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Abstract. Automatically partitioning images into regions (‘segmenta-
tion’) is challenging in terms of quality and performance. We propose
a Minimum Spanning Tree-based algorithm with a novel graph-cutting
heuristic, the usefulness of which is demonstrated by promising results
obtained on standard images. In contrast to data-parallel schemes that
divide images into independently processed tiles, the algorithm is de-
signed to allow parallelisation without truncating objects at tile bound-
aries. A fast parallel implementation for shared-memory machines is
shown to significantly outperform existing algorithms. It utilises a new
microarchitecture-aware single-pass sort algorithm that is likely to be of
independent interest.

1 Introduction and Related Work

Segmentation (automatically partitioning an image into regions) is an impor-
tant early stage of some image processing pipelines, e.g. object-based change
detection. The final results of such applications are often strongly dependent on
the quality of the initial segmentation. Since subsequent processing steps can
use higher-level region information instead of having to examine all pixels, the
segmentation may also be the limiting factor in terms of performance. Many
algorithms have been proposed, but good quality results often come at the price
of high computational cost.

One extreme example of this is a multi-scale watershed approach (MSHLK)
[1]. Repeated applications of anisotropic diffusion smooth the image and reduce
the oversegmentation caused by the watershed transform. The resulting subjec-
tive quality is very good, but its computational cost (1 second per kPixel) is
unacceptable.

An alternative approach uses the Mean-Shift (MS) [2] procedure to locate
clusters within a higher-dimensional representation of the image. This is guar-
anteed to converge on the densest regions in this space and yields good results
in practice, but the processing rate (0.1 MPixel/s) is still inadequate.

Recent work has shown that Maximally Stable Extremal Regions (MSER)
[3] within a gradient image are also suitable for image segmentation. While more
efficient (2 MPixel/s), this scheme only detects high-contrast segments and does
not provide full coverage of the image. It also seems ill-suited for parallelisation
since the stability criterion depends on a global ordering of pixels.
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Graph-based segmentation (GBS) [4] increases the amount of data to be
handled (multiple edges per pixel) but has several attractive properties. Viewing
pixels as nodes of a graph allows the reduction of segmentation to finding cuts
in a Minimum Spanning Tree (MST). Defining edge weights as some function of
the pixels’ per-band intensity differences enables the use of colour information
without having to compute gradients. Finally, an MST can be assembled from
partial sub-trees, which provides the possibility of parallelisation.

The remainder of this article is structured as follows: Section 2 develops a new
online graph-cutting heuristic for MST-based segmentation. Section 3 shows the
promising results obtained on well-known images. Section 4 introduces ‘PHMSF’
(Parallel Heuristic for Minimum Spanning Forests), which we believe to be the
first non-trivially-parallel segmentation algorithm. Perhaps most importantly,
Section 5 shows it to significantly outperform existing segmentation techniques.

2 Segmentation Algorithm

Segmentation algorithms require (often application-dependent) definitions of
‘image region’. We consider ‘homogeneity’ and high contrast to surrounding pix-
els to be reasonable criteria [5]. Homogeneity can be computed as distances be-
tween (vector-valued) pixels; we find the L2 norm to yield better results than L1
or pseudo-norms. Note that [4] advocates separate segmentation of the R/G/B
component images and intersecting the results. Since object edges are not al-
ways visible in all multi-spectral bands [6], it is safer (and certainly faster) to
segment once using all bands. Recalling the graph segmentation framework, the
above homogeneity measure defines the weight of edges. It remains to be seen
how an online graph-cutting heuristic should partition the MST depending on
edge weight. A mere threshold is insufficient because it fails to account for noise
or the overall homogeneity of a region. [4] suggests an adaptive threshold that is
incremented by a linearly decreasing function of the region size3. The function’s
slope is a user-defined parameter that must be determined by experimentation
since it has no physical explanation. This scheme also underestimates a region’s
homogeneity by defining it as the maximum weight in its MST, thus tending
towards oversegmentation. We suggest the adoption of an idea from Canny’s
edge detection algorithm [7]. In the context of edge detection, pixels with large
gradient magnitudes are likely to correspond to edges, but there is no single
level at which this ceases to be the case. Applying a rather high limit finds likely
candidates, which can be augmented by nearby pixels that lie above a second,
lower threshold. Returning to segmentation terminology, regions connected by
low-weight edges represent likely candidates that can subsequently be expanded
by following adjoining edges with somewhat higher weights. To avoid poten-
tially unbounded growth, we institute a ‘credit’ limit on the sum of edge weights
that may be added to a candidate region. Since no shape can be more compact
than a circle, the region’s perimeter is bounded from below by the circumference
3 This unduly penalizes the growth of large segments; we saw slightly better results

when dividing by the logarithm of the region size.
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√
4π · regionSize. Let us also assume additive white Gaussian noise with variance

σ2
n, for which several estimators have been proposed [8, 9].s Defining contrast as

the smallest edge weight along the border of any ‘interesting’ region minus 2 ·σn

thus makes it likely that edges of total weight ≤ contrast · minPerimeter can
be added to a region without inadvertently expanding beyond its bounds. This
property is important because subsequent region merges are trivial, whereas
splitting requires re-examination of the pixels or edges. However, the resulting
regions are not necessarily too fine because pixels connected by low-weight edges
are always merged. We have therefore averted global under- and oversegmenta-
tion of the image while using only local information. The algorithm first forms
candidate regions by merging the endpoints of low-weight edges and then calls
the following simple heuristic in increasing order of the remaining edges’ weights:

Procedure EdgeHeuristic(edge)
region1, region2 := Find(edge.endpoints);
if region1 6= region2 then

credit := min {region1.credit, region2.credit};
if credit > edge.weight then

survivor := Union(region1, region2);
survivor.credit := credit− edge.weight;

3 Results

To demonstrate the usefulness of the new segmentation results, we compare
them to the outputs of existing algorithms on standard images [10], the results
of which are shown in Fig. 1:

Fig. 1: Segmentation results of the new PHMSF algorithm and others on USC SIPI
[10] images 4.1.05 (‘House’) and 4.1.07 (‘Jelly beans’).

(a) 4.1.05 (b) MSHLK (c) MS (d) MSER (e) GBS (f) PHMSF

(g) 4.1.07 (h) MSHLK (i) MS (j) MSER (k) GBS (l) PHMSF
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MSHLK [1] is known for high-quality results and provides excellent smooth-
ing of the walls (b) but merges the eaves into the sky segment. We also call
attention to the oversegmentation of the second image and shock effects [11] in
the background (h). MS [2] is more successful at merging the individual objects
(i) but also splits some of them (e.g. below the P); spurious segments near edges
(c) are its only visible flaws. As with MSHLK, segment borders are delineated
by black pixels. MSER [3] produces mostly adequate label images, though the
wall is not considered to be a stable region (d); the effects of the gradient filter
are clearly visible (j). GBS [4] is satisfactory but results in undersegmentation
near the roof lines and oversegmentation of the sky and wall (e). It also merges
different-coloured objects (k) but fails to return a uniform background. Our new
PHMSF algorithm provides results comparable to MSHLK and MS and requires
only 1/4000 and 1/50 the computation time, respectively (cf. Sect. 5). The black
pixels (f) indicate surface irregularities that resulted in regions smaller than the
minimum size. The segmentation in (l) is quite accurate, correctly separating
different-coloured objects without introducing spurious boundaries.

4 Parallel Algorithm

Despite the efficiency of the new segmentation algorithm, a highly-tuned sequen-
tial implementation is still far slower than the collection rates of commercial
imaging satellites (e.g. IKONOS with up to 90 km2/s [12]). Since a significant
reduction of the algorithm’s constant factors appears unlikely and sequential
programs have seen less benefit from recent CPU advances [13], it appears our
self-set performance goal of 10 MPixel/s can only be reached by means of paral-
lelisation. Note that embarrassingly-parallel schemes that simply split the input
into independent tiles are not acceptable because they do not correctly handle
objects straddling a border. Nor are overlapping tiles sufficient because there
is no upper bound on the size of objects of interest (e.g. rivers or roads). Our
first attempt at parallelisation addressed the MST computation. The new Filter-
Kruskal scheme [14] combines ideas from Quicksort and Kruskal’s algorithm and
discards non-MST edges without having to sort them. This ‘filter’ operation,
partitioning and sorting can all be parallelised. However, the total speedup on
a quad-core system is only 1.5 – chiefly due to the sequential portion of the
algorithm, but also because our eight-connected grid graphs are too sparse to
derive much benefit from discarding edges. Our second approach is designed
to allow independent processing of image tiles, but still ensures consistent re-
sults irrespective of the number of processors P .4 The key observation is that
Kruskal’s MST algorithm can run in a data-parallel fashion until encountering
an edge that crosses a tile border. From then on, MST components using such
edges and in turn their incident edges must be ‘delayed’ until the partial MSTs
of both tiles are available. We accomplish this with per-tile edge queues that are

4 We ignore the (negligible) effects of unstable edge sorting.
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processed in a subsequent sequential phase5. It remains to be seen how many
edges are delayed – a long cross-border region of homogeneous pixels could af-
fect a large proportion of a tile. However, high-weight edges at the boundary of
such regions often serve as a ‘firewall’ because they can be discarded without
affecting neighbouring regions. Only about 5 % of edges are delayed in practice,
making Amdahl’s argument less of a factor than real-world limits on memory
bandwidth and P . The algorithm is described by the following pseudo-code:

Algorithm 2: Parallel Segmentation
parallel foreach tile do

sort edges, merging those with weight < minWeight;
foreach borderEdge do // connect and mark cross-border regions

region1, region2 := Find(borderEdge.endpoints);
survivor := Union(region1, region2);
Mark(survivor);
tile.regions := tile.regions ∪ {survivor};

parallel foreach tile do
foreach r ∈ tile.regions do r.credit := ComputeCredit(r.size);

parallel foreach tile do
foreach edge in ascending order of weight do

region1, region2 := Find(edge.endpoints);
if edge crosses border then Mark(region1); Mark(region2);
else if IsMarked(region1, region2) then tile.delayQ.push (edge);
else EdgeHeuristic(edge);

foreach tile do
foreach edge ∈ tile.delayQ do EdgeHeuristic(edge);

To avoid scheduling and locality issues, the (manually partitioned) loops reside
in a single OpenMP parallel region. A novel variant of counting sort uses paged
virtual memory to simulate bins of unlimited size and thus dispenses with a
separate counting phase. An explicit buffering technique further increases per-
formance by enabling write-combining without cache pollution. Details are given
in App. A.

The algorithm outputs a Union-Find (UF) tree represented as an array of
pointers to a parent pixel or region, as well as per-tile lists of regions, which
each store size (number of pixels) and credit. Computing features for single-
pixel regions would consume too much memory, so we only consider regions of
size min..max. This requires relabeling the per-tile regions and replacing them
with so-called ‘accumulators’ for the region features, which is accomplished by
Alg. 3. Its separate and very efficient count phase seems preferable to updat-
ing the per-tile region count when cross-border merges are performed by the
Kruskal algorithm. Since the desired output includes a label image, we ‘collapse’
the UF tree once all regions have been re-labeled. With all pieces in place, we
can now compute the contribution of each pixel toward its region’s features.
5 This could be parallelised if edges indicate which border they cross, but our imple-

mentation cannot spare any space within the 32-bit representation.
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Algorithm 3: Parallel Relabeling
parallel foreach tile do // compress regions

foreach r ∈ tile.regions do r.isValid := r.size ∈ [min, max];

parallel foreach tile do // count regions
tile.numRegions := 0;
foreach pixel do

if IsRepresentative(pixel) and Find(pixel).isValid then
tile.numRegions := tile.numRegions + 1;

for i := 0 to |tiles| − 1 do
tiles [i] .startIndex :=

∑
0≤j<i

tiles [j] .numRegions;

parallel foreach tile do // re-label regions

foreach pixel do
if IsRepresentative(pixel) and Find(pixel).isValid then

parents [pixel] := tile.startIndex;
tile.startIndex := tile.startIndex + 1;

The per-band intensities Bi and
∑

B2
i are required for computing the band av-

erages and standard deviations. For pixel coordinates (Y, X), the six moments∑
Y p ·Xq (p, q ∈ IN0, p + q ≤ 2) are sufficient for estimating an ellipse [15].

Finally, counting the number of neighbour pixels belonging to different regions
allows computing the region perimeter. Using 64-bit floating-point accumulators
mitigates precision issues while still enabling vectorization via SSE2 instructions.

5 Performance Analysis

We first examine the complexity of the proposed algorithm. Counting sort is
O(N). Region merges via Union-Find are effectively O(1) for all practical in-
put sizes6 [17]. All other operations are also constant-time and reside in loops
with trip counts in O(N), so the complexity is (quasi-)linear in the input size.
Since this also applies to the MSER and GBS algorithms, we must compare their
implementations. Table 1 lists the performance7 of each algorithm for a repre-
sentative 8.19 MPixel subset of a 16-bit, 4-component (RGB + NIR) Quickbird
image of Karlsruhe.

Our PHMSF algorithm does more work (computing region features and pro-
cessing the original four-component 16-bit pixels rather than an 8-bit RGB ver-
sion), yet significantly outperforms the other algorithms. In this test it is 138
times as fast as MS [19], 28 times as fast as GBS [20] and 5 times as fast as

6 We view the inverse Ackermann function as a constant ≤ 5 for N < 1080. Note that
an attempt at replacing Union-Find with a ‘true linear algorithm’ [16] introduces a
constant factor of 8.

7 Measured on a X5365 CPU (3.0 GHz, 32 GiB FB-DDR2 RAM) running Windows
XP x64. Our implementation is compiled with ICC 11.0.066 /Ox /Og /Ob2 /Oi /Ot

/fp:fast /GR- /Qopenmp /Qftz /QxSSSE3.
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Table 1: Performance comparison.

Algorithm MPixel/s

MSHLK N/A

MS 0.09

GBS 0.45

MSER 2.53

PHMSF 12.80

Table 2: Performance on large images.

Sensor Preproc.8 Bits MPixel MPixel/s

IKONOS PS 16×4 54 13.5

QuickBird PS 16×4 219 14.3

JAS150s BF 8×4 527 24.4

8 PS stands for pan-sharpening by an as-yet
unpublished algorithm (56 MPixel/s), while
BF denotes approximated per-channel Bilat-
eral Filtering [18] with σr = 15 and σs = 32
(80 MPixel/s).

our similarly optimised implementation of MSER. Note that (32-bit) MSHLK
exhausted its address space after a single diffusion iteration. Our PHMSF im-
plementation requires much less memory: the working set is about 7.1 GB for a
1.97 GB image, which equates to 13.5 bytes/pixel. Table 2 shows measurements
from processing large images of up to 527 MPixel. Performance improves with
size due to increased parallelism – tile interiors grow faster than their borders.
The parallel speedup varies between 2 and 3.2 when using 4 cores. In the latter
case, sequential processing only accounts for 2 % of processing time; the limiting
factor is memory bandwidth. RightMark Memory Analyzer [21] measures read
and write throughputs of roughly 3500 MB/s and 2500 MB/s on this system.
Having analysed the elapsed times and minimum amounts of data that must
be transferred to/from memory during the credit computation, region compres-
sion/counting/relabeling and feature computation phases, we can conclude that
each is at least 85 % efficient. Improving their performance or scalability is there-
fore contigent on increased bandwidth (e.g. via NUMA architecture or by adding
further memory channels).

6 Conclusion

We have presented a new (quasi-)linear-time segmentation algorithm that pro-
vides useful results at previously unmatched speeds. Applications include auto-
matic wide-area appraisal of the suitability of roofs for solar panels, object-based
change detection, environmental monitoring and rapid updates of land-use maps.
From an algorithm engineering standpoint, we believe this to be the first non-
trivially-parallel segmentation algorithm. Its scalability is chiefly limited by the
memory bandwidth of current SMP systems. Future work includes statistical
estimation of the edge weight thresholds and efficiently computing a segment
neighbourhood graph. We are also interested in applying this algorithm towards
segment-based fusion of high-resolution electro-optical and hyperspectral im-
agery.
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A Microarchitecture-aware Sort

The Kruskal algorithm requires visiting edges in increasing order of their weights.
A straightforward implementation sorts (i.e. permutes into sorted order) all
edges, which is possible in O(N) time because only edge weights ≤ M need
be considered, thus enabling counting sort. This typically involves two passes
through the data, first building a histogram of weights and then writing edges
to the correct output position. However, a weaker post-condition suffices for it-
eration – ‘bins’ (the set of edges with a given weight) need not be immediately
adjacent9. This suggests a simplified algorithm where bins of capacity N are
pre-allocated and the initial scan is skipped. Edges are simply written to the
next free position in the corresponding bin:

Algorithm 4: Two-pass algorithm for iterating over edges in sorted order
storage := ReserveAddressSpace(N ·M);
for i := 0 to M do next [i] := i ·N ;
foreach edge do

storage [next [edge.weight]] := edge;
next [edge.weight] := next [edge.weight] + 1;

for w := 0 to M do
for i := w ·N to next [w] do EdgeHeuristic(storage [i])

This algorithm only writes and reads each edge once, a feat that comes at the
price of N ·M space. While this appears problematic under the Random-Access-
Machine model, it is easily handled by 64-bit CPUs with paged virtual memory.
Physical memory is mapped to pages of size S when they are first accessed,10

thus reducing the actual memory requirements to N + M · S. The remainder
of the initial allocation only occupies address space, a plentiful resource on 64-
bit systems. Note that using large pages (S = 2 MiB on x86-64 architectures)

9 Library Sort [22] is based on a similar idea, viz. using gaps between elements to
speed up insertion sort.

10 Accesses to non-present pages result in a page fault exception. The application re-
ceives such events via signals (POSIX) or Vectored Exception Handling (Microsoft
Windows) and reacts by committing memory, after which the faulting instruction is
repeated.
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increases TLB coverage and also reduces the number of page faults at the cost
of internal fragmentation [23].

A further microarchitectural consideration concerns the manner in which
edges are written to a bin. An ideal cache with M lines could exploit the writes’
spatial locality and entirely avoid noncompulsory misses. However, perfect hit
rates are not achievable in practice due to limited set associativity [24]. The
common (pseudo-)LRU eviction policy also causes the displacement of previ-
ously cached data instead of write-only lines that are not accessed after having
been filled. This ‘cache pollution’ can be avoided by writing directly to mem-
ory via SSE2 non-temporal streaming stores11. Since ‘partial writes’ (non-burst
transfers) involve significant bus overhead, the architecture attempts to combine
neighbouring writes. However, M is likely to exceed the six write-combine (WC)
buffers provided by current microarchitectures, so WC degenerates to partial
writes because WC buffers are often flushed to memory before being filled. Hav-
ing established the drawbacks of cached and non-temporal writes, we now show
how to avoid them by means of software write-combining [25]. Instead of writ-
ing to each bin directly, edges are first placed into cache-line-sized temporary
buffers. When one of these is full, it is copied to the actual destination via non-
temporal writes, which can be combined into a single burst transfer. This scheme
avoids the excessive cache pollution caused by normal writes and works around
the limited number of WC buffers by using L1 cache lines for that purpose. The
effect is a further 7 % speedup of the entire edge creation phase and an increase
in scalability due to less memory traffic.

While this section has covered highly system-specific details, we believe the
basic principles (taking advantage of paged virtual memory and reducing partial
bus transfers) to have widespread application. Since these issues can determine
the feasibility of algorithms, they must be considered during the design phase
and cannot be relegated to a separate optimization phase.

11 These also reduce pressure on the memory interface by avoiding the relatively ex-
pensive load of the destination cache line via Read-For-Ownership transaction.


