

Physics of the Blues

scales, harmony and the origin of blues piano styles

J. Murray Gibson

Dean, FAMU-FSU College of Engineering

February 19th 2019, Challenger Center Razor Lecture

Symbiosis of art and science

Science and technology drives art

Art drives science and technology

$$\nabla^2 \phi = 0$$

Key physical aspects of sound

Sound is a pressure wave (red is high)

"Pitch" is frequency Concert A = 440Hz

Vibrating objects produce "harmonics" which are often integer multiples of the basic frequency

Musical timbre is determined by the harmonic content (Fourier analysis)

Two notes with overlapping harmonics sound "consonant"

This consonance is the basis of harmony and musical scales

$$f_0$$
, 2 f_0 , 3 $f_{0,...}$

$$f_0$$
, 3 f_0 , 5 f_0 ,...

Some points of reference

An interval ("second", "third"..) is two notes played close together -described by the separation (+1) e.g. a second, third, fifth...

Let's build a musical scale based on the harmonics...

Harmonic intervals have low integer frequency ratios

Unison, octave and perfect fifth

C-C Unison (1:1)

C-C' Octave (2:1)

C-G Perfect fifth (3:2) <- key interval for making scales

A simple scale - the pentatonic obtained using fifths Common to many civilizations and used in jazz

Diatonic scale

"Tonic" is C here

Doh, Re, Mi, Fa, So, La, Ti, Doh....

notes are all in low integer frequency ratios – so they sound harmonic in almost any combination

Major and minor third

The "triads" in the key of C

C Major Triad мз р5

A lot of folk music, blues etc. relies on chords C, F and G

3+3

4+3 semitones

Natural (Just) scale pitch ratios

Note	Pitch Ratio to C	Frequency of Upper Note based on C (Hz)
С	1	261.63
C#	25/24	272.54
D	9/8	294.33
D#	6/5	313.96
Е	5/4	327.04
F	4/3	348.83
F#	45/32	367.93
G	3/2	392.45
G#	8/5	418.61
Α	5/3	436.06
A#	9/5	470.93
В	15/8	490.56
C'	2.0000	523.26

looks fine and dandy – so why didn't we stick with this?

Baroque music

CANON IN D

Based only on diatonic chords in one key (D in this case)

Equal temperament scale

Note	Frequency (Hz)	Difference from Just Sc	ale (Hz)
С	261.63	0	
C#	277.18	4.64	
D	293.66	-0.67	
D#	311.13	-2.83	half-st - 2^1/1;
Е	329.63	2.59	
F	349.23	0.4	
F#	369.99	2.06	
G	392.00	-0.45	
G#	415.30	-3.31	Piano
А	440.00	3.94	multip
A#	466.16	-4.77	hide b
В	493.88	3.32	
C'	523.25	0	

half-step (semitone) = 2^1/12

Pianoforte needs multiple strings to hide beats!

"Mostly Mozart" – taking advantage of equal temperament followed pioneering "Well-tempered Clavier" by J.S. Bach

from his Sonata in A Major

The dominant seventh chord

The circle of fifths

The diminished chord

Romantic fuel – Chopin and Beethoven

The blues scale and the "blue note"

The blue note really lies between E flat and E

Equal temperament scale

Note	Frequency (Hz)	Difference from Just Sca	le (Hz)
С	261.63	0	
C#	277.18	4.64	
D	293.66	-0.67	
D#	311.13 blue	-2.83	5/4 f _c
E	329.63	2.59	5/ - 1 ₀
F	349.23	0.4	
F#	369.99	2.06	
G	392.00	-0.45	
G#	415.30	-3.31	
Α	440.00	3.94	
A#	466.16	-4.77	
В	493.88	3.32	
C'	523.25	0	ISS ISS

 $5/4 f_c$

Crushed notes and the blues

Not quite ready for the blues

Semiconductor bandgaps and nanotechnology – Electrons as waves

Nano-organ pipes

Harmonic analysis can give insights into science and technology

Musical waves and particles – quantum mechanics and the uncertainty principle

wavepackets with fwhm ~0.1s

wavepackets with fwhm ~0.03s

Summary

- Music is underpinned by physics and mathematics
- Science and art are not as different as many think
 - Creativity and constraints
- Development of musical scales was driven to expand the palette for creative composition
- The "blue note" in piano blues is a treasured artifact of the development of scales
- Music is a great tool for teaching physics and engineering by analogy with harmonic analysis

To learn more...

- Article "The birth of the blues how physics underlies music", by J.M. Gibson Reports on Progress in Physics, **72** 076001 (2009).
- "Measured Tones: The Interplay of Physics and Music", lan Johnston, Institute of Physics (Philadelphia) 1989, ISBM 0-85274-236-3
- Harmony and Theory: A Comprehensive Source for All Musicians by Keith Wyatt and Carl Schroeder
- A Student's Guide to Fourier Transforms: With Applications in Physics and Engineering by J. F. James (Author) - for math and physics students
- Many web resources, on musical acoustics, Fourier analysis, physics of musical instruments....
- This lecture will be on the web at <u>bit.ly/physicsofblues</u>
 Contact dean@eng.famu.fsu.edu with questions

