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AN1128: Bluetooth® Coexistence  
with Wi-Fi 

This application note describes the Wi-Fi impact on Bluetooth® 
and methods to improve Bluetooth coexistence with Wi-Fi. It first 
describes design considerations to improve coexistence without 
direct interaction between Bluetooth and Wi-Fi radios. These 
techniques are applicable to the EFR32MGx family and 
EFR32BGx family. Next, this application note discusses the 
Silicon Labs Packet Traffic Arbitration (PTA) support to 
coordinate 2.4GHz RF traffic for co-located Bluetooth and Wi-Fi 
radios. This PTA feature set is available for the EFR32MGx 
series and EFR32BGx series. 

This application note describes EFR32 Bluetooth coexistence support for Silicon Labs 
Bluetooth 2.13.2.0 and Bluetooth Mesh 1.6.1.0. See section 8 Revision History for a 
summary of key changes in previous revisions of this application note. 

Additional details about the implementation of managed coexistence are included in 
AN1243: Timing and Test Data for EFR32 Coexistence with Wi-Fi, available under 
non-disclosure from Silicon Labs technical support. 

 

  

KEY POINTS 

• Wi-Fi impact on Bluetooth 
• Improving unmanaged coexistence 
• Implementing managed coexistence 

The information in this document is based on the SLThread implementation of Thread. SLThread reached ‘end of 
service’ in December 2019. Silicon Labs is replacing SLThread with an implementation of the more popular Open-

Thread. We anticipate that the results from OpenThread will be very close to the SLThread results. 
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1 Introduction 

The 2.4GHz Industrial, Scientific and Medical (ISM) band supports Wi-Fi (IEEE 802.11b/g/n), Zigbee®/Thread (IEEE 802.15.4), Bluetooth, 
and Bluetooth Low Energy. The simultaneous and co-located operation of these different 2.4GHz radio standards can degrade perfor-
mance of one or more of the radios. To improve interference robustness, each of the 2.4GHz ISM radio standards support some level of 
collision avoidance and/or message retry capability. At low data throughput rates, low power levels, and/or sufficient physical separation, 
these 2.4GHz ISM standards can co-exist without significant performance impacts. However, recent customer trends are making coex-
istence more difficult:  
• Increased Wi-Fi transmit power level for “extended range” 

+30dBm Wi-Fi Access Points are now common. 
• Increased Wi-Fi throughput. 

Depending on achievable Signal-to-Noise Ratio (SNR), high throughput requirements for file transfers and/or video streaming may 
result in high Wi-Fi duty cycle within the 2.4GHz ISM band. 

• Integrating Wi-Fi, Zigbee, Thread, and Bluetooth Low Energy into the same device for gateway functionality 
This is required by Home Automation and Security applications, and provides easier end-node commissioning using Bluetooth Low 
Energy. 

This application note describes the impact of Wi-Fi on Bluetooth Low Energy and methods to improve Bluetooth Low Energy coexistence 
with Wi-Fi on two Silicon Labs integrated circuit series, the EFR32MGx family and the EFR32BGx family. 

• Section 3, Unmanaged Coexistence describes design considerations to improve coexistence without direct interaction between Blue-
tooth and Wi-Fi radios. 

• Section 4, Managed Coexistence describes the Silicon Labs Packet Traffic Arbitration (PTA) support to coordinate 2.4GHz RF traffic 
for co-located Bluetooth and Wi-Fi radios. 

Notes: 
1. Zigbee and Thread devices (802.15.4) operate at less than +20dBm transmit power level. With normal network activity, 

Zigbee/Thread solutions have a relatively low RF duty cycle and Bluetooth solutions implement Automatic Frequency Hopping (AFH). 
Silicon Labs’ testing of Bluetooth blocked by Zigbee/Thread shows low impact on Bluetooth with AFH enabled and normal 
Zigbee/Thread network activity. However, if 100% RF duty cycle, Zigbee/Thread can degrade co-located Bluetooth performance. 
The Wi-Fi coexistence discussion and solutions described in this application note can be applied equally well to Zigbee/Thread 
coexistence. As such, all the following solutions presented for “Wi-Fi Coexistence” can be applied to “Wi-Fi/Zigbee/Thread.15.4 
Coexistence”. 

2. This application note describes EFR32 Bluetooth and Bluetooth mesh coexistence support for Bluetooth 2.13.0.0 and Bluetooth 
mesh 1.6.0.0. Not all coexistence support features in Bluetooth 2.13.0.0 and Bluetooth Mesh 1.6.0.0 are present in earlier versions. 

3. Throughput this application note “Bluetooth Low Energy” is referenced as “Bluetooth”. 
4. This application note addresses Bluetooth coexistence applications using EFR32 devices as per Bluetooth Core Specification v5.0 

Vol 6 “Low Energy Controller” (point-to-point) and as per Bluetooth Specification Mesh Profile v1.0 (mesh network). These two ap-
plications have different coexistence considerations and, where necessary, this application note differentiates using the following 
terms: 
• “Bluetooth device” to reference Bluetooth Core Specification v5.0 Vol 6 “Low Energy Controller” (point-to-point) operation 
• “Bluetooth mesh device” or “Bluetooth mesh node” to reference Bluetooth Specification Mesh Profile v1.0 (mesh network) oper-

ation 
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2 Wi-Fi Impact on Bluetooth 

Worldwide, Wi-Fi (IEEE 802.11b/g/n) supports up to 14 overlapping 20/22MHz bandwidth channels across the 2.4GHz ISM band with 
transmit power levels up to +30dBm. Similarly, Bluetooth supports 40 non-overlapping channels at 2MHz spacing with transmit powers 
up to +20dBm (Bluetooth Core Specification v5.0). For reference, 2.4GHz Zigbee and Thread (based on IEEE 802.15.4) support 16 non-
overlapping 2MHz bandwidth channels at 5MHz spacing with transmit powers up to +20dBm. These Wi-Fi, Bluetooth, and Zigbee/Thread 
channel mappings are shown in the following figure, where yellow highlighted channels are the three Bluetooth advertising (ADV) chan-
nels. 

 
Figure 1. Bluetooth, 802.15.4, and 802.11b/g/n Channel Mapping (World-Wide) 

Bluetooth channels 0 through 39 are available worldwide, but actual Wi-Fi channels available vary by country. For example, in the USA, 
only Wi-Fi channels 1 through 11 are available. 

To better understand the effects of Wi-Fi on Bluetooth, Silicon Labs measured the impact of a 100% duty-cycled 802.11n (MCS3, 20MHz 
bandwidth) blocker transmitting at various power levels while receiving a Bluetooth 1Mbps 37-byte payload message transmitted at power 
level sufficient to achieve 0.1% BER (receive sensitivity). The results for co-channel, adjacent channel, and “far-away” channel are shown 
in the following figure. All 802.11n and Bluetooth power levels are referenced to the Silicon Labs EFR32MG13P732F512GM48 RF input. 
The test application was developed using the Silicon Labs Bluetooth 2.11.0 stack with the soc-dtm sample application running on the 
EFR32 DUT (Device Under Test) and a test script to control the DUT and RF test equipment. 
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Figure 2. Bluetooth Low Energy Receive Sensitivity with 100% Duty-Cycled 802.11n (MCS3/20MHz) Wi-Fi Blocker 

From the figure above, the key observations about the impact of Wi-Fi (channel 1, MCS3/20MHz) on Bluetooth are: 

Co-Channel (Bluetooth overlapping Wi-Fi): 
• For Bluetooth RF channels 0 through 10, EFR32MG13P732F512GM48 can receive a Bluetooth 1Mbps signal at 2dB weaker than 

aggregate Wi-Fi transmit power (100% duty cycle). 
• This receive sensitivity limitation impacts both co-located and remote, not co-located, Bluetooth radios. 

Adjacent Channel (Bluetooth within one Wi-Fi bandwidth): 
• At Bluetooth RF channel 11, EFR32MG13P732F512GM48 can receive a -91.8dBm Bluetooth 1Mbps signal (RX sensitivity + 3dB) 

with -50dBm or weaker Wi-Fi transmit power (100% duty cycle). 
• At Bluetooth RF channel 20, EFR32MG13P732F512GM48 can receive a -91.8dBm Bluetooth 1Mbps signal (RX sensitivity + 3dB) 

with -30dBm or weaker Wi-Fi transmit power (100% duty cycle). 

“Far-Away” Channel (Bluetooth beyond one Wi-Fi bandwidth): 
• At Bluetooth RF channels 21 through 39, EFR32MG13P732F512GM48 can receive a -91.8dBm Bluetooth 1Mbps signal (RX sensi-

tivity + 3dB) with -30dBm or weaker Wi-Fi transmit power (100% duty cycle). 

In a real-world environment, Wi-Fi is typically not 100% duty cycle and only approaches 100% duty cycle during file transfers or video 
stream in low Wi-Fi SNR conditions. As seen in the following figure, the EFR32 receive sensitivity varies as the Wi-Fi blocker turns 
ON/OFF. The net result is the ability to see weaker signals when Wi-Fi is OFF, but not when strong Wi-Fi is ON (actively transmitting). 
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The following figure illustrates the receive range of a node (blue node) near a strong Wi-Fi transmitter. Relative to the blue Bluetooth 
node, the area inside the green circle represents the receive range when Wi-Fi is ON. The area between the green and yellow circles 
represents the receive range when Wi-Fi is OFF. From this figure: 
• The green node is always receivable by the blue node. 
• The yellow node is only receivable by the blue node when Wi-Fi is OFF. 
• The red node is never receivable by the blue node. 
• The yellow and red nodes are always receivable by the green node. 

 
Figure 3. EFR32 Receiver Desensitized when Wi-Fi Transmitting 

Depending on each Bluetooth device’s TX level, RX sensitivity vs. blocker, channel, and relative attenuation and Wi-Fi TX level and duty 
cycle, the impact of strong Wi-Fi turning ON/OFF will vary. Based on the figure above, the following example assumes: 
• Wi-Fi co-located with Blue device 
• Bluetooth channel is “far-away” (RF channel 39) from Wi-Fi channel (channel 1), indicating minimum Bluetooth RX sensitivity vs. Wi-

Fi RX levels: 

 

• Typical radio TX levels: 

 

EFR32 Bluetooth 

EFR32 Bluetooth 
Bluetooth Device 

  

Bluetooth Device 

  

Bluetooth Device 

  

EFR32 Bluetooth Device 
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• Attenuation between radios 

 
• Bluetooth device RX success/fail with Wi-Fi OFF: 

 
• Bluetooth device RX success/fail with Wi-Fi ON: 

 

For Figure 3 using example assumptions, all radio communication is maintained between Wi-Fi ON/OFF except: 
• Blue device receives yellow device when Wi-Fi ON, but not Wi-Fi OFF. 
• Green device receives red device when Wi-Fi ON, but not Wi-Fi OFF. 

If devices are Bluetooth devices (point-to-point), blue device communication with: 
• Green device is not impacted by Wi-Fi TX. 
• Yellow device is erratic as Wi-Fi TX goes ON/OFF. 

• For high-duty cycle Wi-Fi TX, connection can become unstable as multiple connection intervals fail. 
• Red device is not possible. 

If devices are Bluetooth mesh devices (mesh network), blue device communication with: 
• Green device is not impacted by Wi-Fi TX. 
• Yellow device shows erratic communication as Wi-Fi TX goes ON/OFF. 

• For high-duty cycle Wi-Fi TX, communication would require a relay to forward/repeat missed RX messages from yellow device 
to blue device. 

• Red device is not directly possible and a relay is required to forward messages between blue device and red device. 
• If green device is relay, communication with red device shows erratic communication as Wi-Fi TX goes ON/OFF. 
• If yellow device is relay, communication with red device is not impacted by Wi-Fi TX. 



 AN1128: Bluetooth® Coexistence with Wi-Fi 
 Unmanaged Coexistence 

 

silabs.com | Building a more connected world. Rev. 1.3  | 7 

3 Unmanaged Coexistence 

3.1 Implement Frequency Separation 

From Figure 2, Bluetooth co-channel operation with Wi-Fi has the most impact on Bluetooth communication. 

For Bluetooth devices (point-to-point) and Bluetooth mesh devices using Generic Attribute Profile (GATT) bearer communication, at least 
one ADV channel is minimally blocked and supports establishing a connection via Advertising, Scanning, and Initiating link-layer states. 
While establishing a connection, the Bluetooth connection master specifies the channel map, but the connection master can also update 
the channel map during connection. However, the Bluetooth connection slave must follow the channel map provided by master. 

If EFR32 becomes the connection master, the Bluetooth channel map can be specified via: 

static inline struct gecko_msg_le_gap_set_data_channel_classification_rsp_t* 
gecko_cmd_le_gap_set_data_channel_classification(uint8 channel_map_len, const uint8* chan-
nel_map_data) 

This command can be used to specify a channel classification for data channels. This classification persists until overwritten with a 
subsequent command or until the system is reset. 

channel_map is 5 bytes and contains 37 1-bit fields. The nth such field (in the range 0 to 36) contains the value for the link layer channel 
index n: 

0: Channel n is bad. 

1: Channel n is unknown. 

The most significant bits are reserved and shall be set to 0 for future use. At least two channels shall be marked as unknown. 

For Bluetooth mesh devices using Advertising bearer communication, at least one ADV channel is minimally blocked and supports es-
tablishing communication via Advertising and Scanning. 

3.2 Operate Wi-Fi with 20MHz Bandwidth 

Because Wi-Fi 802.11n uses Orthogonal Frequency-Division Multiplexing (OFDM) sub-carriers, third-order distortion products from these 
sub-carriers extend one bandwidth on each side of the Wi-Fi channel. 802.11n can operate in 20MHz or 40MHz modes. If operated in 
40MHz mode, 40MHz of the 80MHz ISM band is consumed by the Wi-Fi channel. However, an additional 40MHz on each side can be 
affected by third-order distortion products. These third-order products can block the Bluetooth receiver and is the primary reason adjacent 
channel performance is worse than “far-away” channel performance. 

In proposing 40MHz mode for 802.11n, the Wi-Fi standard anticipated potential issues with other 2.4GHz ISM devices when Wi-Fi oper-
ated in 40MHz mode. During association, any Wi-Fi station can set the FortyMHz Intolerant bit in the HT Capabilities Information. This bit 
informs the Wi-Fi access point that other 2.4GHz ISM devices are present, forcing the entire Wi-Fi network to 20MHz mode. 

If the Wi-Fi and Bluetooth radios are implemented with a common host, then the host should have the Wi-Fi radio set the FortyMHz 
Intolerant bit during association to force the Wi-Fi to 20MHz mode, increasing the number of channels available to Bluetooth and improving 
the Bluetooth performance. 

If the application requires Wi-Fi to operate in 40MHz mode, frequency separation can be maximized by placing Wi-Fi channel at upper or 
lower end of 2.4MHz ISM band, minimizing the adjacent channels. 

3.3 Use Bluetooth Retry Mechanisms 

Bluetooth (point-to-point) messages requires responses. If a response is not received within programmable time, the application can re-
send the message up to a programmable limit. 

Bluetooth mesh (mesh network) messages are sent via ADV payloads and responses are received during SCAN. Bluetooth mesh spec-
ifies: 
• Optional relay nodes, which after a programmable time-out with no responses, can retransmit the original message for a programma-

ble number of hops. 
• Originator, after a programmable time-out with no response, can retransmit the original message for a programmable number of time-

outs. 



 AN1128: Bluetooth® Coexistence with Wi-Fi 
 Unmanaged Coexistence 

 

silabs.com | Building a more connected world. Rev. 1.3  | 8 

Both mechanisms improve Bluetooth mesh message success but should be used with caution. More relays nodes, shorter time-outs, and 
more retries may improve an individual message’s success, but these mechanisms can stress the mesh network by flooding too many 
identical messages. See AN1137: Bluetooth® Mesh Network Performance for details on these considerations. 

3.4 Remove FEM (or Operate FEM LNA in Bypass) 

EFR32 can deliver nearly +20dBm transmit power and has excellent receiver sensitivity without an external Front End Module (FEM). 
However, an external FEM can increase transmit power to +20dBm for increased range (in regions where this is permitted, for example, 
the Americas). The additional FEM Low-Noise Amplifier (LNA) receive gain also improves sensitivity. However, this additional gain also 
degrades the EFR32 linearity performance in the presence of strong Wi-Fi and degrades the EFR32 RX sensitivity (see Figure 2). An 
external FEM is not recommended and, if required for transmit power, the FEM LNA should be operated in bypass. 
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4 Managed Coexistence 

The market trends of higher Wi-Fi transmit power, higher Wi-Fi throughput, and integration of Wi-Fi and Bluetooth radios into the same 
device has the following impacts: 
• Advantages: 

• Host can implement frequency separation between Wi-Fi and Bluetooth. 
• Co-located Wi-Fi radio can force Wi-Fi network to operate with 20MHz bandwidth. 
• Co-located Wi-Fi and Bluetooth radios can communicate pending and/or in-progress activity on 2.4GHz ISM transmits and re-

ceives. 
• Disadvantages: 

• Higher Wi-Fi transmit power requires greater antenna isolation. 
• Higher Wi-Fi throughput results in higher Wi-Fi duty cycle. 
• Antenna isolation is usually limited by the size of the product (only 15-20dB isolation is not unusual). 

Assuming frequency separation achieves the “far-away” channel case and Wi-Fi only uses 20MHz bandwidth, a +20dBm Wi-Fi transmit 
power level at 100% duty cycle requires 50 dB antenna isolation to receive -92dBm Bluetooth 802.15.4 messages. This is generally not 
achievable in small devices with co-located Wi-Fi and 802.15.4. 

Managed Coexistence takes advantage of communication between the co-located Wi-Fi and Bluetooth radios to coordinate each radio’s 
access to the 2.4GHz ISM band for transmit and receive. For the EFR32, Silicon Labs has implemented a coordination scheme compatible 
with Wi-Fi devices supporting PTA. This PTA-based coordination allows the EFR32 to signal the Wi-Fi device when receiving a message 
or wanting to transmit a message. When the Wi-Fi device is made aware of the EFR32 requiring the 2.4GHz ISM band, any Wi-Fi transmit 
can be delayed, improving Bluetooth message reliability. 

Section 4.1, PTA Support Hardware Options discusses PTA support hardware options and section 4.2, PTA Support Software Setup 
discusses PTA support software setup. AN1243: Timing and Test Data for EFR32 Coexistence with Wi-Fi, available under non-disclosure 
from Silicon Labs technical support provides test results for EFR32 PTA implementation under various Wi-Fi operating conditions. 

Note: EFR32 Bluetooth and Bluetooth mesh coexistence is supported in Bluetooth 2.13.0 and Bluetooth mesh 2.10.0. Not all coexist-
ence support features in Bluetooth 2.13.0 and Bluetooth mesh 2.10.0 are present in earlier versions. 

4.1 PTA Support Hardware Options 

PTA is described in IEEE 802.15.2 (2003) Clause 6 and is a recommendation, not a standard. 802.15.2 originally addressed coexistence 
between 802.11b (Wi-Fi) and 802.15.1 (Bluetooth Classic) and does not describe an exact hardware configuration. However, 802.15.2 
recommends that the PTA implementation consider the following: 
• TX REQUEST from 802.11b to PTA and TX REQUEST from 802.15.1 to PTA 
• TX CONFIRM from PTA to 802.11b and TX CONFIRM from PTA to 802.15.1 
• STATUS information from both radios: 

• Radio state [TX, RX, or idle] 
• Current and future TX/RX frequencies 
• Future expectation of a TX/RX start and duration 
• Packet type 
• Priority (Fixed, Randomized, or QoS based) 
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Table 1 describes how 802.15.2 considers radio state, transmit/receive, and frequencies. 

Table 1. IEEE 802.15.2 2.4GHz ISM Co-Located Radio Interference Possibilities 

Co-located 
802.11b State 

Co-Located 802.15.1 State 
Transmit Receive 

In-Band Out-of-Band In-Band Out-of-Band 
Transmit Conflicting Transmits 

 
Possible packet errors 

No Conflict Conflicting Transmit-
Receive 

 
Local packet received 

with errors 
 

Conflicting Transmit-
Receive 

 
Local packet received 
with errors or no errors 
if sufficient isolation for 
frequency separation 

Receive Conflicting Transmit-
Receive 

 
Local packet received 

with errors 
 

Conflicting Transmit-
Receive 

 
Local packet received 
with errors or no errors 
if sufficient isolation for 
frequency separation 

Conflicting Receives 
 

Possible packet errors 

No Conflict 

From Table 1, the frequency separation recommendations from section 3, Unmanaged Coexistence remain required for managed coex-
istence: 
• 802.15.2 “In-Band” is equivalent to Co-Channel operation, which showed significant Wi-Fi impact on co-channel Bluetooth. 
• 802.15.2 “Out-of-Band” covers both Adjacent and “Far-Away” Channel operation. 

As such, for Managed Coexistence, Silicon Labs recommends continuing to implement these Unmanaged Coexistence recommenda-
tions. 
• Frequency Separation 
• Operate Wi-Fi in 20MHz Bandwidth 
• Antenna Isolation 
• Bluetooth Retry Mechanisms 
• FEM LNA in Bypass 

In reviewing existing PTA implementations, Silicon Labs finds the PTA master implementation has been integrated into many Wi-Fi 
devices, but not all Wi-Fi devices support a PTA interface. The following figure shows the most common Wi-Fi/PTA implementations 
supporting Bluetooth.  
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Figure 4. Typical Wi-Fi/Bluetooth PTA Implementations 

1-Wire PTA 

In 1-Wire, the Wi-Fi/PTA device asserts a GRANT signal when Wi-Fi is not busy transmitting or receiving. When GRANT is asserted, the 
Bluetooth radio is allowed to transmit or receive. This mode does not allow the external radio to request the 2.4GHz ISM and is not 
recommended. 

An alternate 1-Wire implementation is a REQUEST signal from Bluetooth to Wi-Fi/PTA, where Bluetooth asserts REQUEST whenever it 
needs the 2.4GHz ISM band and expects Wi-Fi to always yield. This mode works very well for Bluetooth, but high priority Wi-Fi traffic can 
be compromised impacting Wi-Fi performance. 

2-Wire PTA 

In 2-Wire, the REQUEST signal is added, allowing the Bluetooth radio to request the 2.4GHz ISM band. The Wi-Fi/PTA device internally 
controls the prioritization between Bluetooth and Wi-Fi and, on a conflict, the PTA can choose to either GRANT Bluetooth or Wi-Fi. 

3-Wire PTA 

In 3-Wire, the PRIORITY signal is added, allowing the Bluetooth radio to signify a high- or low-priority message is either being received 
or transmitted. The Wi-Fi/PTA device compares this external priority request against the internal Wi-Fi priority, which may be high/low or 
high/mid/low and can choose to either GRANT Bluetooth or Wi-Fi. 

PRIORITY can be implemented as static or directional (enhanced) priority.  
• Static:  PRIORITY is either high or low during REQUEST asserted for the transmit or receive operation. 
• Directional: PRIORITY is either high or low for a typically 20µs duration after REQUEST asserted, but switches to low during receive 

operation and high during transmit operation. 

For platforms, such as Wi-Fi data routers that can achieve high Wi-Fi duty cycles, as well as IoT hubs that stream Bluetooth classic audio, 
implementing PRIORITY is highly recommended as it provides the Wi-Fi/PTA device with insight on the EFR32 REQUEST. PRIORITY 
is also configurable, both at compile time and at runtime, to address various product optimization requirements. However, PRIORITY may 
not be necessary for platforms that do not experience high Wi-Fi duty cycles nor support Bluetooth audio streaming, freeing a GPIO pin 
on the EFR32 and SoC.  

4-Wire PTA 

In 4-Wire, the FREQ signal is added, allowing the Bluetooth radio to signify an “in-band” or “out-of-band” message is either being received 
or transmitted. Silicon Labs recommends maximizing frequency separation, making the FREQ signal mute. Silicon Labs’ EFR32 does 
not support the FREQ signal and, for any 4-wire Wi-Fi/PTA with a FREQ input, Silicon Labs recommends asserting the FREQ input to 
the Wi-Fi/PTA. 
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Additional details about the implementation of managed coexistence and test results are available in an expanded version of this appli-
cation note, AN1243: Timing and Test Data for EFR32 Coexistence with Wi-Fi, available under non-disclosure from Silicon Labs technical 
support. 

4.2 PTA Support Software Setup 

Note: GPIO interrupt numbers are based on the GPIO pin numbers and not the port. This can cause conflicts if the same pin is selected 
for different ports—for example, PD15 will conflict with PB15. Silicon Labs recommends avoiding these conflicts. If the conflict 
exists in hardware, manual macros can be added with the assistance of Silicon Labs Support. 

4.2.1 Compile Time PTA Setup and Defaults 

To enable PTA coexistence support, the following steps are required: 
1. Create Bluetooth or Bluetooth Mesh project in Simplicity Studio. 
2. Create the following project folders: 

• <project>\platform\radio\rail_lib\plugin\coexistence\common 
• <project>\platform\radio\rail_lib\plugin\coexistence\hal\efr32 
• <project>\platform\emdrv\gpiointerrupt\src 
• <project>\protocol\bluetooth\ble_stack\inc\soc  
• <project>\protocol\bluetooth\ble_stack\src\soc 

3. Copy contents from following 2.7 Bluetooth SDK folders to new project folders. 
 
From: SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.7\platform\radio\rail_lib\plugin\coexistence\common 
To: <project>\platform\radio\rail_lib\plugin\coexistence\common 
 
From: SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.7\platform\radio\rail_lib\plugin\coexistence\hal\efr32 
To: <project>\platform\radio\rail_lib\plugin\coexistence\hal\efr32 
 
From: SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.7\platform\emdrv\gpiointerrupt\src 
To: <project>\platform\emdrv\gpiointerrupt\src 
 
From: SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.7\ protocol\bluetooth\ble_stack\inc\soc 
To: <project>\ protocol\bluetooth\ble_stack\src\inc\soc 
Note: Only copy coexistence_ll-ble.h and coexistence-ble.h 
 
From: SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.7\ protocol\bluetooth\ble_stack\src\soc 
To: <project>\ protocol\bluetooth\ble_stack\src\soc 
Note: Only copy coexistence_counters-ble.c and coexistence-ble.c 

4. Edit project includes to include additional paths to files added to project: 
1. Right-click on project and select Properties. 
2. Expand C/C++ General and select Paths and Symbols. 
3. Select Includes tab. 
4. In languages, select desired C compiler (for example, GNU C). 
5. Press add, check Is a workspace path, and enter each of the following paths: 

/${ProjName}/platform/radio/rail_lib/plugin 

/${ProjName}/platform/radio/rail_lib/plugin/coexistence/hal/efr32 
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For example: 

 

 
6. Then  press “OK” and “Yes” to rebuild index now 

5. Add the following #defines to hal-config.h: 

 
// $[COEX] 
#define HAL_COEX_ENABLE                              (1) 
 
#define BSP_COEX_REQ_PIN                             (10U) 
#define BSP_COEX_REQ_PORT                            (gpioPortC) 
#define BSP_COEX_REQ_ASSERT_LEVEL                    (1) 
#define HAL_COEX_REQ_WINDOW                          (50U) 
#define HAL_COEX_REQ_SHARED                          (0) 
#define HAL_COEX_REQ_BACKOFF                         (15U) 
 
#define BSP_COEX_GNT_PIN                             (3U) 
#define BSP_COEX_GNT_PORT                            (gpioPortF) 
#define BSP_COEX_GNT_ASSERT_LEVEL                    (0) 
#define HAL_COEX_TX_ABORT                            (0) 
 
#define BSP_COEX_PRI_PIN                             (12U) 
#define BSP_COEX_PRI_PORT                            (gpioPortD) 
#define BSP_COEX_PRI_ASSERT_LEVEL                    (1) 
#define HAL_COEX_PRIORITY_DEFAULT                    (1) 
#define HAL_COEX_PRI_SHARED                          (0) 
 
//#define BSP_COEX_RHO_PIN                             (11U) 
//#define BSP_COEX_RHO_PORT                            (gpioPortC) 
//#define BSP_COEX_RHO_ASSERT_LEVEL                    (1) 
 
#define HAL_COEX_PWM_DEFAULT_ENABLED                 (0) 
#define HAL_COEX_PWM_REQ_PERIOD                      (39U) 
#define HAL_COEX_PWM_REQ_DUTYCYCLE                   (20U) 
#define HAL_COEX_PWM_PRIORITY                        (0) 
//#define BSP_COEX_PWM_REQ_PIN                         (6U) 
//#define BSP_COEX_PWM_REQ_PORT                        (gpioPortC) 
//#define BSP_COEX_PWM_REQ_ASSERT_LEVEL                (1) 
 
#define HAL_COEX_DP_ENABLED                          (0) 
//#define HAL_COEX_DP_PULSE_WIDTH_US                   (20U) 
//#define HAL_COEX_DP_TIMER                            (HAL_TIMER_TIMER1) 
//#define BSP_COEX_DP_CHANNEL                          (3) 
//#define BSP_COEX_DP_REQUEST_INV_CHANNEL              (4) 
//#define BSP_COEX_DP_RACLNAEN_INV_CHANNEL             (8) 
//#define BSP_COEX_DP_PIN                              (12U) 
//#define BSP_COEX_DP_PORT                             (gpioPortD) 
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//#define BSP_COEX_DP_LOC                              (11U) 
//#define BSP_COEX_DP_CC0_PIN                          (6U) 
//#define BSP_COEX_DP_CC0_PORT                         (gpioPortC) 
//#define BSP_COEX_DP_CC0_LOC                          (11U) 
// [COEX]$ 
 

6. Enable and edit new #defines to enable/configure PTA coexistence. 
• Enable the PTA feature. 

The following #define is required: 

#define HAL_COEX_ENABLE                    (1) 

• REQUEST pin settings: Enable/disable, polarity, port, and pin 

The following #defines example enables active-high REQUEST on PC10: 

#define BSP_COEX_REQ_PIN                   (10) 
#define BSP_COEX_REQ_PORT                  (gpioPortC) 
#define BSP_COEX_REQ_ASSERT_LEVEL          (1) 

Note: In 1-Wire PTA configurations based on GRANT-only, REQUEST is not implemented. If REQUEST is not needed, remove 
the BSP_COEX_REQ_PORT and BSP_COEX_REQ_PIN #defines from hal-config.h. 

• REQUEST Window 

REQUEST Window adjusts the leadtime for REQUEST assertion before first Bluetooth TX or RX operation after REQUEST 
asserted. A TX operation will proceed if GRANT is asserted at the end of the REQUEST Window. An RX operation will attempt 
to proceed regardless of GRANT asserted or deasserted as Bluetooth RX does not impact other co-located radios. This feature’s 
setting needs to at least exceed the maximum time for Wi-Fi/PTA to provide GRANT asserted or deasserted after REQUEST 
asserted. 

The following #define example sets the REQUEST Window to 50µs: 

#define HAL_COEX_REQ_WINDOW                (50) 

• REQUEST signal is shared. 

The following #define example disables Shared REQUEST for single-EFR operation.: 

#define HAL_COEX_REQ_SHARED                (0) 

The following #define example enables Shared REQUEST.  

#define HAL_COEX_REQ_SHARED                (1) 

• REQUEST signal max backoff mask 

REQUEST signal max backoff determines the random REQUEST delay mask (only valid if REQUEST signal is shared). The 
random delay (in µs) is computed by masking the internal random variable against the entered mask. The mask should be set 
to a value of 2n-1 to ensure a continuous random delay range. 

The following #define sets backoff to recommended value: 

#define HAL_COEX_REQ_BACKOFF               (15) 

• GRANT pin settings: Enable/disable, polarity, port, and pin 

The following #defines example enables active-low GRANT on PF3: 

#define BSP_COEX_GNT_PIN                   (3) 
#define BSP_COEX_GNT_PORT                  (gpioPortF) 
#define BSP_COEX_GNT_ASSERT_LEVEL          (0) 

Notes: 

 Many Wi-Fi/PTA devices use the term WLAN_DENY or BT_DENY and describe as active-high. These active-high deny 
signals correlate with EFR32 active-low GRANT. 
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 In 1-Wire PTA configurations based on REQUEST-only, GRANT is not implemented. If GRANT is not needed, remove the 
BSP_COEX_GNT_PORT and BSP_COEX_GNT_PIN #defines from hal-config.h. 

• Abort transmission mid packet if GRANT is lost. 

If enabled, losing GRANT (or RHO asserted) during a Bluetooth TX will abort the Bluetooth TX. If not enabled, losing GRANT 
(or RHO asserted) after the start of a Bluetooth TX will not abort the Bluetooth TX. 

The following #defines example disables Abort transmission mid packet if GRANT is lost: 

#define HAL_COEX_TX_ABORT                  (0) 

The following #defines example enables Abort transmission mid packet if GRANT is lost: 

#define HAL_COEX_TX_ABORT                  (1) 

• PRIORITY pin settings: Enable/disable, polarity, port, and pin 

The following #defines example enables active-high PRIORITY on PD12: 

#define BSP_COEX_PRI_PIN                   (12) 
#define BSP_COEX_PRI_PORT                  (gpioPortD) 
#define BSP_COEX_PRI_ASSERT_LEVEL          (1) 

Note: In 1-Wire or 2-Wire PTA configurations, PRIORITY is not implemented. If PRIORITY is not needed, remove the 
BSP_COEX_PRI_PORT and BSP_COEX_PRI_PIN #defines from hal-config.h. 

• PRIORITY Assert Enable 

The following #define example defaults PRIORITY to always deasserted: 

#define HAL_COEX_PRIORITY_DEFAULT          (0) 

The following #define example defaults PRIORITY to asserted or deasserted based on link layer priority and threshold_coex_pri 
as described below: 

#define HAL_COEX_PRIORITY_DEFAULT          (1) 
 

• PRIORITY signal is shared 

The following #define example disables Shared PRIORITY for single-EFR operation. 

#define HAL_COEX_PRI_SHARED                (0) 

The following #define example enables Shared PRIORITY. 

#define HAL_COEX_PRI_SHARED                (1) 

• RHO pin settings: enable/disable, polarity, port and pin 

Radio hold-off (RHO) is effectively a second GRANT signal. However, when RHO is asserted, Bluetooth TX operations are 
blocked.  

The following #defines example enables active-low RHO on PC11: 

#define BSP_COEX_RHO_PIN                   (11) 
#define BSP_COEX_RHO_PORT                  (gpioPortC) 
#define BSP_COEX_RHO_ASSERT_LEVEL          (0) 

Note: In most EFR32BG coexistence applications, RHO is not needed. If RHO is not needed, remove the 
BSP_COEX_RHO_PORT and BSP_COEX_RHO_PIN #defines from hal-config.h. 

• PWM enabled at reset, period, duty-cycle, priority, polarity, port and pin. 

PWM asserts REQUEST and optionally PRIORITY at a regular period and duty-cycle. PWM can be employed to create idle Wi-
Fi TX windows to improve 100% Passive SCAN performance and is essential for Bluetooth mesh using ADV-Bearer to allow 
sufficient idle Wi-Fi TX time windows. 

The following #defines example disables PWM at reset: 
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#define HAL_COEX_PWM_DEFAULT_ENABLED        (0) 

The following #defines example enables PWM at reset: 

#define HAL_COEX_PWM_DEFAULT_ENABLED        (1) 

Note: BT SDK 2.13.0.0 has an issue where enabling PWM at reset or later at run-time prevent TX operations and PWM should 
not be used on BT SDK 2.13.0.0. This issue will be fixed in a future release. 

The following #defines example sets PWM period (ms) and PWM duty-cycle (%) at reset: 

#define HAL_COEX_PWM_REQ_PERIOD             (39U) 
#define HAL_COEX_PWM_REQ_DUTYCYCLE          (20U) 

Note: PWM period should not be an integer sub-multiple of Wi-Fi beacon (typically 102.4ms). This is required to prevent Wi-
Fi from losing many beacons and disassociating. Also, the lowest duty-cycle providing sufficient BT performance is recom-
mended as higher PWM duty-cycles reduce RF time available to Wi-Fi with associated reduction in Wi-Fi throughput. 

However, for Bluetooth mesh using ADV-Bearer method, a period of 39ms and duty-cycle greater than 44% may be required to 
receive 99% of ADV-bearer messages (exact PWM requirement depends on Bluetooth mesh retry settings). If possible, Blue-
tooth mesh should use GATT-bearer method from the co-located Bluetooth mesh radio to relay node. 

The following #defines example deasserts PRIORITY during PWM REQUEST asserted: 

#define HAL_COEX_PWM_PRIORITY               (0) 

The following #defines example deasserts PRIORITY during PWM REQUEST asserted: 

#define HAL_COEX_PWM_PRIORITY               (1) 

If HAL_COEX_PWM_PRIORITY is set to 1, then REQUEST is “Shared REQUEST” between multiple EFR32 radios and is used 
to arbitrate which EFR32 controls PTA interface to Wi-Fi. Operating PWM on Shared REQUEST is incompatible with arbitration.  
As such, the PWM_REQUEST pin becomes necessary. Shared REQUEST interconnects all EFR32 radios for arbitration and 
PWM_REQUEST is connected to all EFR32 radios, but drives the REQUEST signal to Wi-Fi/PTA. 

If HAL_COEX_PWM_PRIORITY is set to 0, then REQUEST is not shared and is used to drive all PTA request to Wi-Fi, both 
from radio states requests and from PWM. 

The following #defines example enables active-high PWM_REQUEST on PC6: 

#define BSP_COEX_PWM_REQ_PIN              (6U) 
#define BSP_COEX_PWM_REQ_PORT             (gpioPortC) 
#define BSP_COEX_PWM_REQ_ASSERT_LEVEL     (1) 

Note: If PWM_REQUEST is not needed (no Shared REQUEST), then remove the BSP_COEX_PWM_REQ_PIN, 
BSP_COEX_PWM_REQ_PPORT, and BSP_ BSP_COEX_PWM_REQ_ASSERT_LEVEL #defines from hal-config.h. 

• Directional PRIORITY compiled into image, enabled at reset, pulse width, TIMER, and PRS resources: 

PRIORITY can be “static” where it is asserted or deasserted for the entire TX/RX/… or RX/TX/… event. Directional Priority can 
be used to provide priority information and radio state (TX or RX). The EFR32 implementation of Directional PRIORITY is ac-
complished using static PRIORITY, REQUEST (or PWM_REQUEST if multi-EFR32 using Shared REQUEST), a TIMER, and 
up to 6 PRS channels. Because on-chip hardware resources are used with this feature, it is very important to understand which 
are used and ensure no conflicts. Directional PRIORITY is only supported for PTA implementations where REQUEST 
(PWM_REQUEST) and PRIORITY are active high. 

If enabled, Directional PRIORITY drives a programmable pulse-width (1µs to 255µs) to indicate the priority of TX/RX/… or the 
priority of RX/TX/… event.  Following pulse, Directional PRIORITY signal is low for radio in RX state and high for radio in TX 
state.  The Wi-Fi/PTA device can monitor the Directional PRIORITY signals to understand priority of TX/RX/… or RX/TX/… 
event and the current radio state.  In this manner, simultaneous TX/TX and RX/RX can be allowed and conflicting TX/RX and 
RX/TX events can be prioritized by PTA mechanism. 

The following #defines example prevents compiling Directional PRIORITY into application: 

#define HAL_COEX_DP_ENABLE                  (0) 

The following #defines example compiles Directional PRIORITY into application and initializes hardware resources as specified 
by subsequent #defines: 
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#define HAL_COEX_DP_ENABLE                  (1) 

Note: Bluetooth SDK 2.13.0.0 has an issue where the Directional PRIORITY pulse on TX/RX/… events is always asserted 
high, regardless of actual link layer priority and threshold_coex_priority setting. This issue will be fixed in a future release. 

The following #defines example sets Directional PRIORITY pulse-width to 20 µs. If set to 0, Directional PRIORITY reverts to 
Static PRIORITY. 

#define HAL_COEX_DP_PULSE_WIDTH_US          (20U) 

The following #defines example selects the TIMER used by to generate Directional PRIORITY pulse. HAL_TIMER_TIMER0 is 
reserved for SDK operation and is unavailable. HAL_TIMER_TIMER1 is typically available on all EFR32 devices. 
HAL_TIMER_TIMER0 and HAL_TIMER_WTIMER1 are available on some EFR32 devices. See the datasheet and reference 
manual on EFR32 design for details. 

#define HAL_COEX_DP_TIMER                   (HAL_TIMER_TIMER1) 

The following #defines example selects the base PRS channel, REQUEST invert PRS channel, and RACLNAEN invert channel 
used to create Directional PRIORITY. The Bluetooth SDK stack reserves PRS channel 7. 

#define BSP_COEX_DP_CHANNEL                 (3) 
#define BSP_COEX_DP_REQUEST_INV_CHANNEL     (4) 
#define BSP_COEX_DP_RACLNAEN_INV_CHANNEL    (8) 

The following #defines example selects the pin and port used to drive Directional PRIORITY and the LOC value for PRS channel 
to drive that pin. Consult the selected EFR32 datasheet and reference manual for the LOC required for PRS channel and GPIO 
pin. Not all GPIOs can be driven by any PRS channel. The PRS base channel must be selected as a channel capable of driving 
the desired GPIO. 

#define BSP_COEX_DP_PIN                     (12U) 
#define BSP_COEX_DP_PORT                    (gpioPortD) 
#define BSP_COEX_DP_LOC                     (11U) 

The following #defines example selects the pin and port used to drive Directional PRIORITY TIMER to start pulse. In Shared 
REQUEST, this pin and port must match PWM_REQUEST pin and port. In REQUEST not shared, this pin and port must match 
REQUEST pin and port. Consult the selected EFR32 datasheet and reference manual for the LOC required for the GPIO to 
drive the selected TIMER’s CC0 input: 

#define BSP_COEX_DP_CC0_PIN                 (6U) 
#define BSP_COEX_DP_CC0_PORT                (gpioPortC) 
#define BSP_COEX_DP_CC0_LOC                 (11U) 

7. Add code to initialize and configure coexistence: 
• Add include file to main.c: 

#include "coexistence-ble.h" 

• Add one of following variable definition to main.c: 

uint8 myCoexConfig[] = { 255, 255, 39, 20 }; // for duty-cycled SCAN and no BT Mesh ADV-
Bearer 

or 

uint8 myCoexConfig[] = { 175, 175, 39, 20 }; // for 100% Passive SCAN or BT Mesh ADV-Bearer 

which is based on the following definition: 

typedef struct{ 
  uint8_t threshold_coex_pri; /** Priority line is toggled if priority is below this*/ 
  uint8_t threshold_coex_req; /** Coex request is toggled if priority is below this*/ 
  uint8_t coex_pwm_period;    /** PWM Period in ms, if 0 pwm is disabled*/ 
  uint8_t coex_pwm_dutycycle; /** PWM dutycycle percentage, if 0 pwm is disabled, if >= 100 
                                    pwm line is always enabled*/ 
} ll_coexConfig; 
 
//Default coex configuration 
#define GECKO_COEX_DEFAULT_CONFIG { 175, 255, 0, 0 } 
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• Add one of following variable definition to main.c: 

// for duty-cycled SCAN and no BT Mesh ADV-Bearer and default link layer priorities 
uint8 myLinkLayerPriorities[] = { 191, 143, 175, 127, 135, 0, 55, 15, 16, 16, 0, 4, 4 } 

or 

// for duty-cycled SCAN and no BT Mesh ADV-Bearer 
uint8 myLinkLayerPriorities[] = { 223, 175, 174, 127, 135, 0, 55, 15, 16, 16, 0, 4, 4 }; 

which is based on following definition: 

typedef struct { 
  uint8_t scan_min; 
  uint8_t scan_max; 
  uint8_t adv_min; 
  uint8_t adv_max; 
  uint8_t conn_min; 
  uint8_t conn_max; 
  uint8_t init_min; 
  uint8_t init_max; 
  uint8_t rail_mapping_offset; 
  uint8_t rail_mapping_range; 
  uint8_t afh_scan_interval; 
  uint8_t adv_step; 
  uint8_t scan_step; 
} gecko_bluetooth_ll_priorities; 
 
//Default priority configuration 
#define GECKO_BLUETOOTH_PRIORITIES_DEFAULT {191, 143, 175, 127, 135, 0, 55, 15, 16, 16, 
0,4,4} 
 

• Enable or disable Passive SCAN. 

#define SCAN_PASSIVE                        (0) 

or 

#define SCAN_PASSIVE                        (1) 

• Add point to custom link layer table in config variable: 

static const gecko_configuration_t config = { 
  .config_flags = 0, 
#if defined(FEATURE_LFXO) 
  .sleep.flags = SLEEP_FLAGS_DEEP_SLEEP_ENABLE, 
#else 
  .sleep.flags = 0, 
#endif // LFXO 
  .bluetooth.max_connections = MAX_CONNECTIONS, 
  .bluetooth.heap = bluetooth_stack_heap, 
  .bluetooth.heap_size = sizeof(bluetooth_stack_heap), 
  .bluetooth.sleep_clock_accuracy = 100, // ppm 
  // use modified Link Layer Priorities 
  .bluetooth.linklayer_priorities = myLinkLayerPriorities, // default = NULL 
  .gattdb = &bg_gattdb_data, 
  .ota.flags = 0, 
  .ota.device_name_len = 3, 
  .ota.device_name_ptr = "OTA", 
  .pa.config_enable = 1, // Set this to be a valid PA config 
#if defined(FEATURE_PA_INPUT_FROM_VBAT) 
  .pa.input = GECKO_RADIO_PA_INPUT_VBAT, // Configure PA input to VBAT 
#else 
  .pa.input = GECKO_RADIO_PA_INPUT_DCDC, 
#endif // defined(FEATURE_PA_INPUT_FROM_VBAT) 
  .rf.flags = GECKO_RF_CONFIG_ANTENNA,                 /* Enable antenna configuration. */ 
  .rf.antenna = GECKO_RF_ANTENNA,                      /* Select antenna path! */ 
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}; 

 
• Add the coexistence initialization function call and initialize threshold_coex_req and threshold_code_pri within main() in main.c. 

  … 
  // Initialize stack 
  gecko_init(&config); 
 
  // Initialize coexistence 
  gecko_initCoexHAL(); 
 
  // Initialize threshold_coex_req and threshold_code_pri 
  gecko_cmd_coex_set_parameters(myCoexConfig[0],myCoexConfig[1],myCoexConfig[2],myCoexCon-
fig[3]); 

4.2.2 Run-Time PTA Re-configuration 

The following PTA options can also be re-configured at runtime: 
1. Disable/Enable the PTA feature. 

At runtime, the following code disables the PTA feature: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_ENABLE, 0); 

At runtime, the following code enables the PTA feature: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_ENABLE, 1); 

2. REQUEST Window 
At runtime, the following code can be used to change the REQUEST_WINDOW: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_REQUEST_WINDOW_MASK, desired_request_window << 
GECKO_COEX_OPTION_REQUEST_WINDOW_SHIFT); 

Where desired_request_window is the REQUEST_WINDOW in µs. 
Note: In Bluetooth SDK 2.11.0, REQUEST Window may exhibit an offset, depending on if EFR32BG entered CONNECTION state 
as a master device or a slave device, where REQUEST Window is ~15µs short. In earlier versions of the stack, this offset is ~25µs 
for master and ~40µs for a slave device. To ensure no issues with a short REQUEST Window, add at least 15µs for SDK 2.11.0, or 
at least 40µs for earlier SDKs, to Wi-Fi/PTA maximum REQUEST to GRANT delay. 

3. Abort transmission mid packet if GRANT is lost. 
At runtime, the following code disables Abort transmission mid packet if GRANT is lost: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_TX_ABORT, 0); 

At runtime, the following code enables Abort transmission mid packet if GRANT is lost: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_TX_ABORT, 1); 

4. PRIORITY Escalation capability 
At runtime, the following code disables PRIORITY assertion: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_HIGH_PRIORITY, 0); 

At runtime, the following code enables PRIORITY assertion: 

gecko_cmd_coex_set_options(GECKO_COEX_OPTION_HIGH_PRIORITY, 1); 

5. Channel Map Masking 
If an EFR32BG device enters CONNECTION state as a master device, it controls which of the 37 data channels are used during the 
AFH. As a CONNECTION master, the EFR32BG can also update this channel map and communicate this update to a slave device. 
This feature can be used to make Bluetooth avoid being co-channel to Wi-Fi. See Figure 2 and section 3.1, Implement Frequency 
Separation for additional details. 
If EFR32 becomes the connection master, the Bluetooth channel map can be specified using this function call: 



 AN1128: Bluetooth® Coexistence with Wi-Fi 
 Managed Coexistence 

 

silabs.com | Building a more connected world. Rev. 1.3  | 20 

static inline struct gecko_msg_le_gap_set_data_channel_classification_rsp_t* 
gecko_cmd_le_gap_set_data_channel_classification(uint8 channel_map_len, const uint8*  
channel_map_data) 

This command can be used to specify a channel classification for data channels. This classification persists until overwritten with a 
subsequent command or until the system is reset. 
channel_map is 5 bytes and contains 37 1-bit fields. The nth such field (in the range 0 to 36) contains the value for the link layer 
channel index n: 
0: Channel n is bad. 
1: Channel n is unknown. 
The most significant bits are reserved and shall be set to 0 for future use. At least two channels shall be marked as unknown. 

6. threshold_coex_req, threshold_code_pri, pwm_period, and pwm_dutycycle 
It may be required during application execution to change the two coex thresholds and PWM period/duty-cycle. These settings can 
be changed at run time using this function call: 

static inline struct gecko_msg_coex_set_parameters_rsp_t* gecko_cmd_coex_set_parameters(uint8 
priority,uint8 request,uint8 pwm_period,uint8 pwm_dutycycle) 

7. Link layer Priority table. 
It may be required during application execution to change the link layer priority table. This table can be changed at run time using 
this functional call: 

static inline struct gecko_msg_system_linklayer_configure_rsp_t* gecko_cmd_system_linklayer_con-
figure(uint8 key,uint8 data_len, const uint8* data_data) 

where data_data is an array containing: 

typedef struct { 
  uint8_t scan_min; 
  uint8_t scan_max; 
  uint8_t adv_min; 
  uint8_t adv_max; 
  uint8_t conn_min; 
  uint8_t conn_max; 
  uint8_t init_min; 
  uint8_t init_max; 
  uint8_t rail_mapping_offset; 
  uint8_t rail_mapping_range; 
  uint8_t afh_scan_interval; 
  uint8_t adv_step; 
  uint8_t scan_step; 
} gecko_bluetooth_ll_priorities; 

This full array is 13 bytes in length. However, if data_len is less than 13, only first data_len entries will be modified. For example, if 
data_len=2, only scan_min and scan_max are updated. 

4.2.3 Run-Time PTA Debug Counters 

At runtime, PTA Debug Counters are also available and can be accessed and reset via the following function: 

static inline struct gecko_msg_system_get_counters_rsp_t* gecko_cmd_system_get_counters(uint8  
reset); 

where: 
• reset = 0 leaves counters unchanged 
• reset = 1 resets all counters to 0 (after reading current counter values) 
• struct gecko_msg_system_get_counters_rsp_t contains: 

struct gecko_msg_system_get_counters_rsp_t 
{ 
    uint16              result; 
    uint16              tx_packets; 
    uint16              rx_packets; 
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    uint16              crc_errors; 
    uint16              failures; 
} 

where, since startup or last reset: 

 result is success (== 0) or failure (!= 0) of gecko_cmd_system_get_counters() command 
 tx_packets is number of successful packets transmitted 
 rx_packets is number of successful packets received 
 crc_errors is number of packets received with CRC failures 
 failures is number of packets failures, which includes: 

o TX/RX abort 
o Scheduler failures 
o Shared REQUEST busy, GRANT denial, or RHO asserted, including Abort TX 
o RX buffer overflow 
o TX buffer underflow 

4.3 Coexistence Configuration Setup Examples for Different Wi-Fi/PTA Applications 

Example 1: Configure EFR32 PTA support to operate as single EFR32 with typical 3-Wire Wi-Fi/PTA 
• Single EFR32 radio 
• REQUEST unshared, active high, PC10 

• Compatible 3-Wire Wi-Fi/PTA devices sometimes refer to this signal as RF_ACTIVE or BT_ACTIVE (active high) 
• GRANT, active low, PF3 

• Compatible 3-Wire Wi-Fi/PTA devices sometimes refer to this signal as WLAN_DENY (deny is active high, making grant active 
low) 

• PRIORITY, active high, PD12 
• Compatible 3-Wire Wi-Fi/PTA devices sometimes refer to this signal as RF_STATUS or BT_STATUS (active high) 
• PRIORITY is static, not directional. If operated with a 3-Wire Wi-Fi/PTA expecting directional: 

 Static high PRIORITY is interpreted as high PRIORITY and always in TX mode, regardless of actual TX or RX 
 Static low PRIORITY is interpreted as low PRIORITY and always in RX mode, regardless of actual TX or RX 

• REQUEST_WINDOW is 50 µs 
• Disabled Abort transmission mid packet if GRANT is lost 
• PRIORITY is always high 
• RHO unused 

The required #defines in hal-config.h are: 

// $[COEX] 
#define HAL_COEX_ENABLE                              (1) 
 
#define BSP_COEX_REQ_PIN                             (10U) 
#define BSP_COEX_REQ_PORT                            (gpioPortC) 
#define BSP_COEX_REQ_ASSERT_LEVEL                    (1) 
#define HAL_COEX_REQ_WINDOW                          (50U) 
#define HAL_COEX_REQ_SHARED                          (0) 
#define HAL_COEX_REQ_BACKOFF                         (15U) 
 
#define BSP_COEX_GNT_PIN                             (3U) 
#define BSP_COEX_GNT_PORT                            (gpioPortF) 
#define BSP_COEX_GNT_ASSERT_LEVEL                    (0) 
#define HAL_COEX_TX_ABORT                            (0) 
 
#define BSP_COEX_PRI_PIN                             (12U) 
#define BSP_COEX_PRI_PORT                            (gpioPortD) 
#define BSP_COEX_PRI_ASSERT_LEVEL                    (1) 
#define HAL_COEX_PRIORITY_DEFAULT                    (1) 
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#define HAL_COEX_PRI_SHARED                          (0) 
 
//#define BSP_COEX_RHO_PIN                             (11U) 
//#define BSP_COEX_RHO_PORT                            (gpioPortC) 
//#define BSP_COEX_RHO_ASSERT_LEVEL                    (1) 
 
#define HAL_COEX_PWM_DEFAULT_ENABLED                 (0) 
#define HAL_COEX_PWM_REQ_PERIOD                      (39U) 
#define HAL_COEX_PWM_REQ_DUTYCYCLE                   (20U) 
#define HAL_COEX_PWM_PRIORITY                        (0) 
//#define BSP_COEX_PWM_REQ_PIN                         (6U) 
//#define BSP_COEX_PWM_REQ_PORT                        (gpioPortC) 
//#define BSP_COEX_PWM_REQ_ASSERT_LEVEL                (1) 
 
#define HAL_COEX_DP_ENABLED                          (0) 
//#define HAL_COEX_DP_PULSE_WIDTH_US                   (20U) 
//#define HAL_COEX_DP_TIMER                            (HAL_TIMER_TIMER1) 
//#define BSP_COEX_DP_CHANNEL                          (3) 
//#define BSP_COEX_DP_REQUEST_INV_CHANNEL              (4) 
//#define BSP_COEX_DP_RACLNAEN_INV_CHANNEL             (8) 
//#define BSP_COEX_DP_PIN                              (12U) 
//#define BSP_COEX_DP_PORT                             (gpioPortD) 
//#define BSP_COEX_DP_LOC                              (11U) 
//#define BSP_COEX_DP_CC0_PIN                          (6U) 
//#define BSP_COEX_DP_CC0_PORT                         (gpioPortC) 
//#define BSP_COEX_DP_CC0_LOC                          (11U) 
// [COEX]$ 

The logic analyzer capture in the following figure shows the PTA interface, Wi-Fi TX state, and EFR32 radio state for an EFR32 radio 
configured for typical 3-Wire Wi-Fi/PTA during a CONNECTION event (slave): 

 
Figure 5. Example CONNECTION event (slave) for Single EFR32 typical 3-Wire Wi-Fi/PTA Logic Analyzer Capture 

where: 
• REQUEST: active high, push-pull REQUEST output 
• nGRANT: active low GRANT input 
• PRIORITY: active high PRIORITY output 
• CoEx TX ACTIVE: EFR32 TX Active control signal (configured via sample code in section 5.1, Example TX_ACTIVE/RX_ACTIVE) 
• CoEx RX ACTIVE: EFR32 RX Active control signal (configured via sample code in section 5.1, Example TX_ACTIVE/RX_ACTIVE) 
• CoEx PTI FRAME: EFR32 Frame Control Data Frame signal (packet trace frame/synch) 



 AN1128: Bluetooth® Coexistence with Wi-Fi 
 Managed Coexistence 

 

silabs.com | Building a more connected world. Rev. 1.3  | 23 

• CoEx PTI DATA: EFR32 Frame Control Data Out signal (packet trace data) 
• WiFi TX ACTIVE: Wi-Fi TX Active signal 

The logic analyzer sequence in Figure 5 shows: 
1. Wi-Fi is transmitting and EFR32BG asserts REQUEST, then high PRIORITY. 
2. GRANT is momentarily deasserted by Wi-Fi/PTA, but is reasserted as Wi-Fi finished. 
3. EFR32 radio enables RX mode awaiting master TX. 
4. EFR32 radio receives the master TX. 
5. EFR32 radio exits receive mode. 
6. At start of 150µs IFS, EFR32 radio transmits back to master. 
7. After transmit, EFR32 reasserts PRIORITY and then REQUEST. 
8. Wi-Fi resumes transmission. 

Example 2: Configure EFR32 PTA support to operate with multi-radio 2-Wire PTA with active-low REQUEST 
• Multiple EFR32 radios (external 1 kΩ ±5% pull-up required on REQUEST) 
• REQUEST shared, active low, PC10 
• GRANT, active low, PF3 
• PRIORITY unused 
• REQUEST_WINDOW is 50 µs 
• Disabled Abort transmission mid packet if GRANT is lost 
• RHO unused 
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The required #defines in hal-config.h are: 

// $[COEX] 
#define HAL_COEX_ENABLE                              (1) 
 
#define BSP_COEX_REQ_PIN                             (10U) 
#define BSP_COEX_REQ_PORT                            (gpioPortC) 
#define BSP_COEX_REQ_ASSERT_LEVEL                    (0) 
#define HAL_COEX_REQ_WINDOW                          (50U) 
#define HAL_COEX_REQ_SHARED                          (1) 
#define HAL_COEX_REQ_BACKOFF                         (15U) 
 
#define BSP_COEX_GNT_PIN                             (3U) 
#define BSP_COEX_GNT_PORT                            (gpioPortF) 
#define BSP_COEX_GNT_ASSERT_LEVEL                    (0) 
#define HAL_COEX_TX_ABORT                            (0) 
 
//#define BSP_COEX_PRI_PIN                             (12U) 
//#define BSP_COEX_PRI_PORT                            (gpioPortD) 
//#define BSP_COEX_PRI_ASSERT_LEVEL                    (1) 
//#define HAL_COEX_PRIORITY_DEFAULT                    (1) 
//#define HAL_COEX_PRI_SHARED                          (0) 
 
//#define BSP_COEX_RHO_PIN                             (11U) 
//#define BSP_COEX_RHO_PORT                            (gpioPortC) 
//#define BSP_COEX_RHO_ASSERT_LEVEL                    (1) 
 
#define HAL_COEX_PWM_DEFAULT_ENABLED                 (0) 
#define HAL_COEX_PWM_REQ_PERIOD                      (78U) 
#define HAL_COEX_PWM_REQ_DUTYCYCLE                   (20U) 
#define HAL_COEX_PWM_PRIORITY                        (0) 
//#define BSP_COEX_PWM_REQ_PIN                         (6U) 
//#define BSP_COEX_PWM_REQ_PORT                        (gpioPortC) 
//#define BSP_COEX_PWM_REQ_ASSERT_LEVEL                (1) 
 
#define HAL_COEX_DP_ENABLED                          (0) 
//#define HAL_COEX_DP_PULSE_WIDTH_US                   (20U) 
//#define HAL_COEX_DP_TIMER                            (HAL_TIMER_TIMER1) 
//#define BSP_COEX_DP_CHANNEL                          (3) 
//#define BSP_COEX_DP_REQUEST_INV_CHANNEL              (4) 
//#define BSP_COEX_DP_RACLNAEN_INV_CHANNEL             (8) 
//#define BSP_COEX_DP_PIN                              (12U) 
//#define BSP_COEX_DP_PORT                             (gpioPortD) 
//#define BSP_COEX_DP_LOC                              (11U) 
//#define BSP_COEX_DP_CC0_PIN                          (6U) 
//#define BSP_COEX_DP_CC0_PORT                         (gpioPortC) 
//#define BSP_COEX_DP_CC0_LOC                          (11U) 
// [COEX]$ 
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The logic analyzer capture in Figure 6 shows the PTA interface, Wi-Fi radio state, and EFR32 radio state for an EFR32 radio configured 
for multi-radio 2-Wire PTA with active-low REQUEST: 

 
Figure 6. Example CONNECTION event (master) for Multi-EFR32 2-Wire Wi-Fi/PTA Logic Analyzer Capture 

(first anchor point in CONNECTION, using active-low REQUEST) 

where: 
• REQUEST: active low, shared (open-drain) REQUEST input/output 
• GRANT: active low GRANT input 
• CoEx TX ACTIVE: EFR32 TX Active control signal (configured via sample code in section 5.1, Example TX_ACTIVE/RX_ACTIVE) 
• CoEx RX ACTIVE: EFR32 RX Active control signal (configured via sample code in section 5.1, Example TX_ACTIVE/RX_ACTIVE) 
• CoEx PTI FRAME: EFR32 Frame Control Data Frame signal (packet trace frame/synch) 
• CoEx PTI DATA: EFR32 Frame Control Data Out signal (packet trace data) 

The logic analyzer sequence in Figure 6 shows: 
1. At REQUEST_WINDOW before the CONNECTION event, Shared REQUEST signal is tested and found not asserted by another 

EFR32 radio, so EFR32 radio asserts REQUEST. 
2. Wi-Fi/PTA responds with GRANT asserted. 
3. At end of REQUEST_WINDOW (start of CONNECTION event), EFR32 tests GRANTS, which is asserted. 
4. With GRANT asserted at start of CONNECTION event, EFR32 executes transmit. 
5. After transmit is complete and before end if 150µs IFS, EFR32 enables receive to capture expected response from CONNECTION 

slave device. 
6. EFR32 device receives device and disables receive. 
7. EFR32 repeats transmit/receive for four additional cycles as part of this first anchor point. 
8. After last receive, EFR32 deasserts REQUEST. 
9. Wi-Fi/PTA responds with GRANT deasserted. 
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5 Application Code Coexistence Extensions 

5.1 Example TX_ACTIVE/RX_ACTIVE 

It is helpful to access the EFR32 radio state during PTA coexistence debugging. The following code examples create the TX_ACTIVE 
and RX_ACTIVE signals seen in the previous logic analyzer captures. This EFR32MG1P232F256GM48 example pushes TX_ACTIVE 
out PD10 and RX_ACTIVE out PD11. Other GPIOs can be used with changes in #defines. Consult the design-specific EFR32xG 
datasheet and reference manual for details on changing #defines values to other EFR32 devices and to alternate GPIOs. 

// Enable TX_ACT signal through GPIO PD10 
#define _PRS_CH_CTRL_SOURCESEL_RAC2            0x00000020UL 
#define PRS_CH_CTRL_SOURCESEL_RAC2             (_PRS_CH_CTRL_SOURCESEL_RAC2 << 8) 
#define _PRS_CH_CTRL_SIGSEL_RACPAEN            0x00000004UL 
#define PRS_CH_CTRL_SIGSEL_RACPAEN             (_PRS_CH_CTRL_SIGSEL_RACPAEN << 0) 
#define TX_ACTIVE_PRS_SOURCE PRS_CH_CTRL_SOURCESEL_RAC2 
#define TX_ACTIVE_PRS_SIGNAL PRS_CH_CTRL_SIGSEL_RACPAEN 
 
#define TX_ACTIVE_PRS_CHANNEL 5 
#define TX_ACTIVE_PRS_LOCATION 0 
#define TX_ACTIVE_PRS_PORT gpioPortD 
#define TX_ACTIVE_PRS_PIN 10 
#define TX_ACTIVE_PRS_ROUTELOC_REG ROUTELOC1 
#define TX_ACTIVE_PRS_ROUTELOC_MASK (~0x00003F00UL) 
#define TX_ACTIVE_PRS_ROUTELOC_VALUE PRS_ROUTELOC1_CH5LOC_LOC0 // PD10 
#define TX_ACTIVE_PRS_ROUTEPEN PRS_ROUTEPEN_CH5PEN 
 
// Enable RX_ACT signal through GPIO PD11 
#define _PRS_CH_CTRL_SOURCESEL_RAC2            0x00000020UL 
#define PRS_CH_CTRL_SOURCESEL_RAC2             (_PRS_CH_CTRL_SOURCESEL_RAC2 << 8) 
#define _PRS_CH_CTRL_SIGSEL_RACRX              0x00000002UL 
#define PRS_CH_CTRL_SIGSEL_RACRX               (_PRS_CH_CTRL_SIGSEL_RACRX << 0) 
#define RX_ACTIVE_PRS_SOURCE PRS_CH_CTRL_SOURCESEL_RAC2 
#define RX_ACTIVE_PRS_SIGNAL PRS_CH_CTRL_SIGSEL_RACRX 
 
#define RX_ACTIVE_PRS_CHANNEL 6 
#define RX_ACTIVE_PRS_LOCATION 13 
#define RX_ACTIVE_PRS_PORT gpioPortD 
#define RX_ACTIVE_PRS_PIN 11 
#define RX_ACTIVE_PRS_ROUTELOC_REG ROUTELOC1 
#define RX_ACTIVE_PRS_ROUTELOC_MASK (~0x003F0000UL) 
#define RX_ACTIVE_PRS_ROUTELOC_VALUE PRS_ROUTELOC1_CH6LOC_LOC13 // PD11 
#define RX_ACTIVE_PRS_ROUTEPEN PRS_ROUTEPEN_CH6PEN 
 
CMU_ClockEnable(cmuClock_PRS, true); // enable clock to PRS 
 
// Setup PRS input as TX_ACTIVE signal 
PRS_SourceAsyncSignalSet(TX_ACTIVE_PRS_CHANNEL, TX_ACTIVE_PRS_SOURCE, TX_ACTIVE_PRS_SIGNAL); 
// enable TX_ACTIVE output pin with initial value of 0 
GPIO_PinModeSet(TX_ACTIVE_PRS_PORT, TX_ACTIVE_PRS_PIN, gpioModePushPull, 0); 
// Route PRS CH/LOC to TX Active GPIO output 
PRS->TX_ACTIVE_PRS_ROUTELOC_REG = (PRS->TX_ACTIVE_PRS_ROUTELOC_REG & 
TX_ACTIVE_PRS_ROUTELOC_MASK) | TX_ACTIVE_PRS_ROUTELOC_VALUE; 
PRS->ROUTEPEN |= TX_ACTIVE_PRS_ROUTEPEN; 
 
// Setup PRS input as RX_ACTIVE signal 
PRS_SourceAsyncSignalSet(RX_ACTIVE_PRS_CHANNEL, RX_ACTIVE_PRS_SOURCE, RX_ACTIVE_PRS_SIGNAL); 
// enable RX_ACTIVE output pin with initial value of 0 
GPIO_PinModeSet(RX_ACTIVE_PRS_PORT, RX_ACTIVE_PRS_PIN, gpioModePushPull, 0); 
// Route PRS CH/LOC to RX Active GPIO output 
PRS->RX_ACTIVE_PRS_ROUTELOC_REG = (PRS->RX_ACTIVE_PRS_ROUTELOC_REG & 
RX_ACTIVE_PRS_ROUTELOC_MASK) | RX_ACTIVE_PRS_ROUTELOC_VALUE; 
PRS->ROUTEPEN |= RX_ACTIVE_PRS_ROUTEPEN; 
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6 Coexistence Backplane Evaluation Board (EVB) 

Silicon Labs’ EFR32 coexistence solution can be evaluated by ordering an EFR32MG Wireless SoC Starter Kit (WSTK) #SLWSTK6000B 
and a Coexistence Backplane EVB (#SLWSTK-COEXBP). For more information, see UG350: Silicon Labs Coexistence Development Kit 
(SLWSTK-COEXBP) for details. 
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7 Conclusions 

Co-located, strong Wi-Fi can have a substantial impact on Bluetooth performance. 802.15.4 performance with co-located Wi-Fi can be 
improved through unmanaged and managed coexistence techniques. Silicon Labs recommends the following unmanaged coexistence 
strategies: 
1. Implement frequency separation. 
2. Operate Wi-Fi with 20.MHz bandwidth. 
3. Increase antenna isolation. 
4. Use Bluetooth Retry Mechanisms. 
5. Remove FEM (or operate FEM LNA in bypass). 

With market trends toward higher Wi-Fi TX power, higher Wi-Fi throughput, and integration of Wi-Fi and Bluetooth, and other IoT radios, 
into the same device, unmanaged techniques alone may prove insufficient, so that a managed coexistence solution is required. Even 
with a managed coexistence solution, all unmanaged coexistence recommendations are still necessary. Silicon Labs recommends the 
following managed coexistence strategies: 
1. Wi-Fi/PTA devices providing 802.15.2-derived Packet Traffic Arbitration. 
2. Silicon Labs’ EFR32 PTA solution: 

1. One to four GPIOs implementing a combination of REQUEST, GRANT, PRIORITY, and RHO 
2. Supports both single-EFR32 and multi-EFR32 configurations with single Wi-Fi/PTA interface 
3. Silicon Labs’ coexistence library and hal-config.h #define settings to configure EFR32 PTA support for available GPIO pins and 

for compatibility with the chosen Wi-Fi/PTA device 
4. Silicon Labs’ API, supporting runtime PTA reconfiguration (see section 4.2.2, Run-Time PTA Re-configuration and section 4.2.3, 

Run-Time PTA Debug Counters 

Wi-Fi/802.15.4 coexistence test results show substantial Bluetooth performance improvements when PTA is utilized: 
1. Connection stability 

1. Prevent user frustration with unstable product function as Wi-Fi throughput varies. 
2. Substantially reduced message failure with associated throughput improvement: 

1. Improves end-node battery life. 
2. Reduces message latency. 
3. Bluetooth remains operational, even during high Wi-Fi duty cycles. 
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8 Revision History 

Revision Date Bluetooth Bluetooth Mesh Summary of Major SDK and Document Changes 
1.3 Feb 2020 2.13.2.0 1.6.1.0 • Deleted all text dealing with the implementation of 

managed coexistence and moved it to AN1243: Timing and 
Test Data for EFR32 Coexistence with Wi-Fi available 
under non-disclosure from Silicon Labs technical support. 
In prior revisions, this content resided in AN1128-NDA: 
Bluetooth® Coexistence with Wi-Fi which has been 
deprecated. 

1.2 Jan 2019 2.13.1.0 1.6.1.0 • Updated PTA REQUEST to PRIORITY timing. 
• Updated Directional PRIORITY PRS/TIMER 

implementation and added timing diagrams. 
• Added Directional PRIORITY run-time configuration BGAPI 

command. 
• Removed PWM and Directional PRIORITY errata. 

1.1 Dec 2019 2.13.0.0 1.6.1.0 • Added SL Thread notice on first page. 
• Added Link Layer PRIORITY support. 
• Added 100% Passive SCAN and Bluetooth mesh ADV-

Bearer support. 
• Added PWM information (not functional in Bluetooth 

2.13.0.0). 
• Added Directional PRIORITY support. 

1.0 Dec 2018 2.11.0.0 2.8.0.0 • Initial release 
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