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Abstract: The covariant phase space method of Iyer, Lee, Wald, and Zoupas gives

an elegant way to understand the Hamiltonian dynamics of Lagrangian field theories

without breaking covariance. The original literature however does not systematically

treat total derivatives and boundary terms, which has led to some confusion about how

exactly to apply the formalism in the presence of boundaries. In particular the original

construction of the canonical Hamiltonian relies on the assumed existence of a certain

boundary quantity “B”, whose physical interpretation has not been clear. We here

give an algorithmic procedure for applying the covariant phase space formalism to field

theories with spatial boundaries, from which the term in the Hamiltonian involving B

emerges naturally. Our procedure also produces an additional boundary term, which

was not present in the original literature and which so far has only appeared implicitly

in specific examples, and which is already nonvanishing even in general relativity with

sufficiently permissive boundary conditions. The only requirement we impose is that

at solutions of the equations of motion the action is stationary modulo future/past

boundary terms under arbitrary variations obeying the spatial boundary conditions;

from this the symplectic structure and the Hamiltonian for any diffeomorphism that

preserves the theory are unambiguously constructed. We show in examples that the

Hamiltonian so constructed agrees with previous results. We also show that the Poisson

bracket on covariant phase space directly coincides with the Peierls bracket, without

any need for non-covariant intermediate steps, and we discuss possible implications for

the entropy of dynamical black hole horizons.ar
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1 Introduction

The most basic problem in physics is the initial-value problem: given the state of a

system at some initial time, in what state do we find it at a later time? This problem

is most naturally discussed within the Hamiltonian formulation of classical/quantum

mechanics. In relativistic theories however it is difficult to use this formalism without

destroying manifest covariance: any straightforward approach requires one to pick a
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preferred set of time slices. Such a choice is especially inconvenient in theories which

are generally-covariant, such as Einstein’s theory of gravity.

The standard approach to this problem is to de-emphasize the Hamiltonian formal-

ism, restricting classically to Lagrangians and quantum mechanically to path integrals.

This works fine for many applications, but there remain some topics, such as the initial-

value problem, for which the Hamiltonian formalism is too convenient to dispense with.

For example it is only in the Hamiltonian formalism that one can do a proper account-

ing of the degrees of freedom in a system, and thermodynamic quantities such as energy

and entropy are naturally defined there.

In relativistic field theories there is an elegant formalism due to Iyer, Lee, Wald, and

Zoupas, which, building on earlier ideas from [1–4], presents Hamiltonian mechanics in

a manner that preserves manifest Lorentz or diffeomorphism invariance: the covariant

phase space formalism [5–9].1 This method is well-known in the relativity community,

where in particular it was used by Wald to derive a generalization of the area formula for

black hole entropy to higher-derivative gravity [6], and it has been showing up fairly

often in recent discussions of the AdS/CFT correspondence (see e.g. [11–19]), the

asymptotic symmetry structure of gravity in Minkowski space [20, 21], and in attempts

to define “near-horizon” symmetries associated to black holes [22–24].

This note grew out of the authors’ attempts to understand the covariant phase

space formalism. Its primary goal is pedagogical: to present that formalism in a way

that avoids some confusions which the authors, and apparently also others, ran into in

studying the original literature. These confusions have to do with the role of boundary

terms and total derivatives in the formalism, which in the standard presentation [7]

were treated in a somewhat cavalier manner. Indeed in [7] boundary terms and total

derivatives were ignored for most of the initial discussion, but then the existence of the

Hamiltonian was presented as requiring the existence of a boundary quantity called

B obeying a certain integrability condition.2 Moreover no general reassurance as to

when such a quantity exists was given, which is surprising from the point of view of

the ordinary canonical formalism: usually the Hamiltonian can be obtained from the

Lagrangian algorithmically via the equation H = paq̇
a−L. In a formalism which treats

boundary terms systematically, the existence of the Hamiltonian should be automatic

(as for example is the case in the non-covariant analysis of general relativity given in

[26]). Our goal in this note is to give such a systematic treatment within the covariant

1This description of the history is somewhat over-simplified, see the introduction of [10] for a more

detailed discussion of the antecedents of the formalism.
2This was also the style of argument in the classic discussion [25] of the asymptotic symmetries of

general relativity in asymptotically-flat space, where (using non-covariant techniques) the form of the

Hamiltonian was motivated using consistency requirements instead of derived systematically.
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phase space formalism. As a bonus, we will find that the formula given in [7] for the

canonical Hamiltonian is not correct in general: there is an additional boundary term

which is nonzero even in general relativity for sufficiently permissive boundary condi-

tions, and which is generically nonzero for theories with sufficiently many derivatives.

After giving the general formalism we will illustrate it in a few examples, recovering

known results derived using non-covariant methods in the appropriate cases.

Our results are simple enough that we can briefly describe them here. Indeed we

consider a classical field theory action

S =

∫
M

L+

∫
∂M

`, (1.1)

where L is a d-form and ` is a (d − 1)-form. ∂M in general includes both spatial and

future/past pieces, in this paper we do not consider null boundaries. The variation of

L always has the form

δL = Eaδφ
a + dΘ, (1.2)

where Ea = 0 are the equations of motion and Θ is a (d − 1)-form which is linear in

the variations of the fields φa. Stationarity of the action up to future/past boundary

terms requires

(Θ + δ`) |Γ = dC, (1.3)

where Γ is the spatial boundary and C is a (d− 2)-form defined on Γ that is also linear

in the field variations. The (pre-)symplectic form of this system is given by

Ω̃ =

∫
Σ

δ (Θ− dC) , (1.4)

where Σ is a Cauchy slice and the precise meaning of the second variation implicit in this

formula is explained below (basically we re-interpret δ as the exterior derivative on the

space of field configurations). Finally if ξµ is a vector field generating a one-parameter

family of diffeomorphisms which preserve the boundary conditions, and under which

L, `, and C transform covariantly, then the Hamiltonian which generates this family

of diffeomorphisms is given by

Hξ =

∫
Σ

Jξ +

∫
∂Σ

(ξ · `−Xξ · C) . (1.5)

Here “ξ · `” indicates insertion of ξ into the first argument of `, “Xξ · C” denotes

replacing δφa in C by the Lie derivative Lξφa, and Jξ = Xξ ·Θ− ξ · L is the “Noether

current”. In theories where L is covariant under arbitrary diffeomorphisms, such as

general relativity, it was shown in [7] that there must be a local (d− 2)-form Qξ such
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that Jξ = dQξ. Thus in such theories the Hamiltonian conjugate to ξ is a pure boundary

term:

Hξ =

∫
∂Σ

(Qξ + ξ · `−Xξ · C) . (1.6)

The remainder of this paper explains these formulas in more detail and illustrates

them using examples. In a final section we show that the Poisson bracket in the

covariant phase space formalism is generally equivalent to the Peierls bracket, we give

a proof of Noether’s theorem for continuous symmetries within the covariant phase

space approach, and we comment on some subtleties arising in the application of our

results to asymptotic boundaries.

The inclusion of boundary terms in the covariant phase space formalism was pre-

viously considered in [8, 12, 14, 20, 27–31], each of which has some nontrivial overlap

with our discussion. In particular setting C = 0 in our formalism one obtains a for-

malism described in [8], but as we explain below this is an inappropriate restriction. A

formalism with nonzero C was introduced in [12, 14, 20], but the covariance properties

of C were not studied and its contribution to canonical charges such as the Hamiltonian

was shown only in general relativity with specific boundary conditions. An alternative

formalism in which many of the same issues can be addressed was given in [32, 33];

we have not studied in detail the relationship between that formalism and ours, but it

requires integrability assumptions of the type we avoid and the treatment of boundary

terms seems to be less general than ours.3 We believe our treatment of boundary terms

is the most complete so far, and also perhaps the most efficient.

1.1 Notation

In this paper we make heavy use of differential forms, our conventions for these are

that if ω is a p form and σ is a q form, we have

(ω ∧ σ)µ1...µpν1...νq =
(p+ q)!

p!q!
ω[µ1...µpσν1...νq ]

(dω)µ0...µp = (p+ 1)∂[µ0ωµ1...µp]

(?ω)µ1...µd−p =
1

p!
εν1...νpµ1...µd−pων1...νp . (1.7)

Here “[·]′′ denotes averaging over index permutations weighted by sign, so for example

ω[µσν] = 1
2

(ωµσν − ωνσµ), and ε is the volume form. The Lie derivative of any differ-

ential form ω with respect to a vector field X is related to the exterior derivative via

Cartan’s magic formula

LXω = X · dω + d(X · ω), (1.8)

3We thank Geoffrey Compère for explaining several aspects of the formalism of [32, 33].
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where · denotes inserting a vector into the first argument of a differential form (if

ω is a zero-form we define X · ω = 0). Throughout the paper we will use “d” to

indicate the exterior derivative on spacetime and “δ” to indicate the exterior derivative

on configuration space (and also its pullback to pre-phase space and phase space), a

notation we discuss further around equation (2.22).

We take spacetime to be a manifold with boundary M , whose boundary we call

∂M , and we are often interested a Cauchy surface Σ and its boundary ∂Σ. We here set

up some conventions about how to assign orientations to these various submanifolds

of M . Given an orientation on an orientable manifold with boundary M , there is a

natural orientation induced on ∂M such that Stokes’ theorem∫
M

dω =

∫
∂M

ω (1.9)

holds. If M has a metric, as it always will for us, then we can describe this induced

orientation by saying we require that the boundary volume form ε∂M is related to the

spacetime volume form ε by

ε = n ∧ ε∂M , (1.10)

where n is the “outward pointing” normal form defined by equation (2.35) below. We

will always use this orientation for ∂M . We will also adopt the orientation on Σ given

by viewing it as the boundary of its past in M , and we will adopt the orientation on

∂Σ given by viewing it as the boundary of Σ. So for example if we take M to be the

region with x ≤ 0 in Minkowski space, with volume form ε = dt ∧ dx ∧ dy ∧ dz, and

we take Σ to be the surface t = 0, then the volume form ε∂M on ∂M is −dt ∧ dy ∧ dz,

the volume form εΣ on Σ is dx ∧ dy ∧ dz, and the volume form ε∂Σ on ∂Σ is dy ∧ dz.

Note in particular that the volume form on ∂Σ is not obtained by viewing ∂Σ as the

boundary of its past within ∂M , these differ by a sign. Sometimes we will discuss a

Cauchy surface Σ− which is the past boundary of a spacetime M , the most convenient

way to maintain our conventions is to say that when this surface appears implicitly as

part of ∂M we give it the opposite orientation from when it appears explicitly as Σ−.

2 Formalism

2.1 Hamiltonian mechanics

Hamiltonian mechanics is often presented as the dynamics of a phase space labeled by

position and momentum coordinates qa, pa, with any scalar function H on this phase
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space generating dynamical evolution via Hamilton’s equations

q̇a =
∂H

∂pa

ṗa = −∂H
∂qa

. (2.1)

Unfortunately this split of coordinates into positions and momenta makes it difficult to

preserve covariance. There is however an elegant geometric formulation of Hamiltonian

mechanics which allows us to avoid making such a split. Namely we instead view phase

space as an abstract manifold P , endowed with a closed non-degenerate two-form Ω

called the symplectic form [34]. A manifold equipped with such a form is called a

symplectic manifold. We now briefly review Hamiltonian mechanics from this point of

view.

Let P be a symplectic manifold, with symplectic form Ω. We can view Ω as a map

from vectors to one-forms via Ω(Y )(X) ≡ Ω(X, Y ), and since Ω is non-degenerate this

map will have an inverse, Ω−1, which we can also view as an anti-symmetric two-vector

mapping a pair of one-forms to a real number via Ω−1(ω, σ) ≡ ω(Ω−1(σ)). Given any

function H : P → R, we can then define a vector field XH on P via

XH(f) ≡ Ω−1(δf, δH), (2.2)

where f : P → R is an arbitrary function on P . Here we introduce a notation where

we denote the exterior derivative on phase space by δ to distinguish it from the exterior

derivative d on spacetime which appears below. The idea is then to view the integral

curves of XH in P as giving the time evolution of the system generated by viewing H

as the Hamiltonian. We can express this using the Poisson bracket of two functions f

and g on P , defined by

{f, g} ≡ Ω−1(δf, δg) = Ω(Xg, Xf ), (2.3)

in terms of which we have the time evolution

ḟ ≡ XH(f) = {f,H} (2.4)

for any function f : P 7→ R. Clearly Ω must be non-degenerate for this dynamics to

be well-defined. It is less obvious why Ω is required to be closed, and in fact there

are dynamical systems where it isn’t, but in such systems the Poisson bracket is not

preserved under time evolution by an arbitrary Hamiltonian so it cannot become a
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commutator in quantum mechanics.4 The old-fashioned version of the Hamiltonian

formalism using qa and pa is recovered from these definitions by taking

Ω =
∑
a

δpa ∧ δqa. (2.6)

The standard interpretation of the phase space of a dynamical system is that it

labels the set of distinct initial conditions on a time slice. This interpretation is not

covariant, as we need to specify the time slice. The main idea of the covariant phase

space formalism, going back to [1–4], is roughly speaking to instead define phase space

as the set of solutions of the equations of motion. To the extent that the initial value

problem is well-defined, these should be in one-to-one correspondence with the set of

initial conditions on any time slice. This definition however needs some improvement

for theories with continuous local symmetries, since for such theories the initial value

problem is not well-defined [35]. For example a solution Aµ of Maxwell’s equations can

always be turned into another equally good solution by a gauge transformation which

has zero support in a neighborhood of any particular time slice. In the above language,

this problem arises because the naive symplectic form one derives from the Maxwell

Lagrangian is degenerate (we review this example further in section 3.2 below).

Fortunately there is a nice way to deal with this: we instead refer to the set of

solutions of the equations of motion (obeying any needed boundary conditions) as pre-

phase space P̃ . We will soon see that in any Lagrangian field theory this pre-phase

space is always naturally equipped with a pre-symplectic form Ω̃, which is a closed but

possibly degenerate two-form. The physical phase space P is then obtained by quo-

tienting P̃ by the action of the group of continuous transformations whose generators

are zero modes of Ω̃ [1–5]. More explicitly, if X̃ and Ỹ are vector fields on P̃ which are

annihilated by Ω̃, then their commutator [X̃, Ỹ ] ≡ LX̃ Ỹ will also be annihilated by Ω̃.

Indeed using δΩ̃ = 0, X̃ · Ω̃ = Ỹ · Ω̃ = 0, and (1.8), we have

LX̃ Ỹ · Ω̃ = LX̃(Ỹ · Ω̃)− Ỹ · LX̃Ω̃

= −Ỹ ·
(
X̃ · δΩ̃ + δ(X̃ · Ω̃)

)
= 0. (2.7)

4One way to see this is the following: conservation of the Poisson bracket is equivalent to saying

that the Lie derivative LXH
Ω vanishes. From (1.8) we then have

LXH
Ω = XH · δΩ + δ(XH · Ω)

= XH · δΩ + δ(−δH)

= XH · δΩ, (2.5)

so for this to vanish for arbitrary H we need δΩ = 0.
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The set of zero-mode vector fields of Ω̃ thus form a (possibly infinite-dimensional) Lie

algebra, and by Frobenius’s theorem they are jointly tangent to a set of submanifolds

which foliate P̃ . These submanifolds can be thought of as the orbits of the connected

subgroup G̃ of the diffeomorphisms of P̃ whose Lie algebra corresponds to the zero

modes of Ω̃. The physical phase space P is then defined as the quotient of P̃ by this

action:5

P ≡ P̃/G̃. (2.8)

Thus the action of G̃ is a redundancy of description that leaves no imprint on P ; in

local field theories it is typically realized as a set of continuous gauge transformations

which become trivial sufficiently quickly at any boundaries.6

To complete the construction of the phase space P , we must also define a symplectic

form Ω. This is done in the following way. Let π : P̃ → P be the map that that sends

each point in P̃ to its G̃-orbit, let p be a point in P , and let X and Y be vectors in the

tangent space TpP . We can always find a point q ∈ P̃ and vectors X̃ and Ỹ in TqP̃
such that X and Y are the pushforwards of X̃ and Ỹ by π. We then define

Ω(X, Y ) ≡ Ω̃(X̃, Ỹ ). (2.9)

For this Ω to be well-defined, we need to show that it is independent of the arbitrariness

involved in choosing q, X̃, and Ỹ . We first note that two vectors X̃ and X̃ ′ in TqP̃
which both push forward to the same X ∈ TpP can differ only by addition of a vector

annihilated by Ω̃: this ambiguity thus has no effect in (2.9). Secondly we observe that

by definition any two points q, q′ ∈ P̃ which both map to p are related by the group

action: q′ = gq for some g ∈ G̃. This implies that the pushforward X̃ ′ ∈ Tq′P̃ of

X̃ ∈ TqP̃ by g maps via pushforward by π to the same element of TpP that X̃ does

(this follows from π ◦ g = π). Finally we note that Ω̃ is invariant under pushforward

5There is an interesting mathematical subtlety in this construction: the phase space we obtain may

not actually be a manifold [4, 36, 37]. The reason is that there may be special points in P̃ which are

invariant under a nontrivial subgroup of the set of gauge transformations we quotient by, in which

case P will be singular at those configurations. For example in general relativity there can be special

geometries which have continuous isometries, and if those isometries vanish in a neighborhood of any

boundaries then they will correspond to zero modes of Ω̃. In this paper we assume that this does not

happen: at worst it affects only a measure zero set of points in P, and even that seems unlikely to

be realized in asymptotically-AdS or asymptotically-flat spacetimes since isometries which are non-

vanishing at the boundary are not zero modes of Ω̃. We expect a generalization of our formalism could

remove this assumption, but currently we do not think it is worth the additional machinery. For similar

reasons we also do not address the subtleties associated to P̃ and P often being infinite-dimensional

manifolds.
6Discrete gauge symmetries do not lead to zero modes of the pre-symplectic form, but in going

from P̃ to P we should still quotient by some or all of them depending on the boundary conditions.
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by g: this follows from the fact that by (1.8) for any zero mode X̃ of Ω̃ we have

LX̃Ω̃ = X̃ · δΩ̃ + δ(X̃ · Ω̃) = 0. (2.10)

Together these results imply that (2.9) is indeed unambiguous. Finally we note that the

Ω so constructed is non-degenerate: by (2.9) any nonzero vector field X annihilated by

Ω would be the pushforward of a vector field X̃ annihilated by Ω̃, but by construction

these have all already been quotiented by and thus their pushforwards by π must vanish.

Therefore Ω is indeed a symplectic form on P .

This discussion has so far been rather abstract; an example may be helpful. Con-

sider a free non-relativistic particle, with action

L =
m

2
ẋ2. (2.11)

There is a two-parameter set of solutions

x(t) =
p

m
t+ x0, (2.12)

so we can use (x0, p) as coordinates on phase space. The symplectic form (here G̃ is

trivial so no quotient is needed) is δp ∧ δx0, and the Hamiltonian evolution on this set

of solutions generated by the Hamiltonian H = p2

2m
is

p(t′) = p

x0(t′) =
p

m
t′ + x0. (2.13)

We emphasize the difference in interpretation between equations (2.12) and (2.13): the

former gives a parametrization of the set of solutions by saying what is going on at

t = 0, while the latter gives an evolution on that set which is nontrivial even though

each solution “already knows” its own evolution.7 This distinction is especially clear

if we evolve in this phase space using a Hamiltonian other than p2

2m
, we discuss this

further in section 4 below.

2.2 Local Lagrangians

In Lagrangian field theories we can make the discussion of the previous section more

concrete using the formalism of [5–9]. In this formalism the Lagrangian density is

converted into a Lagrangian d-form L, which is a local functional of the dynamical

fields φ and their derivatives, and also potentially of some non-dynamical background

7It may seem that the time t = 0 is special here, but we only used it to choose coordinates on P.

The evolution is defined geometrically, and can be described using whatever coordinates we like.
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fields χ and their derivatives. For example for a self-interacting scalar field theory we

have

L(φ, g) = −
(

1

2
∇µφ∇νφg

µν + V (φ)

)
ε, (2.14)

where φ is a dynamical field, gµν is a non-dynamical background metric, and ε is the

spacetime volume form. To avoid confusion, we emphasize that in saying that L is

a d-form, we mean that it transforms as a d-form under diffeomorphisms which act

on both the dynamical and background fields. In the following subsection we will

discuss the special case of covariant Lagrangians, which transform as d-forms also

under diffeomorphisms which act only the dynamical fields.

In [5–9] the Lagrangian form was viewed as only being defined up to the addition

of a total derivative, but since we are being careful about boundary terms we will not

allow the Lagrangian to be arbitrarily modified by the addition of a total derivative.

Indeed when we integrate the Lagrangian d-form to define an action, we will include

a boundary term obtained by integrating over ∂M a (d − 1)-form ` built out of the

restrictions of φ and χ to the boundary ∂M , and also possibly their normal derivatives

there:

S =

∫
M

L+

∫
∂M

`. (2.15)

Thus we may shift L by a total derivative only if we shift ` in a compensating manner

that preserves S, and for the most part we will not do this.

The basic idea of Lagrangian mechanics is that, after imposing appropriate bound-

ary conditions at ∂M , we should look for configurations φc about which the action is

stationary under arbitrary variations of the dynamical fields which obey those bound-

ary conditions. In fact the truth is slightly more subtle, due to the fundamentally

different meaning of boundary conditions at spatial boundaries and boundary condi-

tions at future/past boundaries. The former are part of the definition of the theory,

while the latter specify a state within that theory. If we wish to allow variations that

change the state, which indeed we do, then we do not wish to impose any boundary

conditions at future/past boundaries. Stationarity of the action under such variations

would be too strong of a requirement, typically it would lead to a problem with few or

no solutions. The right approach is instead to only require that the action be stationary

up to terms which are localized at the future and past boundaries. If we decompose

∂M = Γ∪Σ− ∪Σ+, where Γ is the spatial boundary, Σ− is the past boundary, and Σ+

is the future boundary, then we should look for configurations Φc about which

δS =

∫
Σ+

Ψ−
∫

Σ−

Ψ, (2.16)

– 10 –



where the variation obeys the boundary conditions at Γ and Ψ is locally constructed

out of the dynamical and background fields at Σ±.

To discuss this more explicitly it is convenient to note that, by way of “integration

by parts”-style manipulations, any local Lagrangian form must obey

δL(φ, χ) = Ea(φ, χ)δφa + dΘ(φ, χ, δφ), (2.17)

where a is an index running over the dynamical fields, δφa are variations of those fields,

d is the spacetime exterior derivative, Θ is a local functional of the dynamical fields

φ, the background fields χ, and their derivatives, and is also a homogeneous linear

functional of the δφ and their derivatives. The Ea are local functionals of φ, χ, and

their derivatives. Θ is a (d−1)-form, and is called the symplectic potential. It is defined

only up to addition of a total derivative dY for Y some local (d−2) form. The variation

of the action (2.15) is thus

δS =

∫
M

Eaδφ
a +

∫
∂M

(δ`+ Θ) , (2.18)

where we have used Stokes’ theorem (1.9). For this to obey (2.16) for arbitrary varia-

tions obeying the boundary conditions at Γ about a configuration φc, and since we can

always adjust such variations arbitrarily in the interior of M , we see that φc must obey

the equations of motion

Ea(φc, χ) = 0. (2.19)

We moreover see that to avoid a term at the spatial boundary Γ in (2.16), we need the

second term in (2.18) to only have support on Σ±. A first guess is that we therefore

should require (δ`+Θ)|Γ = 0 for all variations obeying the boundary conditions. Given

the ambiguity of shifting Θ by a total derivative, however, this is unnatural. A more

general sufficient condition, which we believe (but have not shown) is also necessary, is

to require that

(Θ + δ`)|Γ = dC, (2.20)

where C is a local (d− 2)-form on Γ which is constructed from the φ, χ, δφ, and their

derivatives. As with L and `, any addition to Θ of a total derivative dY must be

complemented by an addition of Y to C, such that (2.20) is preserved.8 We thus may

rewrite (2.18) as

δS =

∫
M

Eaδφ
a +

∫
Σ+−Σ−

(Θ + δ`− dC) , (2.21)

8 Allowing C 6= 0 may at first seem like a trivial generalization, since after all we could extend C

arbitrarily into the interior of M and then define Θ′ = Θ − dC and C ′ = 0. It will however be quite

convenient below to take Θ to be covariant, and dC generally will not extend to M in a covariant

manner. This is also the reason why we have not redefined L′ = L + d` and `′ = 0 to get rid of ` in

the action.
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so we have achieved (2.16) with Ψ = Θ + δ` − dC (writing it this way requires us to

extend C to Σ± in an arbitrary manner, but only its values at ∂Σ± actually contribute).

To set up the Hamiltonian formalism, we must now introduce a pre-phase space and

pre-symplectic form. The pre-phase space P̃ we take to be the set of dynamical field

configurations which obey the equations of motion, and also the boundary conditions at

the spatial boundary Γ. We do not impose boundary conditions in the future/past, and

any background field configurations are held fixed. In defining the symplectic form, it

is very useful to first note that there is a convenient change of notation which allows us

to re-interpret quantities like Θ and C as one-forms on P̃ [3]. The idea is that instead

of viewing the quantity δφa(x) as an infinitesimal variation, we can (and from now on

will) view it as a one-form on the set of dynamical field configurations φa(x).9 δ thus

now denotes the exterior derivative for differential forms living on this configuration

space, and the action of δφa(x) on a vector field is given by

δφa(x)

(∫
ddx′f b(φ, x′)

δ

δφb(x′)

)
= fa(φ, x). (2.22)

Thus if we wish to convert δφa(x) from a one-form back to a variation, we act with it

on a vector whose components are the desired variation. In this new notation, Θ and

C are one-forms on configuration space. We may then pull them back to one-forms on

our pre-phase space P̃ by restricting their action to those vectors which are tangent to

P̃ .10

Using this new interpretation of δ we can now introduce our version of the pre-

symplectic current from [5–8], which we define as the pullback to P̃ of the quantity

δΨ:

ω ≡ δΨ|P̃ = δ(Θ− dC)|P̃ . (2.23)

Here we have used δ2 = 0. Since the pullback and exterior derivative are commuting

operations, ω is closed as a two-form on P̃ . Moreover ω vanishes on Γ, since by (2.20)

we have

ω|∂M = δ(Θ + δ`− dC)|P̃,Γ = 0. (2.24)

ω is also closed as a (d− 1)-form on spacetime:

dω = dδ(Θ− dC) = δdΘ = δ(δL− Eaδφa) = −δEa ∧ δφa = 0. (2.25)

9In classical mechanics the term “configuration space” is sometimes used to describe the set of

positions of particles at a fixed time. Here we are instead talking about the set of functions φa(x)

throughout spacetime, our configuration space could also be called the set of histories.
10Tangent vectors to P̃ are precisely those whose components fa(φ, x) obey the linearized equations

of motion, in the sense that Ea(φc + f, χ) = 0 to linear order in f .
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Here we have used that Ea = 0 on P̃ , and also that d and δ commute. Finally we define

the pre-symplectic form on P̃ as

Ω̃ ≡
∫

Σ

ω, (2.26)

where Σ is any Cauchy slice of M . (2.24) and (2.25) ensure that Ω̃ is independent of

the choice of Σ. Moreover from (2.23) we have

Ω̃ = δ

(∫
Σ

Θ−
∫
∂Σ

C

)
, (2.27)

so Ω̃ is independent of how we chose to extend C into the interior of M . Ω̃ will be

degenerate if there are continuous local symmetries, but once we quotient P̃ by the

subgroup G̃ of pre-phase space diffeomorphisms generated by the zero modes of Ω̃ (and

possibly its extension by other discrete gauge symmetries) then the resulting symplectic

form Ω on phase space will be non-degenerate (and closed since ω is closed on P̃).

2.3 Covariant Lagrangians

The covariant phase space formalism is especially useful for systems whose dynamics

are invariant under at least some continuous subgroup of the spacetime diffeomorphism

group. We first recall that by definition the variation of any dynamical tensor field φ

under the infinitesimal diffeomorphism generated by a vector field ξµ is

δξφ = Lξφ, (2.28)

with the right hand side being the Lie derivative of φ with respect to ξ [38]. To make

contact with the notation of the previous section we can define a vector field

Xξ ≡
∫
ddxLξφa(x)

δ

δφa
(2.29)

on configuration space, in terms of which we have

δξφ
a(x) = LXξφa(x) = Xξ · δφa(x). (2.30)

Here “·” again denotes the insertion of a vector into the first (and in this case only)

argument of a differential form. More generally the infinitesimal diffeomorphism trans-

formation of any configuration-space tensor σ, such as the one-forms Θ and C or the

two-form ω, is given by

δξσ ≡ LXξσ. (2.31)

In particular from (1.8) we have

δξδφ
a(x) = δ(Xξ · δφa(x)) = δ(Lξφa(x)), (2.32)
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so “the diffeomorphism of a variation is the variation of a diffeomorphism”, as is the

case for the standard interpretation of the symbol δφa(x) as an infinitesimal function.

We now introduce a key definition: a configuration-space tensor σ which is also

a spacetime tensor locally constructed out of the dynamical and background fields is

covariant under the infinitesimal diffeomorphism generated by a vector field ξµ if

δξσ = Lξσ, (2.33)

where we emphasize that Lξ is the spacetime Lie derivative. This is to be distinguished

from the configuration-space Lie derivative LXξ appearing in (2.31): the latter imple-

ments the diffeomorphism on dynamical fields only, while the former implements it on

both dynamical and background fields. This distinction is important because symme-

tries are only allowed to act on dynamical fields, so for σ to transform correctly under

a diffeomorphism symmetry it must be covariant.

The simplest way for a configuration space and spacetime tensor σ locally con-

structed out of dynamical and background fields to be covariant under some ξ is for

all background fields involved in its construction to be invariant under ξ, in the sense

that Lξχi = 0 where i runs over background fields. For example the Lagrangian form

(2.14) is covariant under any diffeomorphisms which are isometries of the background

metric g, but it is not covariant under general diffeomorphisms. More generally some

non-invariant background fields are allowed as long as the combinations in which they

appear in σ are invariant. An extreme case is for σ to not depend on any nontrivial

background fields at all, as happens for the Einstein-Hilbert Lagrangian in general rel-

ativity, in which case it will be covariant under arbitrary diffeomorphisms.11 In fact

it was shown in [7] that this is the only way for a Lagrangian form to be covariant

under arbitrary diffeomorphisms: it must be built only out of a dynamical metric gµν ,

its associated Riemann tensor Rα
βγδ, tensorial dynamical matter fields, and covariant

derivatives of the latter two.12 Moreover it was also shown that for such Lagrangians

the symplectic potential Θ can always be taken to be covariant under arbitrary dif-

feomorphisms, essentially because the derivation of (2.17) can always be done using

“integration by parts” manipulations on covariant derivatives. Indeed even if there

are nontrivial background fields, we can still choose Θ to be covariant under the sub-

group of diffeomorphisms which preserve all background fields. This is because we

11A trivial background field is one which is invariant under arbitrary diffeomorphisms. One example

is a coupling constant, and another is the ε symbol.
12One small exception is that the Lagrangian in this form may be entirely independent of the metric,

as happens e.g. in Chern-Simons theory, in which case we do not need the metric to be dynamical.

Also [7] did not consider spinor fields or connections on nontrivial bundles, but their argument should

generalize easily to include them.
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could always choose to consider a different theory where all background fields become

dynamical, in which case the Lagrangian form would become covariant under arbitrary

diffeomorphisms, and thus by the argument of [7] so would Θ. Therefore Θ must still be

covariant in the original theory under diffeomorphisms which preserve all background

fields.

Covariance of the Lagrangian form L under the diffeomorphisms generated by a

vector field ξµ is not sufficient for those diffeomorphisms to be symmetries, they must

also respect the boundary conditions and the boundary term at Γ must also be covariant

under them. These requirement are nontrivial, for example many diffeomorphisms do

not even preserve the location of Γ. For a continuous transformation of dynamical

fields to be a symmetry, the action must be invariant under that transformation up

to possible boundary terms at Σ± (see section 4.2 below for more on why this is the

correct requirement). We can write the variation of the action (2.15) by an infinitesimal

diffeomorphism under which L is covariant as

δξS =

∫
M

δξL+

∫
∂M

δξ`

=

∫
∂M

(ξ · L+ δξ`) , (2.34)

where we have used (2.33) and (1.8). To avoid contributions at the spatial boundary

Γ, we first require that at Γ the normal component of ξµ vanishes. This ensures that

ξµ does not move Γ, and also ensures that the first term in (2.34) vanishes. If ` is

covariant with respect to ξ then the second term will also not give a contribution at

Γ, since we then have δξ`|Γ = Lξ`|Γ = d(ξ · `)|Γ, which integrates to a contribution

at ∂Σ±. We will now see however that in general this covariance of ` imposes more

requirements on ξ than just a vanishing normal component at Γ. We thus will need to

restrict consideration to diffeomorphisms obeying these additional requirements (and

also preserving the boundary conditions), since otherwise they will not be symmetries.

In considering what kinds of terms may appear in ` it is useful to adopt the covari-

ant hypersurface formalism, which is a way of discussing the extrinsic properties of a

hypersurface without making any choice of coordinates [38, 39]. To discuss ∂M in this

formalism, we introduce a background scalar field f on M such that

(1) There is a neighborhood of ∂M in which f ≤ 0, and in which f = 0 only on ∂M .

(2) ∂µf is either spacelike or timelike at each point in ∂M , except perhaps at finitely

many “corners” where it is not well-defined and across which its signature can

switch.
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Different choices of f away from ∂M give different foliations of the spacetime near the

boundary. We can then define a normal one-form field

nµ ≡
∂µf√

±∂αf∂βfgαβ
(2.35)

in the vicinity of ∂M , with the ± being determined by whether ∂µf is spacelike or

timelike on the nearby part of ∂M .13 nµ can then be used to define an induced metric

γµν ≡ gµν ∓ nµnν (2.36)

and an extrinsic curvature tensor

Kµν =
1

2
Lnγµν = γ α

µ ∇αnν , (2.37)

where we emphasize that these quantities live in a neighborhood of ∂M . Away from

∂M in this neighborhood they obviously depend on the choice of f , but right on ∂M

they do not.14 This neighborhood will be foliated by slices of constant f , and within

it γ ν
µ can be used to project tensor indices down to ones which are tangent to those

slices. It can also be used to define a hypersurface-covariant derivative, which, acting

on any tensor T that obeys the requirement that contraction of any index with nµ or

nµ vanishes, is defined by

DµT
α1...αm

β1...βn
≡ γ ν

µ γ α1
σ1

. . . γ αm
σm γ ρ1

β1
. . . γ ρn

βn
∇νT

σ1...σm
ρ1...ρn

. (2.38)

This is the unique derivative such that Dµγαβ = 0. γµν , nµ, and Kµν (and also their tan-

gential and normal derivatives) are natural quantities to use in constructing `, together

with tangential and normal derivatives of the dynamical fields.

By construction, ` will transform as a (d − 1)-form under diffeomorphisms which

act on both dynamical and background fields, with f included among the latter. For it

to be covariant we need it to still transform as a (d− 1)-form when only the dynamical

fields transform. We’ve already seen that the covariance of L under the infinitesimal

13This notion is ambiguous in the vicinity of a corner where the signature of ∂µf changes sign, in what

follows the values of any quantities at such corners are always defined by approaching them from the

spatial boundary Γ. Also we note that this (standard) definition has the somewhat counter-intuitive

property that if nµ is timelike and f is increasing towards the future, then nµ is past-pointing.
14To see this, note that if f and f ′ both vanish on ∂M , with both of their gradients having the same

signature, then we must have f ′ = hf , with h some scalar function which is nonvanishing on ∂M . But

then on ∂M we have ∂µf
′ = h∂µf , so they define the same nµ there. γµν will then also be the same,

and so will Kµν since the second equality in (2.37) makes it clear that to define Kµν we only need to

differentiate nµ “along” ∂M .
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diffeomorphisms generated by ξµ requires all ‘bulk” background fields to appear in L

only in combinations which are invariant under those diffeomorphisms. Similarly the

covariance of ` also requires some kind of invariance of f . We only need ` to be covariant

at the spatial boundary Γ, so the strongest condition we could reasonably require is

that

ξν∂νf = 0 (2.39)

everywhere in some neighborhood of Γ, in which case we will will say that ξµ is foliation-

preserving. ` will always be covariant with respect to foliation-preserving diffeomor-

phisms (provided that any other background fields are also invariant). More generally

however we can also consider diffeomorphisms where we only require

nµ1 . . . nµn∇µ1 . . .∇µn (ξνnν) |Γ = 0 (2.40)

for all n = 0, 1, . . . k, in which case we say that ξµ is foliation-preserving at order k.

Any ` which is constructed out of at most k derivatives of f will also be covariant under

such diffeomorphisms,15 and in fact since f appears only inside of nµ, which is foliation-

independent, such an ` will actually also be covariant under foliation-preserving diffeo-

morphisms of order k − 1.16

Finally we consider the covariance of the quantity C appearing in (2.20). We will

assume that given ` and Θ the demonstration of equation (2.20) involves “covariant in-

tegration by parts” manipulations on the boundary, together with imposing the bound-

ary conditions (see sections 3.3, 3.4 for examples of this). The C which appears will

then always be a locally constructed out of the dynamical and background fields and

their derivatives, and it will transform as a (d− 2)-form under diffeomorphisms which

act on both the dynamical and background fields. Moreover like ` it will be covariant

under foliation-preserving diffeomorphisms which preserve any other background fields.

Furthermore if ` involves at most k derivatives of f then C will as well, so C will more

generally at least be covariant under foliation-preserving diffeomorphisms of order k−1.

We will need to use this covariance of C in the following subsection.

2.4 Diffeomorphism charges

We now turn to the problem of constructing the Hamiltonian Hξ that generates the

evolution in phase space corresponding to the diffeomorphisms generated by any vector

15Indeed note that if f were dynamical, we would have δξ∂µ1 . . . ∂µnf = ∂µ1 . . . ∂µn(ξν∂νf). In

fact ∂µ1
. . . ∂µn

f is only a background field, and thus should not transform, but we can still preserve

covariance provided that ∂µ1
. . . ∂µn

(ξν∂νf) = 0 for all n ≤ k, which is equivalent to (2.40) holding for

all n ≤ k.
16This is because if more than one derivative acts on f there will always be at least one which is

taken parallel to the foliation.
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field ξµ which respects the boundary conditions and under which L, `, and C are

covariant. Our strategy will be to first find a function Hξ on pre-phase space obeying

δHξ = −Xξ · Ω̃, (2.41)

with Xξ given by (2.29). For any zero mode X̃ of Ω̃ we have

X̃ · δHξ = Ω̃(X̃,Xξ) = 0, (2.42)

so Hξ will also be a well-defined function on the phase space P . Moreover since Ω̃

defines the non-degenerate symplectic form Ω on P via (2.9), we may use its inverse

there to rewrite (2.41) as

Xξ(f) = Ω−1(δf, δHξ), (2.43)

where Xξ is now defined modulo addition by a zero mode of Ω̃ and f is a function on

P . This is nothing but Hamilton’s equation (2.2), so finding an Hξ on P̃ obeying (2.41)

is sufficient to construct the Hamiltonian on phase space.

We now compute the right hand side of (2.41), aiming to show that indeed it is

equal to δ of something. It is useful [7] to first introduce the Noether current

Jξ ≡ Xξ ·Θ− ξ · L. (2.44)

This is a scalar function on P̃ , and a (d−1)-form on spacetime. Note that we are using

“·” for the insertion of both pre-phase space and spacetime vectors. If L is covariant

under ξ then Jξ is closed as a spacetime form:

dJξ = d(Xξ ·Θ)− d(ξ · L)

= Xξ · (δL− Eaδφa)− LξL
= δξL− LξL− EaLξφa

= 0. (2.45)

In this derivation we have used (2.17), (1.8), (2.19), (2.33), and also that d(Xξ · Θ) =

Xξ · dΘ. We then have the following calculation:

−Xξ · ω = −Xξ · δ(Θ− dC)

= δ (Xξ · (Θ− dC))− LXξ(Θ− dC)

= δJξ + ξ · δL− LξΘ + d (δξC − δ(Xξ · C))

= δJξ + ξ · (dΘ + Eaδφ
a)− LξΘ + d (δξC − δ(Xξ · C))

= δJξ + d (δξC − δ(Xξ · C)− ξ ·Θ) . (2.46)
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Here we have made liberal use of (1.8) for both pre-phase space and spacetime differen-

tial forms, as well as (2.44), (2.17), (2.31), (2.33) (applied to Θ), and (2.19). We have

not yet applied (2.33) to C, since we are only assuming that C is covariant at Γ. We

may do so after integrating over a Cauchy slice Σ, to obtain

−Xξ · Ω̃ =

∫
Σ

δJξ +

∫
∂Σ

(LξC − δ(Xξ · C)− ξ ·Θ)

=

∫
Σ

δJξ +

∫
∂Σ

(ξ · (dC −Θ)− δ(Xξ · C))

= δ

(∫
Σ

Jξ +

∫
∂Σ

(ξ · `−Xξ · C)

)
. (2.47)

Here we have again used (1.8), as well as (2.33) (applied to C) and (2.20), and also

discarded the integral of a total derivative over the closed manifold ∂Σ. Comparing to

(2.41) we see that we have succeeded in obtaining an exterior derivative on pre-phase

space, with Hξ given by

Hξ ≡
∫

Σ

Jξ +

∫
∂Σ

(ξ · `−Xξ · C) + constant, (2.48)

where the arbitrary additive constant is independent of the dynamical fields and reflects

the standard additive ambiguity of the energy in any Hamiltonian system. Note in

particular that no additional “integrability condition”, such as those in equation (80)

of [7] or equation (16) of [9], was needed: equation (2.20), which we obtained by

demanding stationarity of the action, was sufficient to algorithmically construct Hξ.

Note also that Hξ is independent of choice of Cauchy surface Σ: if we consider two

slices Σ′ and Σ, whose boundaries obey ∂Σ′ − ∂Σ = ∂Ξ, with Ξ ⊂ Γ, the difference of

Hξ evaluated on these slices is given by∫
Ξ

(Jξ + d(ξ · `−Xξ · C)) =

∫
Ξ

(Xξ · (Θ− dC)− ξ · L+ d(ξ · `))

=

∫
Ξ

(−Xξ · δ`+ d(ξ · `)− ξ · L)

=

∫
Ξ

(−δξ`+ Lξ`− ξ · L)

= 0. (2.49)

Here we used (2.44), (2.20), (2.31) applied to `, (1.8), (2.33) applied to `, and that ξ

has no normal component to Ξ.

Our derivation of (2.48) only required the various quantities to be covariant with

respect to the particular diffeomorphism ξµ being considered. So for example we could
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use (2.48) to write down the various Poincare generators of any relativistic Lagrangian

field theory in Minkowski space. In the special case where L is covariant under arbitrary

continuous diffeomorphisms, as happens for example in general relativity, an additional

simplification of (2.48) is possible. Indeed in this situation it was shown in [7] that

not only do we have dJξ = 0, actually there will be a local covariant (d − 2)-form Qξ

constructed out of the dynamical fields and their derivatives, called the Noether charge,

such that17

Jξ = dQξ. (2.50)

We may then make one final application of Stokes theorem in (2.48) to obtain the

following expression, true only in generally-covariant theories:

Hξ =

∫
∂Σ

(Qξ + ξ · `−Xξ · C) + constant. (2.51)

Thus in such theories the Hamiltonian for any continuous diffeomorphism is a pure

boundary term: this is analogous to the fact that in electromagnetism that the total

electric charge is the electric flux through spatial infinity.

Equations (2.48) and (2.51) are perhaps the main technical results of this paper;

as far as we know they have not appeared in the literature before. One can obtain

equation (82) from [7] by replacing ` → −B and setting C = 0: the terms involving

C are not present there because C was not included in their definition of the pre-

symplectic current, while we included it in (2.23) to ensure that ω|Γ = 0.18

The boundary terms in (2.48) can be given a nice interpretation as follows. As

mentioned in footnote 8, if we are not interested in preserving the covariance of L and

Θ then we can remove the boundary term ` from the action and the total derivative

dC from equation (2.20) via the redefinitions

L′ ≡ L+ d`

Θ′ ≡ Θ + δ`− dC. (2.52)

In terms of these the action and presymplectic current are simply

S =

∫
M

L′

ω = δΘ′ (2.53)

17This name is somewhat misleading, Qξ is not conserved and does not generate any symmetry.

“Noether potential” would have been better, it is Hξ which is really the Noether charge.
18In [7] the possibility of such a modification of ω was considered in the discussion around equations

(46-48), but dismissed basically on grounds that C would be hard to extend covariantly into M . A

covariant extension is not necessary however, and indeed the C terms we construct in sections 3.3 and

3.4 do not have one.
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We can also define a new Noether current

J ′ξ ≡ Xξ ·Θ′ − ξ · L′ + (Lξ − δξ)`
= Jξ + d(ξ · `−Xξ · C), (2.54)

where the extra terms involving ` in the definition are necessary to ensure that dJ ′ξ =

0.19 We thus may rewrite (2.48) as

Hξ =

∫
Σ

J ′ξ, (2.55)

so we see that it is really J ′ξ which should be thought of as the local generator of ξ

diffeomorphisms. Moreover if we choose f away from ∂M such that ξ is foliation-

preserving near Σ, then the ` terms in the definition of J ′ξ do not contribute to Hξ. We

then have

Hξ =

∫
Σ

(Xξ ·Θ′ − ξ · L′) , (2.56)

which is a version of the standard formula H = pq̇ − L.

3 Examples

We now illustrate this formalism in a series of examples, starting simple to get some

practice with our differential form technology.

3.1 Two-derivative scalar field

We begin with the scalar field theory (2.14), with Lagrangian form

L = −
(

1

2
∇µφ∇µφ+ V (φ)

)
ε. (3.1)

The variation of L is

δL = (∇µ∇µφ− V ′(φ))δφ+ dΘ, (3.2)

with

Θ = θ · ε, (3.3)

where we define

θµ ≡ −∇µφδφ, (3.4)

19These terms also follow from the general Noether theorem we present in section 4.2 below, as we

will explain there.
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and we have used the convenient identity

d(V · ε) = (∇µV
µ) ε, (3.5)

which is true for any vector field V . The restriction of Θ to ∂M is given by

Θ|∂M = nµθ
µε∂M , (3.6)

where ε∂M is the volume form on ∂M , nµ is the normal form (2.35), and we have used

(1.10). Therefore our boundary requirement (2.20) will be satisfied with `, C = 0 pro-

vided that we adopt either Dirichlet (δφ|Γ = 0) or Neumann (nµ∇µφ|Γ = 0) boundary

conditions. To write the pre-symplectic current we need to address a notational sub-

tlety we have so far avoided: with two kinds of differential forms, there are also two

kinds of wedge products. We will from here on adopt a convention where we automat-

ically view the configuration-space differentials δφa as anti-commuting objects. The

product of two of them will therefore implicitly be a wedge product, but we will only

write “∧” for the spacetime wedge product. With this convention, the pre-symplectic

current is given by

ω = δΘ = ω̂ · ε, (3.7)

with

ω̂µ = −∇µδφ δφ, (3.8)

and the pre-symplectic form is

Ω̃ =

∫
Σ

ω =

∫
Σ

(n̂µω̂
µ) εΣ = −

∫
Σ

(n̂µ∇µδφ δφ) εΣ. (3.9)

Here n̂µ is the normal vector to Σ, which we note is past-pointing in our conventions

(see the discussion around (1.10)). This pre-symplectic form is already non-degenerate,

so no quotient is necessary and we have P = P̃ and Ω = Ω̃. Indeed comparing to (2.6),

we see that we have recovered using covariant methods the standard result that in this

theory φ̇ is the canonical momentum conjugate to φ. Finally the Noether current is

Jξ = jξ · ε, (3.10)

with

jµξ = −ξν
(
∇µφ∇νφ− gµν

(
1

2
∇αφ∇αφ+ V (φ)

))
, (3.11)

where the quantity in brackets is the energy-momentum tensor T µν . Jξ is closed on P̃
if and only if ξµ is a Killing vector of the background metric.
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3.2 Maxwell theory

We now give an example where the quotient from pre-phase space to phase space is

nontrivial. This will just be Maxwell electrodynamics, with Lagrangian form

L = −1

2
F ∧ ?F. (3.12)

Its variation is

δL = −δA ∧ d ? F − d (δA ∧ ?F ) , (3.13)

so apparently we have

Θ = −δA ∧ ?F. (3.14)

If we impose Dirichlet boundary conditions, meaning we fix the pullback of A to the

spatial boundary Γ, then the stationarity requirement (2.20) is satisfied with no need

for an ` or C. We then have the symplectic potential

ω ≡ δΘ = δA ∧ ?δF, (3.15)

and pre-symplectic form

Ω̃ =

∫
Σ

(δA ∧ ?δF ) , (3.16)

which illustrate the usual statement that A and − ? F are canonical conjugates. Zero

modes of Ω̃ are associated with gauge transformations, which are flows in configuration

space generated by vectors of the form

Xλ ≡
∫
ddx∂µλ

δ

δAµ
. (3.17)

Indeed note that

Xλ · Ω̃ =

∫
Σ

(dλ ∧ ?δF )

=

∫
Σ

d (λ ? δF )

=

∫
∂Σ

λ ? δF. (3.18)

Our Dirichlet boundary conditions require the restriction of dλ to Γ vanishes, so λ

must be constant on Γ. Since the boundary conditions allow for
∫
∂Σ
?F to vary, Xλ will

apparently be a zero mode of Ω̃ if and only if λ|Γ = 0. Therefore in constructing the

physical phase space we should quotient only by the set of gauge transformations which

vanish at the spatial boundary. The ones which approach a nonzero constant there act
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nontrivially on phase space, and in fact by an analogue of the discussion below (2.41)

we can interpret (3.18) as telling us that the generator of these gauge transformations

on phase space is20

Qλ ≡ λ

∫
∂Σ

?F, (3.19)

as expected from Gauss’s law.

3.3 Higher-derivative scalar

We now give a simple example of a theory with nonzero C. This is a non-interacting

scalar field theory, with Lagrangian form

L = −1

2
(∇µφ∇µφ+∇µ∇νφ∇µ∇νφ) ε. (3.20)

We first note that

δL = (∇µ∇µφ−∇µ∇ν∇ν∇µφ) ε δφ+ dΘ, (3.21)

with

Θ = θ · ε, (3.22)

with θ being the vector

θµ ≡ (∇ν∇ν∇µφ−∇µφ) δφ−∇µ∇νφ∇νδφ. (3.23)

To identify C we are interested in the pullback of Θ to the ∂M , which from (1.10)

is given by

Θ|∂M = θµnµε∂M . (3.24)

We will show that Θ|∂M is the sum of a term which vanishes with appropriate boundary

conditions and a term which is a boundary total derivative. Indeed by using (2.36) to

decompose the ∇νδφ in the third term of θµ into normal and tangential parts, we find

θµnµ =
(
nµ (∇ν∇ν∇µφ−∇µφ) +Dα

(
γαβnµ∇µ∇βφ

))
δφ

∓ (nµnα∇µ∇αφ)nβ∇βδφ

−Dα

(
γαβnµ∇µ∇βφ δφ

)
. (3.25)

Here Dα is the hypersurface-covariant derivative (2.38). Therefore if we adopt “gener-

alized Neumann” boundary conditions

nµ (∇ν∇ν∇µφ−∇µφ) |Γ +Dα

(
γαβnµ∇µ∇βφ

)
|Γ = 0

nµnα∇µ∇αφ|Γ = 0, (3.26)

20We have switched the sign here compared to (2.41) to respect the standard convention that in

quantum mechanics a time translation is e−iHt while an internal symmetry rotation is eiλQ.
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then (2.20) holds provided we define

C ≡ c · ε∂M , (3.27)

with

cµ ≡ −γµαnβ∇α∇βφ δφ. (3.28)

This C term is not covariant in the interior of M , but by the discussion above equa-

tion (2.40) its restriction to the boundary will be covariant under foliation-preserving

diffeomorphisms of order zero.

We expect this example is indicative of the general situation for higher derivative

Lagrangians: there will typically be a nonvanishing C term, which is covariant on the

boundary but cannot be covariantly extended into the interior of M .

3.4 General relativity

We now discuss general relativity, which we take to have

L =
1

16πG
(R− 2Λ) ε

` =
1

8πG
K ε∂M . (3.29)

Here R is the Ricci scalar, and K is the trace gαβKαβ of the extrinsic curvature (2.37).

The metric gµν is dynamical, and there are no nontrivial background fields. The relevant

variations (see e.g. [38]) are

δε =

(
1

2
gµνδgµν

)
ε

δε∂M =

(
1

2
γµνδgµν

)
ε∂M

δΓµαβ =
1

2
gµν (∇αδgβν +∇βδgαν −∇νδgαβ)

δR = −Rµνδgµν +∇µ∇νδgµν −∇ρ∇ρgµνδgµν

δnµ =
1

2
nα
(
δβµ − γ

β
µ

)
δgαβ

δK = −1

2
Kµνδgµν +

1

2
gµνnλ∇λδgµν −

1

2
nα∇βδgαβ −

1

2
Dµ (γµνnαδgνα) , (3.30)

where Dµ is the hypersurface-covariant derivative (2.38), and we emphasize that in the

last two variations we have treated the function f identifying the location of ∂M (see

(2.35)) as a background field. Using these variations we have

δL = Eµνδgµν + dΘ, (3.31)
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with

Eµν =
1

16πG

(
−Rµν +

1

2
Rgµν − Λgµν

)
ε (3.32)

and

Θ = θ · ε, (3.33)

where

θµ =
1

16πG

(
gµα∇νδgαν − gαβ∇µδgαβ

)
(3.34)

and we have used (3.5). The equation of motion Eµν = 0 is of course just the Einstein

equation. Similarly we have the boundary variation

δ` =
1

16πG

(
(Kγµν −Kµν) δgµν + gαβnλ∇λδgαβ − nα∇βδgαβ −Dµ (γµνnαδgνα)

)
ε∂M .

(3.35)

Using (1.10), the pullback of Θ to ∂M is

Θ|∂M = nµθ
µε∂M . (3.36)

Therefore from (3.34) and (3.35) we have

Θ|∂M + δ` = − 1

16πG
(Kµν −Kγµν) ε∂Mδgµν + dC, (3.37)

with

C = c · ε∂M (3.38)

and

cµ = − 1

16πG
γµνnαδgνα. (3.39)

Thus (2.20) will be satisfied provided that we choose boundary conditions such that

(Kµν −Kγµν) δgµν |Γ = 0. (3.40)

The boundary conditions we will adopt, analogous those we chose for Maxwell theory

in section 3.2, are to require that the pullback of gµν to Γ is fixed. We then must have

γ α
µ γ β

ν δgαβ|Γ = γ α
µ γ β

ν δγαβ|Γ = 0. (3.41)

The set of diffeomorphisms which respect (3.41) are those for which ξµnµ|Γ = 0 and

γ α
µ γ β

ν (∇αξβ +∇βξα) |Γ = (Dµξν +Dµξν) |Γ = 0, (3.42)

so in other words ξ must approach a Killing vector of the spatial boundary metric. In the

language of section 2.3 these diffeomorphisms are foliation-preserving at order zero, so
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since ` and C are constructed out of γµν , nµ, and Kµν they will be covariant. With these

boundary conditions C is typically nonzero: cµ involves the mixed normal-tangential

components of δgνα, while (3.41) only constrains the strictly tangential components.21

We now consider the Noether current and charge. From (2.44), (3.29), and (3.34)

we have

Jξ = jξ · ε, (3.43)

with

jµξ =
1

8πG

[
∇ν∇[νξµ] +

(
Rµν − 1

2
Rgµν + Λgµν

)
ξν

]
. (3.44)

The results of [7] imply that on pre-phase space, where Eµν = 0, we must have Jξ = dQξ

for some locally constructed (d − 2)-form Qξ. And indeed using the fact that for any

two-form S we have

d ? S = s · ε (3.45)

with

sµ ≡ gµα∇βSαβ, (3.46)

we have

Qξ = − 1

16πG
? dξ, (3.47)

where we have viewed ξµ as a one-form. More explicitly,

(Qξ)ν1...νd−2
= − 1

16πG
εαβν1...νd−2

∇αξβ. (3.48)

To compute Hξ we are interested in the pullback of Qξ to ∂Σ, where Σ is some

Cauchy slice. Constructing this is facilitated by observing that on Γ we have

ε∂M = −τ ∧ ε∂Σ, (3.49)

where τ is the normal form of ∂Σ viewed as the boundary of its past in Γ (remember

that this implies that τµ is past-pointing). The minus sign in (3.49) follows from the

discussion of orientation below equation (1.9). Combining (1.10) and (3.49) we have

ε = τ ∧ n ∧ ε∂Σ, (3.50)

21 We could also consider a stronger set of boundary conditions, where (3.41) is replaced by δγµν |Γ =

0. We then would have to further restrict to diffeomorphisms obeying nαγ β
µ (∇αξβ +∇βξα) |Γ = 0.

Since γµνδgνλ = γµνδγνλ, with these boundary conditions we would indeed have C = 0. Moreover the

theory with these boundary conditions in fact is a partial gauge-fixing of the theory with the boundary

conditions (3.41): we therefore construct the same physical phase space either way. This ability to get

rid of C with a partial gauge-fixing is special to general relativity, the theory of the previous subsection

shows that it will not happen in general higher-derivative theories.
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so (3.47) then gives

Qξ|∂Σ = − 1

16πG

(
ταnβ − τβnα

)
∇αξβ ε∂Σ. (3.51)

Similarly we have

ξ · `|∂Σ = − 1

8πG
ξµτµKε∂Σ (3.52)

and

Xξ · C|∂Σ =
1

16πG

(
ταnβ + τβnα

)
∇αξβ ε∂Σ. (3.53)

Therefore from (2.51) we have

Hξ = − 1

8πG

∫
∂Σ

(
ταnβ∇αξβ + ξαταK

)
ε∂Σ

= − 1

8πG

∫
∂Σ

(
−ταξβ∇αnβ + ξαταK

)
ε∂Σ

= − 1

8πG

∫
∂Σ

ταξβ (−Kαβ + γαβK) ε∂Σ. (3.54)

Introducing the Brown-York stress tensor [40]

Tαβ ≡ 2√
−γ

δS

δγαβ
= − 1

8πG

(
Kαβ − γαβK

)
, (3.55)

with the second equality following from (2.18) and (3.37), we can rewrite this as

Hξ = −
∫
∂Σ

ταξβTαβε∂Σ, (3.56)

which is the correct expression for the generator of a boundary isometry with killing

vector ξµ. For fun we show how to re-derive this result using traditional non-covariant

Hamiltonian methods in appendix A, where we generalize the analysis of [26] to re-

move an arbitrary requirement that Σ intersects ∂M orthogonally (a comparison of the

lengths of the two calculations shows the advantages of the covariant formalism).

We close this section by showing how the standard ADM Hamiltonian of general

relativity in asymptotically-flat spacetime [41] with d ≥ 4 can also be directly recovered

from (2.51). Indeed in any asymptotically-flat spacetime we can choose coordinates

(t, xi) where the metric has the form

gµν = ηµν + hµν , (3.57)

where ηtt = −1, ηij = δij, hµν ∼ 1
rd−3 with r ≡

√
xixi, and ∂αhµν ∼ 1

rd−2 . We take the

spatial boundary to be at r = rc for rc some large but finite radius, and we require
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that the pullback of hµν to this boundary vanish. We discuss further the meaning of

the fall-off conditions on hµν in section 4.3 below. Here our goal is to compute the

Hamiltonian Hξ for the vector

ξµ = δµt , (3.58)

which should agree with the ADM expression. In checking this it is sufficient to ex-

pand all quantities to linear order in hµν , since any higher powers will give vanishing

contributions to Hξ as we take rc →∞.22 Defining the “unperturbed” normal vector

rµ = δµi x
i/r, (3.59)

and using (3.51), (3.53), and also that on ∂Σ we have ε = −ξ ∧ r ∧ ε∂Σ (see again the

discussion of orientations below (1.9)), we find

Qξ −Xξ · C = − 1

8πG
ταrβ∇αξβε∂Σ

=
1

16πG
ξαξβrγ (2∇αhβγ −∇γhαβ) ε∂Σ. (3.60)

In evaluating (ξ · `) |∂Σ it is very useful to use the formula for δK in (3.30) to compute

the linear term in h. Using this, and also that ξ · ε∂M = −ε∂Σ, after some algebra we

find

(ξ · `)∂Σ =
1

16πG

[
− 2K0 + δijrk (∂ihjk − ∂khij) + ξαξβrγ (∇γhαβ − 2∇αhβγ)

+Kµν
(
hµν − ξλξµhνλ + ξµξνr

αrβhαβ
)

+ D̃µ

(
γ̃µνrλhνλ

) ]
. (3.61)

Here K0 is the trace of the extrinsic curvature of the surface r = rc in pure Minkowski

space, and D̃ and γ̃µν are the covariant derivative and induced metric on ∂Σ; the last

term is thus a total derivative on ∂Σ and does not contribute to Hξ. Moreover all terms

proportional to Kµν vanish, either because the pullback of hµν to the surface r = rc
vanishes or because Ktt = 0 in Minkowski space. Combining these expressions we thus

find that

Hξ =
1

16πG

∫
∂Σ

δijrk (∂ihjk − ∂khij) ε∂Σ −
1

8πG

∫
∂Σ

K0ε∂Σ. (3.62)

The first term is indeed the ADM Hamiltonian, and the second is a (divergent as

rc →∞) constant on phase space.

22In d = 4 a term quadratic in hµν with no derivatives could potentially also give a non-vanishing

contribution, but all terms in Qξ and K involve at least one derivative on hµν so this does not happen.
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3.5 Brown-York stress tensor

In the previous subsection we saw that in general relativity our covariant Hamiltonian

(2.51) was equivalent to the Brown-York expression (3.56). In fact this equivalence can

be extended to rather general diffeomorphism-invariant theories, as first noted in [8].

We here give an improved version of that argument, which is simpler and allows for

C 6= 0.

Our general construction of the Hamiltonian (2.51) relied on choosing boundary

conditions such that equation (2.20) holds. Here we will restrict to considering bound-

ary conditions where the pullback of gµν to ∂M is fixed. We then assume that if we

allow this pullback to vary, (2.20) is violated only as

Θ|Γ + δ` = dC +
1

2
T µνδgµνε∂M , (3.63)

where T µν is symmetric and obeys T µνnν = 0.23 We found precisely this structure in

general relativity in equation (3.37), and in general we can think of T µν as the derivative

of the action with respect to the boundary induced metric as in (3.55). We will refer

to it as the generalized Brown-York stress tensor.

To relate Tµν and the canonical Hamiltonian Hξ, we first choose two Cauchy slices

Σ− and Σ+, with Σ+ strictly in the future of Σ−, and we then introduce a new quantity

S̃ ≡
∫
M+−

L+

∫
Γ+−

`, (3.64)

where M+− denotes the points in M which lie between Σ− and Σ+ and Γ+− denoting

the points in Γ which lie between ∂Σ− and ∂Σ+. Note that we do not include any

boundary terms on Σ±. The idea is then to compute δξS̃ in two different ways, where

ξµ is an extension of an arbitrary diffeomorphism on ∂M into M , and then to compare

what we get. The first computation uses the covariance of L and `, from which we find

δξS̃ =

∫
Σ+

ξ · L−
∫
∂Σ+

ξ · `−
∫

Σ−

ξ · L+

∫
∂Σ−

ξ · `. (3.65)

The signs arise from the orientation conventions explained below (1.9). The second

23In general this will require us to still impose boundary conditions on any matter fields, as well as

possibly on normal derivatives of metric, and we are here assuming that a choice for these boundary

conditions exists such that (3.63) holds. Moreover in (3.66) below we assume that any infinitesimal

diffeomorphism of ∂M can be extended into M in a way that respects these other boundary conditions.
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computation instead uses (2.17) and (3.63), giving

δξS̃ =

∫
∂M+−

Xξ ·Θ +

∫
Γ+−

Xξ · δ`

=

∫
Σ+

Xξ ·Θ−
∫
∂Σ+

Xξ · C −
∫

Σ−

Xξ ·Θ +

∫
∂Σ−

Xξ · C +

∫
Γ+−

TαβDαξβ ε∂M .

(3.66)

Equating these, and using (2.44), (2.48), and (2.50), we find

Hξ(Σ+)−Hξ(Σ−) = −
∫

Γ+−

TαβDαξβε∂M (3.67)

= −
∫
∂Σ+

ταξβT
αβε∂Σ+ +

∫
∂Σ−

ταξβT
αβε∂Σ− +

∫
Γ+−

ξβDαT
αβε∂M .

(3.68)

Here all orientations are again as below (1.9), and τµ is the normal vector to ∂Σ± when

viewed as the boundary of its past in ∂M . In the first two terms on the right-hand

side the minus sign in (3.49) is cancelled by a minus sign arising from our orientation

convention that ∂Γ+− = −∂Σ+ + ∂Σ−. Since we can choose the restriction of ξµ to

∂M arbitrarily, we can in particular choose it to vanish in the vicinity of ∂Σ± and

adjust it arbitrarily elsewhere in Γ+−. (3.68) therefore then tells us that we must have

DαT
αβ = 0. Moreover we can choose ξ to be a Killing vector of the boundary metric

in a neighborhood of ∂Σ+, and to vanish in the vicinity of ∂Σ−, in which case (3.68)

tells us that

Hξ(Σ+) = −
∫
∂Σ+

ταξβT
αβε∂Σ+ . (3.69)

We may then now take ξ to be a Killing vector throughout ∂M , recovering (3.56).

Thus we see that the connection between the covariant phase space formalism and the

generalized Brown-York tensor is quite close.

3.6 Jackiw-Teitelboim gravity

Our last example will be Jackiw-Teitelboim (JT) gravity [42, 43], which is a simple

theory of gravity coupled to a scalar in 1 + 1 dimensions. Starting with [44] it has seen

considerable recent interest, in part based on its appearance within the low-temperature

sector of the SYK model [45–47]. A covariant Hamiltonian formulation of this theory

on compact space (i.e. on S1) was given in [48], an analysis on open space (i.e. on R)

with somewhat unusual boundary conditions leading to an empty theory was given in

[49], and a Hamiltonian formulation of the theory with the “nearly AdS2” boundary
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conditions appropriate for viewing it as a model of AdS/CFT was given in [50]. In this

section we describe the last case from a covariant phase space point of view.24

We define JT gravity to have bulk and boundary Lagrangian forms

L =
(

Φ0R + Φ(R + 2)
)
ε

` = 2
(

Φ0K + Φ(K − 1)
)
ε∂M . (3.70)

Here Φ is a dynamical scalar field, conventionally called the dilaton, Φ0 is a non-

dynamical constant, and R and K are the intrinsic and extrinsic curvature for a dy-

namical metric gµν . Using (3.30), and also that in 1+1 dimensions we have Rµν = 1
2
Rgµν

and Kµν = Kγµν , we find

δL = EΦδΦ + Eµνδgµν + dΘ, (3.71)

with

EΦ =(R + 2)ε

Eµν =
(
∇µ∇νΦ−∇2Φgµν + Φgµν

)
ε

Θ =θ · ε
θµ = (Φ0 + Φ)

(
gµα∇β − gαβ∇µ

)
δgαβ

+
(
∇µΦgαβ −∇αΦgµβ

)
δgαβ, (3.72)

and also

δ` =
(

2(K − 1)δΦ +
(
DαΦnβ − Φγαβ

)
δgαβ (3.73)

+ (Φ + Φ0)
(
gαβnλ∇λδgαβ − nα∇βδgαβ

)
−Dµ ((Φ0 + Φ)γµνnαδgαν)

)
ε∂M .

(3.74)

Combining these we have

(Θ + δ`) |∂M =
(

2(K − 1)δΦ + (nµ∇µΦ− Φ) γαβδgαβ

)
ε∂M + dC, (3.75)

with

C = c · ε∂M
cµ = −(Φ0 + Φ)γµνnαδgνα. (3.76)

24The analysis in this section somewhat involved, we view it as a “stress test” of our formalism but

some readers may wish to skip ahead.
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The simplest boundary conditions which respect (2.20) are therefore those where we

fix Φ and the pullback of gµν on Γ. Explicitly we will take

ds2|Γ = −r2
cdt

2

Φ|Γ = rcφb, (3.77)

where φb and rc are fixed positive constants with units of energy and length, and to

recover the full AdS2 geometry we take rc → ∞. In this paper we will consider only

the situation where there are two such asymptotic boundaries, as illustrated in figure

1.

The Noether current for JT gravity is

Jξ = jξ · ε, (3.78)

with

jµξ =2∇ν

(
−(Φ0 + Φ)∇[µξν] + 2∇[µΦξν]

)
− 2ξν

(
∇µ∇νΦ− gµν∇2Φ + gµνΦ

)
, (3.79)

and the Noether charge is

Qξ = −(Φ0 + Φ) ? dξ + 2 ? (dΦ ∧ ξ) . (3.80)

As in our analysis of general relativity, we can evaluate Qξ, ξ · `, and Xξ · C on ∂Σ to

compute the canonical Hamiltonian using (2.51). This again has the Brown-York form

(3.56), with Brown-York stress tensor

Tαβ = 2(nµ∇µΦ− Φ)γαβ. (3.81)

This can also be directly confirmed by comparing equations (3.63) and (3.75), which

is fortunate since by the argument of the previous subsection the canonical approach

and the Brown-York approach must agree.

So far this analysis has paralleled that of general relativity in section 3.4, but in

JT gravity with these boundary conditions one can go further and explicitly construct

the phase space [50]. We now explain how to do this using the covariant phase space

formalism. The key observation is that up to diffeomorphism all solutions of JT gravity

have the form

ds2 = −(1 + x2)dτ 2 +
dx2

1 + x2

Φ = Φe

√
1 + x2 cos τ, (3.82)
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Figure 1. The natural dynamical region for JT gravity: two asymptotic boundaries con-

nected by a wormhole. The dashed lines indicate the horizons of this wormhole, which cross

at the extremal point where Φ = Φe. The dotted lines show where the spatial boundaries are

located at finite rc; these boundaries are parametrized by t ∈ (−∞,∞).

where Φe is a dimensionless parameter that sets the value of Φ at the special point

x = τ = 0 where the value of Φ is extremal. Therefore the pre-phase space of JT

gravity is labeled by Φe together with a choice of diffeomorphism. Our task will be to

clarify what part of that diffeomorphism is physical.

It is convenient to first say a bit more about the properties of these solutions. The

metric is just that of AdS2 in global coordinates, and x = ±∞ are its two asymptotic

boundaries. In pure AdS2 we would allow τ to also run from −∞ to ∞, but here this

would not respect the boundary condition (3.77): for τ outside of the range (−π/2, π/2)

the boundary value of Φ can be negative. Therefore it is natural to consider only the

dynamics of the shaded green region in figure 1. Another motivation for this is that

once matter fields are included we expect the null future/past boundaries of this region

to become curvature singularities, as happens in the near-extremal Reissner-Nordström

solution of which this is a dimensional reduction. At finite rc we can parametrize the
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two asymptotic boundaries via

x±(t) = ±
√
r2
cφ

2
b − Φ2

e

Φe

cosh

(
rcΦe√

r2
cφ

2
b − Φ2

e

(
t+ t±0

))

= ±rcφb
Φe

cosh

(
Φe

φb
(t+ t±0 )

)
+O(

1

rc
) (3.83)

tan τ±(t) =

√
1− Φ2

e

r2
cφ

2
b

sinh

(
rcΦe√

r2
cφ

2
b − Φ2

e

(
t+ t±0

))

= sinh

(
Φe

φb
(t+ t±0 )

)
+O(

1

r2
c

), (3.84)

where ± indicate the boundaries near x = ±∞ and t±0 are arbitrary shifts of time on

those boundaries. These functions are chosen so that (3.77) are satisfied, and one can

think of t±0 as parametrizing the choice of time origin in each boundary. In what follows

the asymptotic expressions at large rc are sufficient for obtaining the final result. We will

eventually be interested in the energy of these solutions, if we consider a diffeomorphism

generator tµ that approaches ∂t at each boundary, the Brown-York tensor (3.81) gives

a Hamiltonian which evaluates (see e.g. [50]) to

Ht =
2Φ2

e

φb
. (3.85)

The basic technical problem we need to contend with is that in the (τ, x) coordinates

the boundary locations (3.83),(3.84) depend on Φe and t±0 , so in other words they

depend on our choice of configuration and boundary Cauchy surface. This is not

consistent with our treatment of boundaries in the covariant phase space formalism,

where we took the coordinate location of the boundary to be the same for all points in

configuration space (and we accordingly restricted to diffeomorphisms that do not move

this location). To solve this problem we need to introduce new coordinates where the

boundaries (and the Cauchy surface we use in evaluating Ω̃) stay put. To achieve this

we first introduce a notation where we refer to the old coordinates as xµ = (τ, x). We

then introduce new coordinates yµ = (t, y) related to the old ones by a diffeomorphism

xµ = fµ(y), (3.86)

with

f τ (t, y±) = τ±(t)

fx(t, y±)) = x±(t). (3.87)
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In other words in the yµ coordinates the spatial boundaries are at y = y±, and on

those boundaries t coincides with the boundary time appearing in (3.77). In these

coordinates we can re-express our solutions as

gµν(y) = ∂µf
α∂νf

βg
{x}
αβ (f(y))

Φ(y) = Φ{x}(f(y)), (3.88)

where we use the superscript {x} to indicate the specific functions appearing in (3.82).

We therefore can take our pre-phase space P̃ to be labeled by three real parameters Φe,

t+0 , and t−0 , as well as a diffeomorphism fµ obeying (3.87). The crucial subtlety is that

in computing variations of Φ and gµν , we must include not only the variations of the

parameters in the solutions (3.82) (where only Φe appears) but also the variations of

these parameters within diffeomorphisms fµ. Once all variations have been computed,

we are free to then return to the xµ coordinates to simplify calculations.

From (3.82) and (3.88), the variations of the metric and dilaton in the y coordinates

are given by

δgµν = Lξgµν

δΦ = Φ
δΦe

Φe

+ LξΦ, (3.89)

with

ξµ(y) ≡ ∂(f−1)µ

∂xα

∣∣∣
f(y)

δfα(y). (3.90)

We emphasize that, unlike the diffeomorphisms we have considered so far, ξµ is a

one-form on pre-phase space. From (3.72), (2.44), (2.50), and (3.70), we find that on

pre-phase space we have

Θ|P̃ = Xξ ·Θ = Jξ + ξ · L = −2Φ0ξ · ε+ dQξ. (3.91)

Thus the presymplectic form is given by

Ω̃ =δ

[
−2Φ0

∫
Σ

ξ · ε+

∫
∂Σ

(Qξ −Xξ · C)

]
=δ

[
− 2Φ0

∫
Σ

ξ · ε

+ 2

∫
∂Σ

(
− τµξµnν∇νΦ + (Φ0 + Φ) (τµξµK − τµ∇µ (nνξ

ν))
)]
, (3.92)

where we have used (3.80), (3.76), and also that dΦ
dt
|Γ = 0. As before, nµ is the normal

form at the spatial boundary and τµ is the normal form for ∂Σ viewed as the boundary
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of its past in Γ. The integral over ∂Σ is just a sum over two points, being careful about

orientation. Computing this is a somewhat tedious exercise in working out expressions

for nµ, τµ, and ξµ in the xµ coordinates and performing the appropriate contractions.

Using the asymptotic expressions (3.83), (3.84) for τ± and x±, we find

ξµnµ|± = −δΦe

Φe

+O(1/r2
c )

ξµτµ|± =
rc
Φe

(
(t+ t±0 )δΦe + Φeδt

±
0

)
+O(1/rc). (3.93)

Another calculation25 gives

K(Φ0 + Φ)− nα∇αΦ = Φ0 +
Φ2
e

φbrc
+O(1/r2

c ). (3.95)

Thus we arrive at

Ω̃ = δ

[
−2Φ0

∫
Σ

ξ · ε+ 2
∑
±

(
Φ0(ξµτ

µ)|± +
Φe

φb

(
(t+ t±0 )δΦe + Φeδt

±
0

))]
, (3.96)

where we have chosen our Cauchy slice Σ to arrive at time t on both boundaries. To

compute the final variation, it is useful to note that

δξµ = −∂(f−1)λ

∂xα
∂δfσ

∂yλ
∂(f−1)µ

∂xσ
δfα

= −∂(f−1)µ

∂xσ
∂δfσ

∂yλ
ξλ

= ξλ∇λξ
µ, (3.97)

where in several places we have used the antisymmetry of ξµξν arising from the implicit

wedge-product in pre-phase space. We thus have the variation

δ(ξ · ε) = ∇α (ξαξµεµνdy
ν) = −1

2
∇ν

(
ξαξβεαβ

)
dxν . (3.98)

25This calculation is simpler in the “Schwarzschild” coordinates

ds2 = −(r2 − r2
s)dt̂

2 +
dr2

r2 − r2
s

Φ = rφb, (3.94)

with rs = Φe

φb
. At finite rc the relationship between t and t̂ is t =

√
1− r2

s/r
2
c t̂. These coordinates are

also convenient for the calculation that gives (3.85).
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where in the second equality we have used (3.45). From (3.93) and ε = τ ∧ n we also

have

δ (τµξ
µ) = −1

2
ξαξβεαβ, (3.99)

so the terms involving Φ0 cancel in (3.96). Finally computing the variation of the

remaining boundary term, and making use of (3.85), we have

Ω̃ = −2Φe

φb
δ(t+0 + t−0 )δΦe

= δHt δ∆, (3.100)

where

∆ ≡ t+0 + t−0
2

. (3.101)

Therefore all variations of fµ at fixed Φe and t±0 correspond to zero modes of the

pre-symplectic form, as does a variation of t+0 − t−0 which preserves t+0 + t−0 . We thus

should take the quotient of P̃ by the group action generated by these zero modes, at

last obtaining a two-dimensional phase space parametrized by the energy Ht and its

canonical conjugate ∆ [50].26 Of course it is no surprise that the Hamiltonian is the

generator of time translations, what interesting here is that it is only the combined time

translation ∆ which is physical, and also that there are no other degrees of freedom.

The situation is quite analogous to 1 + 1-dimensional Maxwell theory on a spatial line

interval, as explained in [50].

4 Discussion

In this final section we consider a few interesting conceptual issues that arise in applying

the covariant phase space formalism.

4.1 Meaning of the Poisson bracket

There is a somewhat counterintuitive property of covariant phase space: if we define

pre-phase space as the set of solutions of the equations of motion, it seems that each

point in phase space “already knows” its full time evolution - why do we need to evolve

them at all? And moreover doesn’t this definition of phase space pick a preferred

Hamiltonian? How then are we supposed to think about evolving in this phase space

using a different Hamiltonian? We have already addressed the first question using the

example (2.11): a solution which realizes some set of initial data on a Cauchy slice Σ1

26Our expression for the pre-symplectic form differs by a sign from the one given in [50], due to a

change of sign convention in its definition.
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is a different solution from the one which realizes it on a distinct Cauchy slice Σ2, and

they correspond to different points in pre-phase space. Whether or not they map to the

same point in phase space is determined by whether or not there is a diffeomorphism

connecting them which is generated by a zero mode of the pre-symplectic form: if there

is then they coincide, while if there is not then they don’t. The second two questions are

best understood by way of the Peierls bracket, which is an old proposal for a covariant

definition of the Poisson bracket [51]. We will now show that the Peierls bracket arises

very naturally within the covariant phase space formalism, and thus gives an elegant

interpretation of the Poisson bracket on covariant phase space.27

In our language the insight of Peierls was to give a construction of a vector field Xg

on pre-phase space whose pushforward to phase space is the Hamiltonian flow vector

for any G̃-invariant function g on pre-phase space (remember that G̃ is the group whose

action on pre-phase space is generated by the zero modes of Ω̃, usually it is the set of

gauge transformations which become trivial sufficiently quickly at any boundaries). By

an analogous discussion to that around equation (2.41), this means a vector field such

that

δg = −Xg · Ω̃. (4.1)

Given such a vector field, the Poisson bracket between g and any other G̃-invariant

function f is easily evaluated via

{f, g} = Xg · δf, (4.2)

the right-hand side of which is Peierls’s bracket in our notation. The full evolution

generated by g may then be obtained by exponentiating this bracket. Peierls’s proposal

for Xg is constructed as follows. Begin with an action

S0 =

∫
M

L+

∫
∂M

` (4.3)

and boundary conditions such that (2.20) holds, and construct the associated covariant

pre-phase space P̃ and phase space P as in section 2.2. Take g to be a function on

configuration space whose restriction to pre-phase space is G̃-invariant and which is

constructed only using the dynamical field variables φa in some finite time window

lying between a “past” Cauchy surface Σ− and a “future” Cauchy surface Σ+. We may

then introduce a deformed action

S = S0 − λg, (4.4)

27In the absence of boundaries the relationship between these brackets has already been shown

covariantly at a relatively high level of rigor in [10, 52], we hope the argument given here is more

digestible to a physics audience.
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whose equations of motion will differ from those of S0 in the region M+− lying between

Σ− and Σ+. More concretely, after enough integrations by parts we can write the

variation of g as

δg =

∫
M

∆g
aδφ

a, (4.5)

where the ∆g
a are spacetime d-forms that vanish outside of M+−, and which are also

functionals of the dynamical fields within M+−.28 We will restrict to variations which

obey the original boundary conditions for S0, in which case the new action will be

stationary about configurations obeying the deformed equations of motion

Ea − λ∆g
a = 0. (4.6)

To linear order in λ we can write any solution of these equations as

φa = φa0 + λha, (4.7)

where φa0 is a solution of the original equations of motion Ea = 0 and ha has the

property that the configuration-space vector

X{h} ≡
∫
ddxha(x)

δ

δφa(x)
(4.8)

obeys

X{h} · δEa = ∆g
a. (4.9)

In other words ha is a solution of the linearization of the deformed equations of motion

about a solution of the unperturbed equations, obeying the linearized version of the

original boundary conditions.

There are two particular ha which are useful to consider: the “advanced” solution

haA obeying

haA|J+(Σ+) = 0 (4.10)

and the “retarded” solution haR obeying

haR|J−(Σ−) = 0. (4.11)

Here J±(·) denotes the causal future/past of any set, so the advanced solution vanishes

to the future of Σ+ and the retarded solution vanishes to the past of Σ− (see figure

2 for an illustration). These two solutions are unique up to G̃-transformations, since

otherwise the difference of two distinct retarded solutions or two distinct advanced

28In general these ∆g
a will be subtle distributional objects, involving delta-functions and so on, and

may require some short-distance regularization to make precise.
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Figure 2. The various solutions used in computing the Peierls bracket, in the special case

where g is a local operator. The last one gives the direction in pre-phase space in which

evolution by g moves φ0.

solutions would give a nontrivial solution of the unperturbed linearized equations of

motion with the same initial data as the trivial solution ha = 0 (see [53], [10] for more

discussion of how gauge symmetries interact with the Peierls bracket). The proposal

of Peierls is then that we should take

Xg ≡ X{hR−hA} = X{hR} −X{hA}. (4.12)

To see that this proposal is consistent with (4.1), we first note that from (4.9) we

have

Xg · δEa = (X{hR} −X{hA}) · δEa = 0. (4.13)

In other words haR−haA is a solution of the unperturbed linearized equations of motion,

and we may thus interpret Xg as a vector field on pre-phase space. Now let Σ be a

Cauchy surface which is in the future of Σ+. We then have

−Xg · Ω̃ = −X{hR} ·
∫

Σ

δ(Θ− dC)

= −X{hR} ·
∫
J−(Σ)

δdΘ

= −
∫
J−(Σ)

X{hR} · δ(δL− Eaδφa)

=

∫
J−(Σ)

(
(X{hR} · δEa)δφa − δEa(X{hR} · δφa)

)
=

∫
J−(Σ)

∆g
aδφ

a

= δg. (4.14)
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Here we have used that that hA has no support on Σ, that hR has no support in the

distant past, that d and δ commute, that d2 = δ2 = 0, (2.24), (2.17), (4.9), (4.5), and

that the support of ∆g
a lies in the past of Σ. The conservation of Ω̃ ensures that the

result actually holds for any choice of Σ. Thus we confirm the equivalence of the Peierls

and Poisson brackets, a result which in Peierls’s paper was restricted to two-derivative

theories and required the introduction of non-covariant methods.

In summary the Peierls bracket gives a very intuitive meaning to the Poisson bracket

on covariant phase space: the quantity {f, g} tells us the linear response of f to a

deformation of the action by −g. The direction in pre-phase space in which g evolves

us is the direction of a solution of the unperturbed equations of motion obtained by

starting with an unperturbed solution φa0 at early times, evolving forward using the

deformed equations of motion to obtain a configuration at late times, and then evolving

that configuration backwards using the original equations of motion. We illustrate this

in figure 2.

4.2 Noether’s theorem

Noether’s theorem tells us that every continuous symmetry leads to a conserved charge,

and in a Hamiltonian formalism any conserved charge should be the generator of a con-

tinuous symmetry. We here show how these standard results arise within the covariant

phase space formalism. In addition to the pedagogical value of this demonstration, we

will need to make use of it in the following section on asymptotic boundaries.

We define a continuous symmetry of a Lagrangian field theory to be a vector field

X on configuration space (which we remind the reader we define as the set of “histories”

obeying the spatial boundary conditions but not necessarily the equations of motion)

such that

X · δL = dα, (4.15)

where α is a d − 1 form locally constructed out of dynamical and background fields

that obeys a spatial boundary condition

(α +X · δ`)|Γ = 0. (4.16)

We emphasize that both of these equations hold “off-shell” - they are true everywhere

in configuration space. Our goal will be to show that X is tangent to pre-phase space

(meaning that the flow it generates sends solutions of the equations of motion to other

such solutions), that the quantity

HX ≡
∫

Σ

(X · (Θ− dC)− α) (4.17)
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is conserved on pre-phase space, and that HX generates X evolution in the sense that

on pre-phase space

δHX = −X · Ω̃. (4.18)

To establish the conservation of HX , we note that on pre-phase space the integrand of

(4.17) is a closed d− 1 form:

d(X · (Θ− dC)− α) = X · dΘ− dα
= X · (δL− Eaδφa)− dα
= 0. (4.19)

Here we have used d2 = 0, (2.17), (2.19), and (4.15). Moreover the pullback of the

integrand to the spatial boundary Γ vanishes by (2.20) and (4.16). Together these

observations imply that indeed HX is independent of the choice of Cauchy surface Σ.

The other claimed properties of X and HX are most easily derived by considering the

variation of the modified action

S̃ ≡
∫
M+−

L+

∫
Γ+−

` (4.20)

we introduced above in section 3.5. Here M+− is the region of spacetime between a

“past” Cauchy surface Σ− and a “future” Cauchy surface Σ+, and Γ+− is the region of

Γ which is between ∂Σ− and ∂Σ+. The idea is to compute the Lie derivate LXδS̃ in

two different ways and equate them. In the first approach we have

LXδS̃ =

∫
M+−

δ(X · δL) +

∫
Γ+−

δ(X · δ`) =

∫
Σ+

δα−
∫

Σ−

δα, (4.21)

where we have used (4.15) and (4.16). In the second approach, we instead have

LXδS̃ =

∫
M+−

δ(X · δL) +

∫
Γ+−

δ(X · δ`)

=

∫
M+−

(δEa(X · δφa) + Eaδ(X · δφa) + dδ(X ·Θ))−
∫

Γ+−

δ(X · (Θ− dC))

=

∫
Σ+

(LXΘ− dLXC)−
∫

Σ−

(LXΘ− dLXC) +

∫
M+−

(
(X · δEa)δφa + EaLXδφa

)
,

(4.22)

where we have used (2.17), (2.20), (1.8), and also that

X · δ2L = (X · δEa)δφa − (X · δφa)δEa + d(X · δΘ) = 0

X · δ2`|Γ = (d(X · δC)−X · δΘ) |Γ = 0. (4.23)
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Equating (4.21) and (4.22), and using (4.17) and (2.23), we find that throughout con-

figuration space we have(
δHX +X · Ω̃

) ∣∣∣
Σ+

−
(
δHX +X · Ω̃

) ∣∣∣
Σ−

= −
∫
M+−

(
(X · δEa)δφa + EaLXδφa

)
.

(4.24)

We may first evaluate this equation on solutions obeying Ea = 0 and variations about

them which vanish in the neighborhood of Σ±, in which case we see that we must have

X · δEa = 0: this shows that indeed X is tangent to pre-phase space. Therefore the

right-hand side of (4.24) vanishes for arbitrary variations in configuration space about

any solution of the equations of motion. We next consider a variation which near Σ+

obeys the linearized equations of motion but vanishes near Σ−: we thus see that we

must have (4.18) when HX and Σ̃ are evaluated on Σ+. Finally we observe that this

statement will not be modified if we then restrict to variations which obey the linearized

equations of motion everywhere, and so (4.18) holds on pre-phase space and HX is thus

indeed the generator of X evolution.

Our expressions (2.48) and (2.51) for diffeomorphism generators can be viewed as

a special case of this general framework, with

α = ξ · L− d(ξ · `). (4.25)

The reader can check that for covariant theories this α obeys (4.15), (4.16), with X =

Xξ, and that the integrand of (4.17) is identical to the modified Noether current J ′ξ
appearing in equation (2.55). Indeed we could have arrived at (2.48) and (2.51) entirely

from this point of view, but this would have destroyed the spacetime covariance which

simplified many of our calculations in examples, and would also have obscured the sense

in which our approach is a generalization of that of [5–8].

4.3 Asymptotic boundaries

So far our general formalism has neglected the issue of the convergence of the integrals

appearing in our expressions for the symplectic form and the canonical charges. This is

no issue when the Cauchy slice Σ on which they are evaluated is a compact Riemannian

manifold with boundary and all boundary conditions are finite, but in the cases which

are perhaps of most physical interest Σ will either be noncompact or only be conformally

compact (the latter meaning that Σ is compact topologically but the metric and matter

fields may diverge at ∂M). From the point of view of this article a natural way to

understand such theories is to realize them as limits of theories with an “infrared

cutoff”, as indeed we did in our discussion of the ADM energy in general relativity in

section 3.4 and the symplectic structure of Jackiw-Teitelboim gravity in section 3.6.
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There are however two subtleties which can arise in this procedure which we would like

to discuss:

(1) If we refer to the radial location of the infrared cutoff in some coordinates as rc,

there can be sequences of solutions obeying the boundary conditions at finite rc
which approach limits in the rc = ∞ theory that have infinite energy. These

limiting solutions are those which “have stuff all the way out”, for example in

general relativity with vanishing cosmological constant we could imagine initial

data where we have an infinite chain of equally-spaced copies of the Earth ex-

tending out to infinity. Such configurations probably do not deserve the label

of “asymptotically flat”, and in any event since they have infinite energy the

Hamiltonian is not well-defined on a phase space which includes them.

(2) There may be symmetries of the rc =∞ theory which are not symmetries for any

finite rc. Examples include boosts and spatial translations (and also potentially

BMS transformations) of asymptotically-flat space with a radial cutoff, and also

special conformal transformations in asymptotically- anti de Sitter space with a

radial cutoff. To construct the charges for these symmetries, we need to generalize

our formalism to allow symmetries which are “approximate” at finite rc.

The standard method for dealing with the first issue is to restrict to configurations in

the rc = ∞ theory which obey certain fall-off conditions [25, 54–57]. For example in

asymptotically flat space one typically restricts to metrics of the form

gµν = ηµν + hµν , (4.26)

where ηµν is the usual Minkowski metric in Cartesian coordinates (t, xi), and where hµν
is required to obey29

hµν = O(1/rd−3)

∂αhµν = O(1/rd−2), (4.27)

with r ≡
√
xixi. These fall-off conditions do not hold for all solutions which are limits

of finite-rc configurations, and in particular imposing them ensures that the energy will

be finite and thus excludes configurations with “stuff all the way out”. They thus must

29These conditions are not necessarily the full set which need to be imposed, various options are

possible depending on what one is trying to achieve. For example to get a unique set of finite Poincare

generators additional “parity conditions” were imposed in [25]. These conditions have since been

relaxed in various ways, see e.g. [20], leading to a larger asymptotic symmetry group that includes

BMS transformations.
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be viewed as additional requirements that are applied to the rc =∞ theory, beyond just

being a limit of a sequence of finite-rc configurations obeying the boundary conditions

at r = rc. This presciption may seem ad hoc, but in fact it is quite analogous to

the way in which continuum quantum field theories are constructed from their lattice

counterparts: as we take the lattice spacing to zero most of the states in the Hilbert

space have “too much structure at short distances”, and approach states of infinite

energy in the continuum limit. The Hilbert space of states with finite energy in the

continuum is much smaller than the limit of the lattice Hilbert space, and in particular

it only allows a finite number of excitations on top of the vacuum. This resemblance

is not a mere analogy, in AdS/CFT these two observations are actually dual to each

other.

As for the second problem, the basic issue is that once we have an infrared regula-

tor surface our general formalism only applies to diffeomorphisms which preserve the

location of that regulator surface (such as the time translation in our discussion of the

ADM energy in section 3.4). In the limit where we remove the regulator surface, there

are diffeomorphisms which would have moved it but still preserve the asymptotic fall-off

conditions, and these should also be viewed as symmetries. This phenomenon is also

quite familiar from a lattice field theory point of view: introducing a short-distance reg-

ulator typically breaks many of the symmetries of a theory. Which ones are preserved

depends on the choice of regulator, but in the continuum limit they all are recovered.

There are various ways that the generators for symmetries broken by the regulator can

be described using our formalism, one procedure we like is the following. Begin with a

diffeomorphism generator ξµ which preserves the asymptotic fall-off conditions but is

not parallel to the cutoff surface at r = rc. Define a flow on the regulated configuration

space via

X̂ξ ≡
∫
ddx (Lξφa + fa)

δ

δφa(x)
, (4.28)

where fa is a term that “fixes” the violation of the boundary conditions at r = rc that

is caused by applying the diffeomorphism. In the limit that rc → ∞ we can and will

take fa → 0. At finite rc this “corrected” flow is not a symmetry, and in particular

instead of (4.15) we will now have

X̂ξ · δL = dα + β, (4.29)

with β a d-form which is not necessarily exact, but which vanishes in the rc →∞ limit

at any specific point in M (we can and will still take α to obey (4.16)). Our proposal

is then to still define the charge for generating this approximate symmetry by equation

– 46 –



(4.17). Repeating the derivation of (4.24) then leads to(
δHX̂ξ

+ X̂ξ · Ω̃
) ∣∣∣

Σ+

−
(
δHX̂ξ

+ X̂ξ · Ω̃
) ∣∣∣

Σ−
= −

∫
M+−

(
(X̂ξ·δEa)δφa+EaLX̂ξδφ

a−δβ
)
.

(4.30)

Thus if we restrict to configurations which obey fall-off conditions such that β → 0 in

the limit that rc →∞, we see that in the same limit X̂ξ is tangent to pre-phase space

and HX̂ξ
generates X̂ξ translations. We have checked this prescription in a few simple

examples, but we leave the details for future work.

4.4 Black hole entropy

One of the original applications of the covariant phase space formalism was in Wald’s

derivation of his famous entropy formula for black holes in higher-derivative gravity

[6, 7]. This derivation is based on applying the covariant phase space formalism to

a single exterior subregion of an equilibrium wormhole solution; we here show that

this result is not changed by systematically including boundary terms. Indeed let Σ

be a Cauchy surface in such a solution which contains the bifurcate horizon χ, and

let Σext be the subset of Σ which lies between the bifurcate horizon and one of the

two external spatial boundaries (we can choose either of them). The idea is then to

integrate equation (2.46) over Σext, with ξµ taken to be the Killing symmetry of the

stationary black hole. Indeed we have

−
∫

Σext

Xξ · ω =δHext
ξ −

∫
χ

(δQξ + δξC − δ(Xξ · C)− ξ ·Θ)

=δHext
ξ −

∫
χ

(δQξ +Xξ · δC − ξ ·Θ)

=δHext
ξ −

∫
χ

δQξ

=0 (4.31)

where Hext
ξ denotes the contribution to Hξ from the component of ∂Σ which is in-

tersected by Σext and we have chosen the orientation of χ so that its normal vector

points towards the interior of Σext. In going from the first to the second line we have

used (1.8), and in going from the second to the third we have used that ξµ vanishes

at the bifurcate horizon and also that Xξ vanishes at any point in pre-phase space

where it generates a symmetry (ie where Lξφa = 0). The fourth line follows directly

from the first as a consequence of the vanishing of Xξ. Following [6, 7] we may then

interpret the equivalence of the last two lines of (4.31) as an expression of the first law

of thermodynamics dE = TdS, which leads directly to the Wald formula.
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In [7] the possibility of extending the Wald entropy formula to non-stationary

black holes was considered, but the covariant phase space method based on the Noether

charge Qξ was dismissed on the grounds that the additive ambiguity Θ′ = Θ+dY leads

to an ambiguity in Qξ which vanishes only for stationary solutions. We however would

like to suggest that this dismissal was premature, and the issue should be reconsidered

in light of the present work. The reason is that our treatment of boundary terms

actually fixes this ambiguity, leading uniquely to our −
∫
∂Σ
Xξ · C term in Hξ. As

discussed below (2.20), the only remaining ambiguity is a simultaneous shift of Θ and

C that has no effect on Hξ. Therefore we have some hope that a generalization of the

Wald formula to dynamical horizons may still be obtainable using covariant phase space

techniques. On the other hand even if the Noether charge is now unambiguous, there

is no expectation of a first law for perturbations of non-stationary configurations; it is

only the second law which is supposed to apply. So it seems that some new idea (such as

using the Ryu-Takayanagi formula or giving a systematic treatment of the second law)

is still necessary to generalize Wald’s derivation to non-stationary horizons. It would

be interesting to see if our −
∫
∂Σ
Xξ · C term is related to the “extrinsic curvature

corrections” appearing in the higher-derivative Ryu-Takayanagi formula of [58], and

also if it might be of use in deriving a second law (see e.g. [59]). To achieve this,

one needs to view the exterior region as a closed dynamical system in its own right,

including a careful discussion of boundary conditions on the causal horizon (knowing

these will be part identifying the correct C there), and it is likely that the “edge mode”

or “center” degrees of freedom that arise when one defines a phase space for gravity in

a subregion [17, 60–64] will play an important role. In this paper we have chosen not

to study null boundaries, so we leave this for future work.
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A Non-covariant Hamiltonian analysis of general relativity

In this appendix we show how to obtain the canonical Hamiltonian (3.56) of general

relativity directly from the traditional non-covariant approach. The idea of such a

calculation goes back quite a ways [25, 41, 65], but it was not until [26] that a systematic

treatment of boundary terms starting from the action formalism was given. In that

treatment to simplify calculations it was assumed that slices of constant time intersect

∂M orthogonally, and the resulting Hamiltonian was given in a somewhat non-standard

form. In this appendix we repeat that analysis without any restriction on the time

slices, and our presentation results in the standard Brown-York expression (3.56). This

calculation is not necessary for the logical flow of our paper, but some readers may find

it amusing.

We begin by choosing a set of Cauchy surfaces Σt which foliate our (globally-

hyperbolic) spacetimeM and are labelled by a time coordinate t. We also (nonuniquely)

choose coordinates on each slice such that we can view the spacetime as R×Σ, with Σ

some d − 1 manifold which is homeomorphic to each Σt. We are interested in finding

the Hamiltonian Hξ for the diffeomorphisms generated by the vector field

ξµ = δµt , (A.1)

which we can represent using the ADM decomposition30

ξµ = −Nn̂µ +Nµ. (A.2)

Here n̂µ is the normal form to the Cauchy slices Σt (not to be confused with nµ the

normal form to the boundary ∂M), and we require that N > 0 and Nµn̂µ = 0. Explic-

itly,

n̂µ = Nδtµ. (A.3)

N is called the lapse: it measures how fast proper time elapses on a geodesic normal

to Σt as we change t. Nµ is called the shift : it measures how much the coordinates

we’ve chosen on the Σt shift as we change t relative to what we would have gotten by

connecting them using normal geodesics.

We now study general relativity with the action given by (3.29). The basic idea is

to view the induced metric γ̂µν ≡ gµν + n̂µn̂ν on each Cauchy slice Σt as the “position”

degrees of freedom, identify their conjugate canonical momenta, and then compute the

30Note that in the covariant version of the ADM formalism we use here, the quantities Nµ and n̂µ

are vectors on the full spacetime, indices are raised and lowered using the full spacetime metric gµν ,

and ∇µ is the ordinary covariant derivative. All notation for normal forms and extrinsic curvatures is

as introduced around (2.35)-(2.37).
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Hamiltonian via the usual formula H = pq̇ − L. We therefore need to re-express the

action in a way that makes manifest all occurrences of the time derivative

˙̂γµν ≡ γ̂ α
µ γ̂ β

ν Lξγ̂αβ. (A.4)

This is facilitated by the Gauss-Codacci equation

R = R̂ + K̂µνK̂
µν − K̂2 + 2∇µ (n̂µ∇νn̂

ν)− 2∇µ (n̂ν∇νn̂
µ) , (A.5)

where K̂µν ≡ γ̂ λ
µ ∇λn̂ν is the extrinsic curvature of the Σt in M (not to be confused

with Kµν the extrinsic curvature at the boundary ∂M) and R̂ is the Ricci scalar for

the induced metric on the Σt [38]. Using (A.5) on (3.29) we have

S =
1

16πG

[∫
M

(
R̂ + K̂µνK̂

µν − K̂2 − 2Λ
)
ε+ 2

∫
∂M

(nµn̂
µ∇νn̂

ν − nµn̂ν∇νn̂
µ +K) ε∂M

]
.

(A.6)

The only time derivatives in the non-boundary part of this action arise from the ex-

trinsic curvatures via

K̂µν =
1

2N

(
D̂µNν + D̂νNµ − ˙̂γµν

)
, (A.7)

where D̂ is the hypersurface covariant derivative on Σt, defined as in (2.38). Introducing

the normal form τµ to ∂Σ within ∂M , from ε = n̂ ∧ εΣ and (3.49) we have∫
M

ε =

∫
dt

∫
Σ

NεΣ∫
∂M

ε∂M =

∫
dt

∫
∂Σ

τµξ
µε∂Σ, (A.8)

which we may then use to rewrite the action (after discarding terms at the future/past

boundaries) as

S =

∫
dtL̂, (A.9)

with

L̂ =
1

16πG

[ ∫
Σ

N
(
R̂ + K̂µνK̂

µν − K̂2 − 2Λ
)
εΣ

+ 2

∫
∂Σ

τρξ
ρ (nµn̂

µ∇νn̂
ν − nµn̂ν∇νn̂

µ +K) ε∂Σ

]
. (A.10)

At this point the authors of [26] chose to set n̂µn
µ = 0, in which case the boundary term

in (A.10) just becomes the integral of the extrinsic curvature of ∂Σ within Σ, which
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manifestly depends only on the induced metric on Σt and not its time derivative. We

however will not assume this, and will instead observe that a short calculation shows

that

nµn̂
µ∇νn̂

ν − nµn̂ν∇νn̂
µ +K = D̂µ (γ̂µνnν) + (ξρ −Nρ)N−1∇ρ (nµn̂

µ) . (A.11)

Thus in addition to the time derivatives of γ̂µν arising from the extrinsic curvatures,

in the boundary term there is also a time-derivative of the quantity nµn̂
µ, which we

therefore must view as an additional dynamical degree of freedom. The canonical

momenta conjugate to γ̂µν and nµn̂
µ which follow from (A.10) are

P µν = −
√
γ̂

16πG

(
K̂µν − γ̂µνK̂

)
p =

1

8πG

τµξ
µ

N

√
γ∂Σ, (A.12)

where γ∂Σ is the determinant of the induced metric on ∂Σ. We thus may compute the

Hamiltonian via

Hξ =

∫
Σ

dd−1xP µν ˙̂γµν +

∫
∂Σ

dd−2x p ξµ∇µ (nνn̂
ν)− L̂. (A.13)

Substituting the above formulas and doing a bit of algebra, we find

Hξ =

∫
Σ

[
−2Nµ

1√
γ̂
D̂νP

µν +
N

16πG

(
−R̂ + 2Λ +

(16πG)2

γ̂

(
PµνP

µν − 1

d− 2
P 2

))]
εΣ

+

∫
∂Σ

[
2√
γ̂
P µνrµNν +

τµξ
µ

8πG

(
N−1ξµ∇µ (nνn̂

ν)− nµn̂µ∇νn̂
ν + nµn̂

ν∇νn̂
µ −K

)]
ε∂Σ

(A.14)

In the second line the quantity rµ is the normal form to ∂Σ within Σ. rµ and τµ are

related to nµ and n̂µ via

rµ = αγ̂ ν
µ nν

τµ = αγ ν
µ n̂ν , (A.15)

with

α =
1√

1 + (nµn̂µ)2
. (A.16)

The terms multiplying Nµ and N in the first line of (A.14) are just the shift and

Hamiltonian constraint equations of general relativity, which vanish on shell, so as

expected the on-shell Hamiltonian is a pure boundary term (the second line of (A.14)).
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Moreover we can simplify the second line using the definitions of P µν and K̂, and also

(A.15) and (A.2), to find that indeed

Hξ =
1

8πG

∫
∂Σ

ταξβ (Kαβ − γαβK) , (A.17)

as needed to match (3.56).
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