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Kin selection arguments, based on Hamilton’s (1964) concept of inclusive fitness, provide a powerful
heuristic and can therefore give us valuable insights into the different pathways through which natural
selection acts. But their formulation can be quite tricky, requiring as they do, a close accounting of
all the fitness effects of a particular item of behaviour. Here we propose a ‘‘direct fitness’’ formulation
of inclusive fitness which often has a more straightforward derivation. Our method finds ESS trait values
by the standard optimization techniques of simple differentiation plus two additional steps. First, slopes
of group phenotype on individual genotype arise naturally during differentiation, and these slopes are
replaced by coefficients of relatedness. Second, when behaviours influence different classes such as age,
sex of recipient, or other life history components of fitness, the fitness effects on each component are
weighted by reproductive value. We illustrate this technique first in a homogeneous population, with
examples of group competition and partial dispersal behaviour, and then in a class-structured
population, with examples of sex allocation and altruism between age classes.
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Introduction

Kin selection is widely accepted as a fundamental
process of evolution. The standard tool for modelling
kin selection is the technique of inclusive fitness
introduced by Hamilton (1964). Because kin selection
arguments focus on social behaviours and their
reproductive consequences for different individuals,
the equations that arise in this modelling approach
can give us valuable insights into the different
pathways through which natural selection acts. And
it is known that under mildly restrictive assumptions
(e.g. weak selection and additive gene action) this
approach will give us the same ESS as the more
complex and less revealing one-locus genetic model
(Hamilton, 1975; Charnov, 1977; Charlesworth, 1980;
Michod & Hamilton, 1980; Seger, 1981; Grafen, 1985,
Taylor, 1989, 1990).

With such power, both conceptual and technical, it
is not surprising that the inclusive fitness method,
requiring as it does a close accounting of all the fitness
effects of a particular item of behaviour, is often

difficult to formulate. Our purpose here is to propose
a ‘‘direct fitness’’ approach which will always produce
an expression for the inclusive fitness of an actor, but
often with a more straightforward derivation. We
illustrate this result with a number of examples, first
in a homogeneous population, and then in a
class-structured population; in the latter case it is
necessary to pay attention to reproductive value.

Homogeneous Population

A simple general example will illustrate this
method. We consider a population in which a variable
x determines individual behaviour (sex allocation,
dispersal rate, level of altruism, etc.), and we seek an
evolutionarily stable level x* of that behaviour in the
population. The standard ESS condition (Maynard
Smith & Price, 1973) is that an individual whose
behaviour deviates from x* should have reduced
fitness:

W(x)EW(x*).
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If this holds for all x near x*, then dW/dx will be
zero at x*, and this gives us an equation to solve for
x*:

dW
dx bx= x*

=0.

An important complication is that fitness W
will typically depend not only on individual
behaviour, but on the behaviour of neighbours,
and a deviant individual is apt to have deviant
neighbours. This complication is generally thought
to make the differentiation method for finding
ESSs unworkable for interactions among kin
without resort to special techniques such as the
Price (1970) equation.

We show that interactions among relatives can be
handled with the standard differentiation approach
by using the following set-up. We distinguish two
kinds of individuals: ‘‘actors,’’ whose behaviour is
correlated with their genotype, and ‘‘recipients,’’
whose fitness is affected by the behaviour of one
or more actors. An individual may play both
roles. Genes work through actors (genotype affects
phenotype) but gene frequencies change through
fitness effects on recipients. Our approach will be
to take a monomorphic population, that is, a
population with a constant genic value x* at the
focal locus. We then select a random allele at
the behavioural locus, mutate that allele and its
IBD copies to a deviant value x, and ask how
the fitness W of its bearer changes in response. The
point is that neighbouring actors who are related
may also have the allele, and will experience a change
in behaviour, and this will alter the fitness of
the recipient. The equilibrium condition for x* will
be that dW/dx=0 at x= x*.

To take a simple concrete example, suppose the
allele resides in a female whose fitness W depends on
her own phenotype y and on the average phenotype
z of a group of neighbours:

W=W(y, z).

Now we ask how W changes with x. If we calcu-
late the derivative of W, using the chain rule, we
get:

dW
dx

=
1W
1y

dy
dx

+
1W
dz

dz
dx

. (1)

It is not clear what sense to make of the phenotypic
derivatives as y and z are not strictly functions of x.
However, dy/dx and dz/dx are slopes of actor
phenotype on genic value, and if we replace them by

the corresponding statistical regression coefficients,
we get

dW
dx

=
1W
1y

byx +
1W
1z

bzx . (2)

If we divide (2) by byx , we get a formulation using
coefficients of relatedness which turns out (Table 1) to
be exactly the inclusive fitness effect DWIF of a random
actor—more precisely, the rate of change of the
inclusive fitness with x:

DWIF =
1W
1y

+
1W
1z

R (3)

where

R=
cov(z x)
cov(y, x)

(4)

is the relatedness of a female y to a random neighbour
z. This is the personal fitness formulation of
relatedness proposed by Orlove & Wood (1978), but
it is equivalent to the inclusive fitness form of Michod
& Hamilton (1980), as pointed out by Queller (1985).
The replacement of the phenotypic derivatives (which
are evaluated at the equilibrium x*) with the
regression coefficients is reasonable if the population
variance is small, that is, if the mutation has small
effect. If the variance of x is appreciable, eqn (2) still
bears a close relationship to Queller’s (1992)
formulation of Price’s (1970) equation; this corre-
spondence is explored in Appendix B.

This result shows that the standard maximization
method for solving ESS problems can be adapted to
analyse models with interactions among relatives—if
we simply replace phenotypic derivatives by the
corresponding relatedness coefficients, dW/dx will
turn into the inclusive fitness of a random actor. The
method is illustrated with two examples.

T 1
The inclusive fitness calculation

Recipient Number Relatedness Fitness change

Self 1 1 1W
1y

d

Neighbour n R
1W
1z

d
n

DWIF =SUM= d$1 1W
1y

+ nR
1W
1z

1
n%= d$1W

1y
+R

1W
1z %.

Consider a female (the actor) who increases her phenotypic value
y by d. The inclusive fitness method requires us to add up the fitness
effects of this deviation on all neighbouring individuals (including
herself ), each effect weighted by the relatedness of the affected
individual to the actor. In this case, there is her direct effect on her
own fitness, and her effect on the fitness of each of the n neighbours
in the group, which acts through the change in y of d/n. The
expression in the square brackets is exactly formula (3).
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 1

Protocells and virulence—competitiveness in a group

A common fitness trade-off concerns the tension
between competition among neighbours for limited
resources and the success of the neighbourhood
against other groups. One example of this is the
competition among related copies of a replicator
molecule within primitive cells (protocells). A
replicator gains by outcompeting its neighbours
within the cell, but overuse of local resources may
slow cell division and reduce overall genetic
contribution to the population. Several authors have
noted that this is a kin selection problem (Maynard
Smith, 1979; Bresch et al., 1980; Szathmary &
Demeter, 1987). The more closely related the
replicators within a cell, the less they will compete and
the more they will promote the overall success of the
entire cell.

The protocell problem is analogous to certain
aspects of parasite evolution. When there are different
parasite genotypes within the host, there is compe-
tition for host resources. That may lead to higher
rates of replication within the host, causing increased
damage to the host (virulence). However, reducing
host vigor may reduce the resources available to the
parasites, thus reducing the overall genetic contri-
bution of the parasites to the population (Hamilton,
1972; Bremermann & Pickering, 1983).

The simplest example capturing this tension
between within-group competition and prudent use of
local resources is

W=W(y, z)=
y
z
·G(z)

where y sets the competitiveness of an individual with
the x-gene, and z is the average value of y within the
individual’s group. Here, G(z) measures the resources
available to the group, and is supposed to be a
decreasing function of average group character z.
Observe that G(z) is the average fitness in a z-group.

The derivative of W is

dW
dx

=
1
z
·G(z)

dy
dx

+$−
y
z2·G(z)+

y
z
·G '(z)% dz

dx
.

If we evaluate this at y= z= y* and replace the
phenotypic derivatives by the corresponding related-
ness coefficients we get

DWIF =
1
y*

·G+R$−
1
y*

·G+G '% (5)

where R is the relatedness of an actor to a random

member of its group (including itself), G and G ' are
evaluated at y*. Referring to (3), the first term of (5)
is 1W/1y, and measures the gain to the actor of its
increased competitiveness. The term in the square
brackets of (5) is 1W/1z, and it displays the two ways
in which increased individual competitiveness reduces
the resources available to the group—first, the effect
of the increased share of the actor of a fixed total, and
second, the effect of the increase in competitiveness
which reduces the total resources available (note that
G ' is negative).

The simplest model for G is G(z)=1− cz, where
c is the rate at which average group competitiveness
reduces available resources. If we put this into (5), and
set the expression to zero, we get the equilibrium to
be (Frank 1994)

cy*=1−R.

 2

Partial dispersal of offspring

Consider a haploid asexual population with N
females breeding on a patch, each of whom has a
large number n of offspring. Suppose a fraction y of
the offspring disperse and that a proportion 1− c of
these find their way to a random patch in the
population, so that c is the cost of dispersal. We
assume the dispersal rate y is under maternal control.
This is a generalization of Hamilton & May’s 1977
dispersal model.

The fitness of a mother who disperses offspring at
rate y on a patch with average rate z in a population
with normal rate y* is:

W(y, z)= n(1− y)p(z)+ ny(1− c)p(y*) (6)

where

p(z)=
1

n(1− z+ y*(1− c))
. (7)

is the probability an offspring competing on a z-patch
will win a breeding spot.

The derivative of W evaluated at y* is

dW
dx

=
1W
1y

dy
dx

+
1W
1z

dz
dx

=−np+ n(1− c)p+ n(1− y*)p'
dz
dx

.

If we simplify and replace the derivative by the
relatedness R of a female to her patchmates, we get

DWIF =
1

1− y*c
[− c+Rk]. (8)
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where

k=
1− y*
1− y*c

(9)

is the probability a random breeding female is native
to her patch.

Note that the expression in the square brackets of
(8) gives the inclusive fitness gain of a female who
disperses an extra offspring and retains one less at
home. If our units of fitness are offspring ready to
compete for a breeding spot, then the return through
a disperser is 1− c, and the return from a domestic
is 1−Rk, where Rk is her expected relatedness to a
random offspring competing on her home patch. This
is an example of the accounting of competitive effects
that is an essential and tricky aspect inclusive fitness
arguments [Taylor 1992; see also eqns (22–24) below].

We calculate the ESS value of y* by setting (8)
equal to zero, yielding

y*=
R− c
R− c2 (10)

but we still have work to do as R depends on y* and
its value is calculated with a recursion equation
(Frank, 1986a; Taylor, 1988a). When the resulting
expression is put into (10), and the equation is solved
for y*, we get the equilibrium dispersal rate to be

y*=
H+1−2Nc
H+1−2Nc2 (11)

where

H=z1+4N(N−1)c2.

Class-structured Population

We now turn to more complex problems to illustrate
the full power of the method. These ‘‘class-based’’
models extend the notion of relatedness as a derivative
and address the complications that arise when different
kinds of individuals interact. Suppose there are
different classes of individuals (e.g. by sex, by age, by
size, by habitat, or some combination). If the
behaviour of an actor affects the fitness of individuals
in more than one class, we have the problem of
comparing reproductive contributions between
classes. The key concept here is that of reproductive
value (RV) (Fisher, 1958; Taylor, 1990). We define: cj :
the class RV, defined as the probability that the
ancestor of a random gene in the distant future resides
in a class j individual today; uj : the frequency of class
j in the population; vj : the RV of an individual in class
j. There are different ways of normalizing the vj , but a
convenient general formula is:

vj = cj /uj . (12)

Another normalization, commonly used in age-
structured populations, sets the reproductive value v0

of a zygote to be unity. These definitions are meant to
apply to a monomorphic population (uniform x*) at
class-frequency equilibrium (constant uj ).

It is important to distinguish the cj from the vj . For
example, if the classes are the two sexes, male m and
female f, then in a haplodiploid population, a gene in
the distant future has twice the probability of being
in a female today as in a male today (Price, 1970) so
that cf =2/3 and cm =1/3. On the other hand, when
we are working with age classes, we typically use the
vj defined in 1930 by Fisher (1958, p. 27). In inclusive
fitness arguments, the vj are used as relative weights
to compare additive fitness benefits to individuals of
different classes.

How do we choose a random allele in a
class-structured population? It turns out that the
correct way to do this is to take it to be in a class-j
individual with probability cj so that its average fitness
is

W= scjWj (13)

where Wj is the fitness of a random class-j individual.
(The cj arise here because what we actually want to
maximize is the asymptotic growth rate of the
population of descendants of the allele. This
formulation is justified in Appendix A.) Equation (13)
assumes that the different Wj are identically
normalized—that is, they have the same value in the
monomorphic x* population. In practice, the sum in
(13) need only be over the recipient classes. We then
calculate the derivative of W with respect to the genic
value x of the gene, and the analysis proceeds as in
the homogeneous case.

We will analyse the simplest case, in which the
actors all belong to a single class but there may be
recipients in a number of classes, including the actor
class. Put another way, all phenotypic effects of
varying x occur to members of one class, the actor
class. In case a gene affects behaviour of more than
one class of actor, we suppose there are modifiers
present which allow different responses in different
classes, and we can do the analysis as a sequence of
one-class problems. An important special case of this
occurs when an actor’s behaviour may depend
conditionally on its state (size, stage of development,
habitat etc.) and this can be handled by treating
actors in different states as belonging to different
classes.

We illustrate the calculations with a general
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example—one that is rich enough to completely
describe the method and to demonstrate the
equivalence of this approach with the standard
inclusive fitness method. Suppose there are three
classes: (1) juvenile males, (2) juvenile females, and (3)
adult females. Suppose the actors are the adult
females, and all three classes are recipients. Specifi-
cally, an actor can affect the fitness of (1) sons and
nephews, (2) daughters and nieces, and (3) herself,
and her sisters. (We use pedigree relationships here
because it gives us convenient names, but the method
applies to any pattern of relationships, for example,
those determined by spatial proximity.) Thus, the
class fitnesses have the functional form:

class 1: W1 =W1(y1, z1)
class 2: W2 =W2(y2, z2)
class 3: W3 =W3(y3, z3)

where each of the variables is the average phenotype
of an actor or group of actors:

y1 = the mother of the juvenile male
z1 = the aunts of the juvenile male
y2 = the mother of the juvenile female
z2 = the aunts of the juvenile female
y3 = the adult female herself
z3 = the sisters of the adult female.

We have subscripted the variables because of the
possibility of asymmetric relatedness coefficients
between the sexes. For example, one might suppose
that the common variable y could be used for both y1

and y2, but we will want to replace dy1/dx and dy2/dx
by the relatednesses of a female actor to a son and
daughter respectively, and under an asymmetric
genetic system such as haplodiploidy, these might be
different. Thus the subscripts can serve as a guide to
the correct relatedness coefficient.

According to (13) the average recipient fitness is

W= c1W(y1, z1)+ c2W2(y2, z2)+ c3W3(y3, z3) (14)

The derivative of W is:

dW
dx

= c1
dW1

dx
+ c2

dW2

dx
+ c3

dW3

dx
. (15)

Note that in the differentiation, we can treat the cj as
constants (calculated in the monomorphic x*-popu-
lation). This matter is discussed further in Appendix
A.

We now show that, with the appropriate related-
ness coefficients, eqn (15) gives us the inclusive fitness
effect DWIF of an adult female (Table 2). For example,
the first term is

T 2
The inclusive fitness effect of an adult female actor

Recipients Number Effect Relatedness RV

Class 1
sons n1 a1 r1 v1

nephews m1 b1 R1 v1

Class 2
daughters n2 a2 r2 v2

nieces m2 b2 R2 v2

Class 3
self 1 a3 1 v3

sisters m3 b3 R3 v3

The second column lists the numbers of recipients of each type
of a single actor. The effects in the third column are the rates at
which recipient fitness increases with changes in the actor
phenotype where we normalize fitness to unity. Thus, a1 is the rate
at which a male’s fitness changes with respect to his mother’s
phenotype. The inclusive fitness effect is the sum of the effects on
different recipients:

DWIF = v1[n1r1a1 +m1R1b1]+ v2[n2r2a2 +m2R2b2]

+ v3[a3 +m3R3b3].

pc1
dW1

dx
= c1$1W1

1y1

dy1

dx
+

1W1

1z1

dz1

dx%
= v1u1$k(y1)a1

dy1

dx
+K(z1)b1

dz1

dx%. (16)

where K(y1) and K(y2) are the average number of
mothers and aunts, respectively, of a juvenile male
(e.g. K(y1) is the probability the mother of a juvenile
male will be alive), and a1 and b1 are the rates at which
a phenotypic change in a mother or an aunt affects
juvenile male fitness. As in the transition from (2) to
(3), to convert the phenotypic derivatives into
relatedness coefficients, we divide by dy3/dx. If, in
addition, we divide by u3, we get the first component
of the inclusive fitness effect DWIF in Table 2. Indeed,
this follows from the observation that (u1/
u3)K(y1)=m1, the average number of sons per
mother, and (u1/u3)K(z1)= n1, the average number of
nephews per aunt. To illustrate these last equations,
if there were four juvenile males per adult female
(u1/u3 =4) and a male had on average three aunts
(K(z1)=3), then an adult female would have on
average 4×3=12 nephews.

 3

Sex allocation

Consider a sexual population in which N mated
females breed on a patch, with mating at random
among the patch offspring, followed by partial
dispersal of mated females at rate m, with cost c, and
then competition for the N breeding sites among those
mated females on each patch. This is the same patch
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structure as example 2 in which we found the ESS
dispersal rate; here we want to calculate the ESS sex
ratio of a mated female. For the special case of
complete dispersal (m=1), this problem was first
studied by Hamilton (1967) in a classic paper on
biased sex-ratios, and was then extended to
haplodiploidy (Hamilton, 1979; Taylor & Bulmer,
1980). For the case of partial dispersal, a one-locus
genetic model was constructed by Bulmer (1986) and
an inclusive fitness approach was presented by Frank
(1986c) and Taylor (1988b).

In order to have a fixed population of offspring to
deal with, it is technically convenient to model sex
allocation in the following way: suppose each mother
has exactly n sons and daughters, but she gives each
of her sons a survival probability y and each of her
daughters a survival probability 1− y. Then y
functions as a sex ratio, measuring her investment in
males.

The actor is the mother, and the two recipient
classes are the male and female offspring, so what we
need are expressions for the fitness of random female
and male offspring in terms of the behaviour of the
mother and her fellow breeders. The fitness of a
random female offspring is

Wf (yf , zf )= (1− yf )[(1− m)p(zf )

+ m(1− c)p(y*)] (17)

where yf is her mother’s sex ratio, zf is the average sex
ratio on her native patch, and y* is the average
population-wide sex ratio. Here,

p(z)=
1
n $ 1

(1− z)(1− m)+ (1− y*)m(1− c)% (18)

is the breeding probability of a female who competes
on a z-patch. Note that the normalized value of p is

p(y*)=
1
n $ 1

(1− y*)(1− cm)% (19)

and it follows that the normal value of Wf is 1/n.
Similarly, the fitness of a random male offspring is

Wm (ym , zm )= ym
1− zm

zm

×$(1− m)p(zm )+ m(1− c)p(y*)% (20)

where ym is his mother’s sex ratio, zm is the average sex
ratio on his native patch, and the female:male mating
ratio on his native patch is (1− zm )/zm . The
normalized value of Wm is 1/n, the same as Wf .

The average recipient fitness is

W= cmWm + cfWf (21)

and the equilibrium equation dW/dx=0 evaluated at
y= x= y* can be written

F=M
1− x*

x*
(22)

with

M=[cmrm − cmRm ] (23)

and

F=[cfrf + cmRm ]− k2[cfRf + cmRm ]. (24)

where k=(1− m)/(1− cm) is the probability that a
mated female is native to her breeding patch (example
2), and the phenotypic derivatives dyj /dx and dzj /dx
have been replaced by the relatedness coefficients rj

and Rj , the relatedness of the mother to her own sex-j
offspring and to a patch offspring of sex j (including
her own), respectively. This is the result that would be
obtained with an inclusive fitness argument. Indeed,
F represents the valuation a mother puts on an extra
daughter who breeds, and M represents the valuation
she puts on an extra son per successful mating with a
breeding female; thus, the factor (1− x*)/x* is the
correction on male valuation for the number of mates
per male. The first term in the expression for F counts
the daughter plus her mate—an extra female provides
an extra mating for a male who might be related to
the mother. The second term in F accounts for the
competitive effect of this extra daughter by subtract-
ing the value of the displaced female, plus mate,
weighted by the probability k2 that two females are
both native to their breeding patch. The first term in
M counts the extra son, and the second term accounts
for the competitive effect of this extra son by
subtracting the value of the displaced male. The
reproductive values ci are obtained from the genetic
system (diploid: cf = cm ; haplodiploid: cf =2cm ; Price
1970), and the values of r1 and R1 are obtained from
standard population genetic recursions, and depend
on N and k. Details for sex ratio models can be found
in Frank (1986c) and Taylor (1988b).

Variations on this sex ratio model have been
discussed by Frank (1986b,c, 1987) and Taylor
(1988b). The advantage here is that the solutions for
complex interactions among relatives follow directly
and automatically from the fitness expression, W, and
the algorithm of differentiation and replacement of
derivatives by appropriate relatedness terms. Because
these derivatives are the slopes of actor phenotype on
recipient genotype, they are natural measures for the
degree of shared reproductive interest measured by
the kin selection coefficients.
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     



Here we discuss how to handle a complication
which often arises in age-structured models. Suppose
the effect of an actor on a class-j recipient is not to
alter her overall fitness, but to modify different
components of her fitness in different ways. For
example, if the recipient is a mother, her production
of daughters may be affected differently from her
production of sons, or perhaps her fecundity is
affected but not her survival. In this case, we treat
these components as different classes of offspring, and
modify the above class-structured analysis by writing
her fitness Wj in terms of these components, and
looking at the effect of the action on each one. For
example, an age-2 female who has five offspring
surviving to next year and survives herself with
probability s to age 3, would be regarded as dying and
having five class-1 offspring and s class-3 offspring.

We start by summarizing a few basic life history
results (Charlesworth 1994) using the notation of
Taylor (1990). Let wij be the number of class-i
offspring of a class-j individual. The count here is to
be made according to genetic representation, that is
if an individual furnishes only half the genes of an
offspring, that offspring counts as a half. The
offspring matrix

A=[wij ]

records in the jth column the fitness components of
a class j individual. In an age-structured population,
A is simply the Leslie matrix (Leslie, 1948). In a
monomorphic population (uniform genic value x*),
the dominant eigenvalue l of A is the factor by which
the population size is multiplied each generation. The
vector v=(vi ) of individual reproductive values is in
fact the dominant left eigenvector of A:

lv= vA

lvj = s
i

viwij (25)

and the vector [ui ] of equilibrium class frequencies is
the dominant right eigenvector of A (Taylor, 1990):

lu=Au

lui = s
j

wijuj . (26)

The fitness of a class-j individual is defined as the
weighted sum:

Wj = s
i

vi

vj
wij . (27)

where the weight vi /vj is the relative reproductive
value of a class-i offspring. Essentially the weights can
be thought of as factors converting the fitness
components into common units which can then be
added. A comparison of (27) and (25) shows that, in
a monomorphic population, the Wj are all normalized
to l (which is for most purposes the natural
normalization), so that the conditions for (13) hold
and the average fitness can be written [using (27)]:

W= s
j

cjWj = s
ij

viwijuj = vAu (28)

where the last expression uses vector notation. If we
allow mutant behaviour, the fitness components wij

become functions of x. We then proceed as in (14) and
form the derivative

dW
dx

= s
ij

vi
dwij

dx
uj = v

dA

dx
u. (29)

As in (15), the differentiation treats the vi and the uj

as constants (calculated in the monomorphic x*-
population). This is discussed further in Appendix A.
As in example 3, the relatednesses used in the
derivative of wij are those of the actor to the
appropriate class-j recipient.

 4

Offspring-parent altruism

We consider a sexual population of hermaphrodites
consisting of juveniles (class 1) and adults (class 2).
Suppose mating is at random among the adults and
the resulting offspring become juveniles the following
year—each adult expecting 2n offspring to survive to
the juvenile stage, n of its own (it is the ‘‘mother’’ of
these) and n through mating with other adults.
Suppose that juveniles do not reproduce and they
survive to become adults next year with probability s.
In addition, adults of any age survive to the following
year with probability t.

We have two classes with normal offspring matrix:

A=$0 n
s t% (30)

Here each adult (col 2) gets half the genetic share of
a total of 2n offspring and survives with probability
t. The dominant eigenvalue l of A is the solution of
the characteristic equation

l2 − tl− sn=0. (31)

It is important to note that this is equivalent to the
standard life history equation (Fisher, 1958, p. 26)
which for this example would set the present value
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(discount rate l) of all juvenile offspring of a juvenile
to unity:

1= l−2sn+ l−3stn+ l−4st2n+ · · ·=
sn

l(l− t)
. (32)

The l−2 in the first term accounts for the fact that the
first set of offspring of a juvenile will be juveniles in
2 years’ time.

It is easily checked that

u A [n, l]T (33)

and

v A [s, l] (34)

are the corresponding right and left eigenvectors for
A, where ‘‘ A ’’ indicates equality up to a multiplica-
tive constant. Hence (n, l) and (s, l) are proportional
to the vectors of class frequencies and individual
reproductive values respectively. Note that v agrees
with Fisher’s (1958) definition of reproductive value
as the total number of expected offspring discounted
to present value, which for this example would give
juvenile RV as v1 =1 [that’s the sum in the middle of
eqn (32)] and adult RV as v2 = l/s. We look at
altruistic behaviour of a juvenile towards its mother
in case the mother has survived. Thus, the actor class
is 1 and the recipient classes are 1 and 2. The average
fitness (13) is

W= s cjWj = u1v1W1 + u2v2W2 A nsW1 + l2W2 (35)

using (12).
In order to highlight the role played by the fitness

components, we present two similar examples here; in
example 4a the interaction affects all components of
individual fitness in the same way and the analysis can
be done along the lines of example 3, and in 4b,
different components of fitness are affected differ-
ently, and we need the equations developed above.

 4

All fitness components affected the same way

We suppose that a single altruistic interaction
increases the mother’s entire fitness by a factor of b
but decreases the juvenile’s fitness by a factor c. Let
y be the phenotype of a juvenile and let z be the
average phenotype of a mother’s juvenile offspring.
The fitnesses of the two different recipient classes
(normalized to unity) are:

W1 =1− tcy (36)

W2 =1+(t/l)nbz (37)

where in (36) t is the probability that the mother of
the juvenile is alive, and in (37) t/l is the probability
a random adult was an adult of the previous year (and
in that case it can expect nz altruistic interactions). If
we form the average fitness (35), and take the
derivative, we get

dW
dx

A nt$− sc
dy
dx

+ lb
dz
dx%. (38)

We replace dy/dx by 1 and dz/dx by the relatedness
R of the actor to its mother, and then the condition
for the behaviour to be selected is that (38) be
positive, which gives

scQ lbR. (39)

 4

Different fitness components affected differently

Now we suppose an altruistic interaction increases
the mother’s current fecundity by a factor of b but
does not affect her survival. In this case, we do the
analysis with the matrix A which is now a function of
x:

A=$ 0
s(1− tcy)

n(1+ tnbz/l)
t % (40)

From (29), we form

dW
dx

= v
dA

dx
u A[sl]$ 0

− stc
n2tbR/l

0 %$nl%
= nst[− lc+ bnR] (41)

where we have again set dy/dx=1, and dz/dx=R.
The condition for the behaviour to be selected is that
(41) be positive, which gives

cQ bnR
l

(42)

The critical cost-benefit ratio is proportional to the
number of female offspring.

How is our intuition to compare the conditions (39)
and (42) of examples 4a and 4b for the spread of
altruism? In (39) we are comparing fitness changes of
two whole individuals, a juvenile with relative
decrease c (only survival) and an adult with relative
increase b (survival and fecundity), where we must use
the weightings given by individual reproductive value,
s :l, and by relatedness to the juvenile actor, 1:R.
Condition (42) can be analysed in two different ways
as presented in Table 3. Note that since the benefit is
greater when the mother’s whole fitness is increased,
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we expect (42) to imply (39). That will be the case if
n/lQ l/s and this follows from the eigenvalue
equation (31).

Discussion

Many inclusive fitness problems are of the simple,
homogeneous kind of the first two examples. These
models can be solved easily with our extension of the
standard ESS technique: write a fitness function,
maximize by differentiation, and solve for the
optimum, using coefficients of relatedness in place of
the phenotypic derivative.

Examples 3 and 4 are more challenging, and serve
to demonstrate how the method incorporates
reproductive values when individuals belong to
different classes. In the sex allocation, example 3, it is
not at all easy to come up with the expression (24)
with a purely inclusive fitness analysis, so that the
‘‘automatic’’ construction of the derivative method is
of considerable interest.

Example 4 is interesting in its own right, as there
has been considerable discussion in the literature over
whether inclusive fitness arguments can work in
age-structured populations. For example, the contro-
versy over parent–offspring conflict has been dis-
cussed by Alexander (1974), Parker (1985) and
Clutton-Brock (1991). Charlesworth & Charnov
(1981) were perhaps the first to explain how inclusive
fitness arguments should be constructed in this
context; in particular they emphasized the role of

reproductive value. One point of possible confusion in
their treatment is the assertion (for example, in their
abstract) that RV is relevant to effects on survival but
not to effects on fecundity. They illustrate this with an
example similar to our Example 4b in which an actor
suffers a loss of survival to increase the fecundity of
a recipient, and the survival loss is weighted by RV
but not the fecundity gain [Charlesworth & Charnov,
1981, eqn (5a)]. In fact, what they are pointing out in
their example is that the fecundity gain is not
weighted by the RV of the recipient but it is weighted
by the RV of the extra offspring that the fecundity
gain represents. (Table 3, method 1). In the
normalization of Charlesworth & Charnov [1981,
eqns (2) and (3)] the RV of a zygote is set equal to 1,
and so it is a hidden weighting in the fecundity term.
In this context, our example 4a is revealing, in that it
shows that when the recipient has both components
of fitness increased in the same way, then the
appropriate weighting is indeed the recipient’s RV.
However, when different components of fitness are
affected differently, as in example 4b, we measure the
recipient’s fitness through his components, regarded
as different classes of ‘‘offspring,’’ and the appropriate
weighting is the RV of these classes [see the paragraph
following eqn (42)]. Roger’s (1993, Table 1)
discussion of the evolution of menopause also makes
this weighting explicit.

A typical objection to the inclusive fitness analysis
of example 4 might claim that it underestimates the
selective advantage of the altruistic behaviour in a
juvenile because it does not not account for the
advantage that it will accrue from its future altruistic
offspring. We could go on like this—it also does not
account for the disadvantage to future offspring, etc.
Indeed, where is this argument to stop? As we have
mentioned above, a valuable way to think about these
models is to regard them as non-overlapping
generation models, with all individuals alive in one
year being ‘‘offspring’’ of those of the previous year.
The question can now be asked in the general context
of such models: when we are assessing the inclusive
fitness effects of an action, do we take account of the
possibility of altered behaviour in the next gener-
ation? For example, in sex allocation models, do we
allow for the effects of the altered sex ratio in the
female offspring when they become mothers? The
answer is that we do not have to do that when
selection is weak (ie. small selection differential), and
this is supported by a number of analyses which
demonstrate an equivalence between inclusive fitness
and one-locus genetic models (Charlesworth, 1980;
Michod & Hamilton, 1980; Seger, 1981; Grafen, 1985;
Taylor, 1989, 1996a).

T 3
The inclusive fitness calculation for example 4b

Method 1. Count ‘‘offspring’’ of recipients next year
Recipient Offspring Class RV Relatedness

mother 2nb 1 s R/2
juvenile −sc 2 l 1
DWIF =2nbsR/2− scl= s(nbR− cl)

Method 2. Measure fitness effects in terms of juveniles
Juvenile

Recipient offspring Time discount Relatedness

mother 2nb l R/2
juvenile −c 1 1
DWIF =2nbR/2l− c=(nbR− cl)/l

There are two different ways one might construct the inclusive
fitness argument for example 4b. Method 1 follows the matrix
approach of the text. The two components of fitness are treated as
next year’s ‘‘offspring,’’ and the class of the offspring must be noted
and weighted by the class RV. However, all these ‘‘offspring’’
belong to next year so that no weighting by time is required.
Method 2 measures all fitness effects as ‘‘juvenile’’ (class 1) units,
either this year or next year. Then RV weights are not required, but
next year juveniles must be discounted by the population growth
factor l. Note that in each case the mother’s juvenile offspring have
relatedness to the actor of R/2, assuming the mother’s current mate
is unrelated to the actor.
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The theories of life history and kin selection have
been developed to a high degree of sophistication.
However, when faced with a particular biological
problem, it is often difficult to put together the many
demographic and social factors into a coherent
analysis. Our method provides an orderly set of tools
for studying the multiple pathways by which social
interactions influence fitness. More importantly, the
evolutionary processes stand out clearly during the
analysis, so that the analysis itself enhances our
understanding of the problem.

We are grateful to David Queller for a number of
important comments which greatly clarified our logic and
our exposition. P.D.T. is supported by the Natural Sciences
and Engineering Research Council of Canada. S.A.F. is
supported by NSF grant DEB-9057331 and NIH grant
GM42403.
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APPENDIX A

When we differentiate eqns (14) and (28) with
respect to x, an important simplification is our
assumption that we can treat the cj , uj and vj as
independent of x, even though the deviant behaviour
of a mutant allele will affect both its equilibrium
distribution and its RV. In terms of eqn (28), when
the entries of the matrix A become functions of x, so
do its eigenvectors v and u. In this case, the correct
measure of fitness of the mutant gene, when rare, is
not W but is the dominant eigenvalue l= l(x) of the
matrix A=A(x), as this is the rate of growth of the
set of IBD copies of the allele when it is in equilibrium
proportions among the classes. Now if we write
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v= v(x) and u= u(x) to display their dependence on
x, then

v(x)[A(x)− l(x)I]u(x)=0 (A.1)

where I denotes the identity matrix. Differentiate:

v'[A− lI]u+ v[A'− l'I]u+ v[A− lI]u'=0.

Since u and v are eigenvectors, the first and last terms,
respectively, vanish giving:

(v·u)l '= vA'u=
dW
dx

(A.2)

as in eqn (29), where everything is evaluated at
x= x*. Since v and u are positive, this shows that
dl/dx and dW/dx have the same sign. Thus, the
equation dW/dx=0 gives the correct equilibrium
condition.

APPENDIX B

A statistical analogue of eqn (1) is obtained by first
regressing W on the phenotypic values y and z:

W= bWy.zy+ bWz.yz+ d (B.1)

where the b are the partial regression coefficients, and
d is uncorrelated with y and z. In our treatment, W
is a function of y and z (and this a common
assumption of ESS models), but (B.1) is valid when

W is only correlated with these variables. Then take
the covariance with genic value x:

cov(W, x)= bWy.z cov(y, x)+ bWz.y cov(z, x) (B.2)

under the assumption that cov(d, x)=0, which is to
say that the only effect of the x-genotype on fitness
is through the phenotypic values y and z. This
formulation is Queller’s (1992) eqn (6). If we divide
(B.2) by mean fitness, we get Dx̄, the change in the
mean of x over one generation (Price, 1970).

If we divide eqn (B.2) by the variance of x, we get:

bWx = bWy.zbyx + bWz.ybzx (B.3)

and this is analogous to eqn (2).
The connection to eqn (2) is more striking if we

assume that y and z are jointly normally distributed.
In this case, a standard calculation (Lande & Arnold,
1983; Taylor, 1996b) shows that the partial regression
coefficients are equal to the expected value of the
corresponding partial derivatives, and (B.3) becomes:

bWx =E01W
1y 1byx +E01W

1z 1bzx. (B.4)

This suggests that the inclusive fitness formulation,
eqn (3), should predict the change in Dx̄ in a normally
distributed population, if the derivatives of fitness
with phenotype are replaced by their average values.


