T pa-

rameter. The output of the statement is such a sequence. Double click on the first 

graph of the sequence and you see the resulting animation. You can control the 

speed of the animation with the buttons that appear at the bottom of the notebook. 
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Note that here we fixed the range for the vertical axis with the option PlotRange. 

Otherwise, each plot may generate variable values for that range, creating the false 

impression that the demand curve is also shifting (to see this, eliminate that option 

from the statement and see what happens). Also note that if you perform other com-

parative static exercises changing any of the parameters other than T, you may have 

to adjust the PlotRange option accordingly, as well as the range for x1, setting differ-

ent minimum and/or maximum values. 

3.5.  EXPERIMENTS 

A simple set of experiments would be to perform more comparative static exer-

cises changing some of the model parameters. You may also want to add parameters 

to the model (e.g., taxes) and see how this affects the outcome of the comparative 

statics. 

Another popular function used to represent preferences or technology is the con-

stant elasticity of substitution (CES) function 

—α + x2
1

f (x1, x2) = (x1 
α) α 

As we did with the Leontief and Cobb-Douglas functions, you may want to gen-

erate the contour plot of this function and see what happens as the parameter α goes 

from a value near zero to one near minus infinity. 

Finally, you may want to develop an analysis analogous to the one we did in this 

chapter substituting the CES function for the Cobb-Douglas function. 

3.6.  FURTHER READING 

For an introduction to Mathematica see Wolfram (2003). Consumer theory and 

the theory of the firm as well as competitive market equilibrium are at the core of 

most microeconomics textbooks. Later in this book we deal with duopoly models 

in Mathematica and general equilibrium models in GAMS. 
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