
Feedback-based Coverage Directed Test Generation: An

industrial evaluation

Charalambos Ioannides
1,2

, Geoff Barrett
2

, Kerstin Eder
3

1 Industrial Doctorate Centre (IDC), University of Bristol

Queen's Building, University Walk, Bristol BS8 1TR, UK
2 Broadcom BBE BU, Broadcom Corporation

220 Bristol Business Park, Coldharbour Lane, Bristol BS16 1FJ, UK
3 Department of Computer Science, University of Bristol

MVB, Woodland Road, Bristol BS8 1UB, UK

{Charalambos.Ioannides, Kerstin.Eder} AT bristol.ac.uk,

gbarrett AT broadcom.com

Abstract. Although there are quite a few approaches to Coverage Directed test

Generation aided by Machine Learning which have been applied successfully to

small and medium size digital designs, it is not clear how they would scale on

more elaborate industrial-level designs. This paper evaluates one of these

techniques, called MicroGP, on a fully fledged industrial design. The results

indicate relative success evidenced by a good level of code coverage achieved

with reasonably compact tests when compared to traditional test generation

approaches. However, there is scope for improvement especially with respect to

the diversity of the tests evolved.

Keywords: Microprocessor Verification, Coverage Directed Test Generation,

Genetic Programming, MicroGP

1 Introduction

A consistent trend in the semiconductor industry is the increase of embedded

functionality in new designs. The drivers are competition on improving the quality of

designs, the miniaturization level achievable as well as the standardization and

automation (maturity) of the design process (i.e. digital design languages and EDA

tools). Conversely, the verification process today requires a significant amount of

resources to cope with these increasingly complex designs. Concern is expressed that

this has formed a bottleneck in the development cycle making verification a critical

and time consuming process now reaching “crisis proportions” [1].

There is intrinsic risk associated with verification for the following reasons. First,

the verification process is unpredictable in nature. That is why automation is

important in increasing its robustness, repeatability, maintainability and thus

ultimately its predictability. Second, seeing that exhaustive simulation is

commercially unacceptable, the quality of verification relies on engineers selecting

2 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

the scenarios to verify. This by definition makes the process and the quality criteria

subjective.

In order to alleviate the problem, industrialists and academics have proposed and

improved on many formal, simulation-based and hybrid verification techniques which

all aim to make the process less time consuming, more intuitive to the verification

engineer and more reliable in accurately indicating the level of its completeness.

In an attempt to further automate the process, especially in simulation-based and

hybrid approaches, Machine Learning (ML) techniques have been exploited to close

the loop between coverage feedback and test generation. Although most techniques in

the literature are reported to help in constructing minimal tests that cover most, if not

all, of the Design Under Verification (DUV) in a small amount of time, there is

always the question of how useful these techniques are when applied in a real-world

industrial-level verification environment. Questions arise as to how long it would take

a non-ML expert to setup and use these techniques in his environment, also how

effective they would be on more complex real-world designs.

One of these techniques is called MicroGP (uGP). It was developed by a team of

researchers at the Polytechnic University of Torino [2]. MicroGP uses an evolutionary

algorithm which, based on a customized instruction library corresponding to the

instruction set architecture of a particular processor, evolves a set of test programs the

best of which aims to achieve maximum code coverage. Their evolution is guided by

code coverage metrics [3] and according to the experimental results published in

numerous papers [4-8], uGP is capable of evolving small tests that achieve almost

complete coverage closure.

This work aimed to evaluate a publicly available version [9] of uGP on several

aspects. The first was the effort (man months) taken to incorporate it in an existing

verification flow at Broadcom‟s Bristol site. Second, we needed to assess its potential

in generating tests for an in-house SIMD digital signal processor called FirePath
TM

.

Additionally, the computational effort (runtime) was to be compared against the

benefits provided. Furthermore, the team opted for more experience and insights as to

what ML has to offer in coverage directed test generation within an industrial context,

in comparison to existing in-house techniques. Finally, this work was also aimed to

provide insight into requirements for developing more effective future tools.

This paper is structured as follows. In Section 2 background knowledge is provided

on subjects such as Coverage Directed test Generation and Evolutionary Algorithms,

as well as on subjects directly relevant to the work presented e.g. the tool MicroGP,

the design under verification and the test generator used. Section 3 explains on the

incentives behind as well as the experimental setup chosen for this work. The

following section illustrates the results obtained after performing the listed

experiments, while in Sections 5 and 6 these results are being discussed and

concluded with potential future improvements to be added.

Feedback-based Coverage Directed Test Generation: An industrial evaluation 3

2 Background

2.1 Coverage Directed Test Generation

Coverage Directed test Generation (CDG) is a simulation-based verification

methodology which aims to reach coverage closure automatically by using coverage

data to direct the next round of test generation towards producing tests that increase

coverage. There are two main approaches towards CDG: one is by construction using

formal methods and the other is based on feedback. Examples of the former [10]

require a formal model of the DUV (e.g. an FSM) which is used to derive constraints

for test generation that accurately hit a specific coverage task. This approach has

inherent practical limitations because the formal models can be particularly large

especially as designs become more complex. In contrast, CDG by feedback

techniques, e.g. [11] or [12], employ ML methods to close the loop between coverage

analysis and test generation. This is achieved by learning from the existing tests and

the achieved coverage the cause and effect relationships between tests, or test

generation constraints, called bias, and the resulting coverage. These relationships are

then utilized to construct new tests or to create new constraints for a test generator in

such a way that coverage closure is achieved faster and more reliably.

2.2 Evolutionary Algorithms

Broadly speaking, Evolutionary Algorithms (EA) [13] are search methods aiming to

optimize some user defined function, called the Fitness function. The potential

solutions can be represented in a variety of forms, e.g. bit strings, graphs, S-

expressions [14], etc., depending on the chosen problem and specific technique used.

Techniques include Genetic Algorithms (GA), Genetic Programming (GP), Evolution

Strategy (ES) and Evolutionary Programming (EP). All these techniques employ a set

of genetic operators which mimic biological processes, in order to perform a search in

the syntactic space of the problem representation chosen. The most common operators

used are recombination, also called crossover, and mutation (see Figure 1).

Recombination requires two candidate solutions (parents) to recombine their

genetic material in producing two or more offspring. Mutation requires a single parent

and depending on some probability its genetic material is altered to some random

legal value.

Evolutionary Algorithms require a population of individuals each representing a

solution to the given problem. Each of these has a fitness value assigned to it

according to how well it solves the problem. There are many alternative choices in

setting up such an algorithm but a typical learning epoch involves a set of new

solutions being evaluated and then ranked on their fitness. Then, according to some

selection scheme, the best are used as parents which will form the new set of solutions

while the rest are discarded. This process continues until some convergence criterion

is met. Through a series of learning epochs they guarantee convergence to some local

or global optimum in the fitness landscape formed by the Fitness function.

4 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

Fig. 1. Crossover and Mutation Genetic Operators

2.3 MicroGP

The purpose of uGP is to generate correct instruction level tests which either achieve

maximal code coverage results at register-transfer level (RTL) or detect maximal

faults at post-silicon level designs.

MicroGP was developed to be broadly adaptable to any microprocessor design. Its

architecture contains three main elements; these are an instruction library, an

evolutionary core and an external evaluator (see Figure 2).

Fig. 2. MicroGP overviews (from [2])

The instruction library (IL) is a text file describing the Instruction Set Architecture

(ISA) of interest. The basic building block is the macro and several of those are

grouped into sections. Each macro describes the syntax for a given instruction or list

of meaningfully grouped instructions. The sections try to mimic traditional assembly

code sections representing register file settings, code main body and subroutines.

Feedback-based Coverage Directed Test Generation: An industrial evaluation 5

The evolutionary core utilizes a μ+λ selection scheme, i.e. it operates on a

population of μ individuals in order to produce λ offspring for later evaluation at each

learning epoch. Each individual is a test sequence represented by a directed acyclic

graph with its nodes pointing to a macro inside the IL (see Figure 3). At each learning

epoch a set of genetic operators (crossover and mutation) are applied on the μ (parent)

population producing the λ (offspring) population. The offspring are evaluated

through simulation (external evaluator) and added to the μ population. The

individuals are then sorted according to their fitness (achieved coverage) and since the

parent population is of a fixed size any additional individuals are deleted. This makes

sure only the better tests are kept from epoch to epoch, thus guiding the evolution of a

test program that achieves maximum fitness. The learning process continues until

either maximum coverage is achieved, the population has reached a steady state (i.e.

no improvements for a preset number of epochs), or if a number of maximum epochs

has elapsed without the previous two conditions being met.

Fig. 3. MicroGP graph representation (from [5])

The external evaluator is any configuration chosen by the user of the tool that

should be able to execute the tests produced by the evolutionary core and evaluate

them according to fitness. Depending on the level at which verification is performed

the external evaluator and hence fitness value it provides can be one of many things.

In the majority of applications of uGP, the level of design abstraction was the RTL

and the fitness metric was the achieved statement coverage [4-8].

In addition, uGP utilizes a self-adaptive mechanism that updates the activation

probabilities of the genetic operators. These probabilities, in general, have the

property of speeding or slowing the learning process given the problem solved and the

individual representation chosen. The use of a self-adaptive mechanism here means

6 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

that this level of detail when applying an EA is hidden, thus making uGP a tool that

can be more easily used by non-ML experts.

In the past the tool has been used on various microprocessor designs targeting

different coverage metrics. Some of them are the DLX/pII [8] and LEON2 (SPARC

V8 architecture) [7] on code coverage. The i8051 microcontroller was verified using

code coverage [5], fault coverage [6] and path delay [15] while more generic

peripheral modules (PDU, VIA, UART) have been verified using both code and FSM

transition coverage in [16]. In all of the aforementioned work uGP consistently

provided smaller tests than either randomly created or pre-compiled tests while

achieving higher coverage in all and maximum coverage in some of the applications.

2.4 FirePath

FirePath is a fully-featured 64-bit LIW DSP processor [17]. The design has been in

production for 8 years and is the main processing element in Broadcom’s Central

Office DSL modem chips. This chip is installed in the telephone exchange and is

estimated to terminate around 50% of all DSL connections worldwide. The processor

is in continuous development as new demands for functionality materialise and as

new ideas for improvements in speed, area or power are implemented. No logic bugs

have ever been discovered in this chip in the field. However, although the

verification environment is very thorough, its maintenance is a labour-intensive

process which will benefit from greater automation.

In brief, the processor consists of a large register file, 4-6 SIMD execution pipes

and 2 load/store pipes (of which a total of 4 can be activated by a single instruction).

Figure 4 shows an architectural overview of the FirePath processor.

Fig. 4. FirePath architecture overview

General Purpose
Registers

Instructions

Data Memory

SIMD MAC UNIT

SIMD ALU

SIMD LSUPredicate
Registers

SIMD LSU

SIMD MAC UNIT

SIMD ALU

MAC
Registers

MAC
Registers

Feedback-based Coverage Directed Test Generation: An industrial evaluation 7

2.5 FireDrill

FireDrill is a constrained-random test generator that produces the instruction streams

at the heart of FirePath’s verification environment. The behavioural model of the

FirePath is integrated with the test generator so that the generator has full visibility of

the architectural state of the processor while generating each instruction. The

generator manages constraints governing correct formation of instructions (which

operations can be combined in the same packet, valid combinations of destination

registers and addresses, etc.) and ensures that each generated test will execute

correctly and terminate (loops are bounded, code and data regions correctly separated,

etc).

Test suites are generated to target various functional coverage metrics [3] using

hand-written bias files which can specify instruction sequences designed to increase

the likelihood of covering certain corner cases. Each time new features are added to

the processor, more metrics and associated bias files are created in order to cover the

new features. Coding the metrics, debugging them, analysing the coverage and

biasing into the gaps consumes most of the verification engineers’ time and is on the

critical path of RTL delivery. The test generation environment is shown in Fig. 5.

FirePath Test Generation Environment.

Fig. 5. FirePath Test Generation Environment

3 Experimental Setup

The aim of these experiments was primarily to see whether the latest ML-driven CDG

technology, in the form of the uGP tool, was fit to cope with the complexity of a fully

fledged industrial design. An additional aim was to assess how other methods like

purely random tests generated by our unconstrained pseudo-random test generator

(i.e., FireDrill with no handwritten biases or sequences applied), would compare

against uGP generated tests. The test generation setup with MicroGP is shown in Fig.

6. MicroGP Test Generation Environment.

8 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

Fig. 6. MicroGP Test Generation Environment

Another element to be assessed was the amount of time (man months) and ML

expertise required to setup the environment for such experiments.

In order to reduce the amount of setup required, we avoided instructions with

complicated constraints such as loops and configuration instructions which require

barriers. Address generation for branch and load/store instructions was handled by

the unconstrained FireDrill generator subject to abstract constraints controlled by

MicroGP (eg, forward/backward branches, load/store to local or shared memory). If,

for any reason, it was not possible to generate an address as specified, the instruction

requested by MicroGP was ignored.

3.1 Overview

The uGP version used for performing the tests was 2.7.0 beta as found on [9]. It

consists of 31 files containing ~8000 lines of C code. The only requirements of the

program are the creation of the IL, making sure the tests created by uGP are fed to the

simulator and finally that the coverage feedback is given to uGP in a text file of

specific format. The experimental setup chosen is shown on Figure 7.

Feedback-based Coverage Directed Test Generation: An industrial evaluation 9

IL uGP simulate_e.pl

SIMULATORpostprocess.pl

fitness.out

3

2

1

1

2

total.txtpairs.txt

createIL.pl

LEGEND

ugp_fd.e

fire_drill

.cov

FP Tests

uGP

Programs

CALLS / GENERATES

USED BY

PROGRAMS

SCRIPTS (e, Perl)

FILES

Fig. 7. MicroGP experiment setup

The process starts by creating the IL via the custom made Perl script. The script

reads a database containing the operations and constraints between classes of

operations according to the SIMD instructions of FirePath and constructs the IL

database. Once uGP is executed it uses the IL to create and evolve test programs. At

every learning epoch once new individuals (tests) are constructed the executable calls

another Perl script (simulate_e.pl) which does three things. It first calls the FireDrill

test generator to read the uGP tests with the help of a constraints file written in the e

language [18] (ugp_fd.e) so that appropriate FirePath tests are created. The reason for

this step is explained in Section 3.2. Then, once the FirePath tests are created, the

script calls the simulator (external evaluator). Once all the tests have run,

simulate_e.pl calls another script (postprocess.pl) to extract the coverage achieved by

those and create the fitness.out file. This is used by the uGP executable to assign a

fitness value to the tests it created. The process described continues until the

termination criterion is met, i.e. 100 epochs have elapsed. This termination criterion

was chosen in favor of any convergence related ones, so as to assess the full potential

of the algorithm.

10 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

3.2 Test Program Representation

The IL used by uGP, was automatically constructed from the FirePath instruction set

database of over 700 operations. Each macro included in the IL had the structure

shown in Figure 8. In order to maximize reuse of existing constraints, shorten the

learning process and in particular ensure validity of constructed tests, uGP evolved

test programs that would direct FireDrill in constructing the final tests to be

simulated. Arithmetic operations were explicitly stated in the macros and thus chosen

by uGP, while Load/Store and Branch operations were decided by FireDrill according

to the biases put in place by uGP.

Fig. 8. Implementation of a single macro in the IL

Raising the level of abstraction from using pure FirePath assembly code (i.e.

including Load/Store and Branch operations) to effectively semi-biases for FireDrill,

as such, has had both positive and negative impact on the setup. A positive effect was

the ability to create syntactically correct tests while hiding unnecessary details of the

ISA. On the other hand, it has introduced a degree of dissimilarity between uGP

generated tests and those finally run on FirePath.

The final IL created, consisted of 2635 macros. Each macro represented a legal

pairing of operations which corresponded to a set of legal instructions to be used for

constructing uGP tests.

3.3 Comparing Performance

The Evolutionary uGP experiments were contrasted against Random uGP

experiments and experiments involving only the FireDrill constrained pseudo-random

generator. Thus there were in total 3 types of experiments to be contrasted.

In order to fairly compare the experiments, it was useful to fix or limit some of the

parameters. It was decided that the average number and average size of tests created

by a standard Evolutionary uGP run would be used as a basis on which the other two

experimental settings would be evaluated.

Every Evolutionary uGP run took 100 epochs to elapse. Usually the best individual

would be found earlier than epoch 100, thus once it was found, the evaluated number

Feedback-based Coverage Directed Test Generation: An industrial evaluation 11

of instructions and tests, by that epoch, would be kept in order to later calculate the

number and size of tests to be created during Random and FireDrill experiments.

Thus once a series of 10 Evolutionary runs completed, the aforementioned indicators

were extracted from the statistics kept and were used for setting up the Random uGP

and FireDrill experiments.

Random uGP tests were produced by the uGP program after first disabling its

evolutionary algorithm. In effect, every new test would be created by randomly

picking instructions from the IL until the desired test size was achieved.

FireDrill tests were produced according to a bias file that allowed the generation of

instructions like those of uGP. The only parameters that were passed to it were the

number and size of tests to produce.

The usefulness of each of the 3 experimental results was determined by the quality

of the tests produced in terms of code coverage achieved either by stand-alone tests or

by a small regression suite.

4 Experimental Evaluation

4.1 Experimental Configuration

During the Evolutionary and Random experiments the main uGP program has been

executed on a single Linux machine while the newly generated tests were simulated in

parallel on 30 different machines.

In the Evolutionary uGP experimental runs, the GA was set to be guided by a 3-

term Fitness function, assigning equal weight to each of the code coverage metrics

used, while each experiment has been further divided into 3 configurations. These

differed on how uGP sorts the entire population at the end of each epoch. The default

primary sorting criterion was the aforementioned fitness value, but once 2 individuals

in the population were equally effective, an additional sorting criterion was used. The

default secondary sorting method was the individuals’ “birth” i.e. the epoch on which

they were first created (BIRTH). The tests were sorted with the newest and best test

ranking as first in the population.

In the early stages of uGP evaluation it was noted that better coverage results,

especially for branch coverage, were recorded as the size of the tests became larger.

In order to test the validity of this observation and get most out of the tool during its

evaluation, it was decided to assess the effect of test size on the quality of tests

evolved. In order to do so, two alternative secondary sorting methods have been

employed. Sorting individuals in descending order (DSC) of size was expected to

increase the average size of tests in the long run. Doing the converse, i.e. sorting in

ascending order (ASC) was expected to keep the size to the minimum without trading

off coverage achieved.

12 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

4.2 Results – Single Best

In Table 1 the average achieved coverage in Expression (E), Branch (B) and Toggle

(T) coverage on each of the Evolutionary uGP (Evo), Random uGP (Rnd) and

FireDrill (FD) runs is presented for each of the 3 configurations (ASC, DSC, BIRTH).

Table 1. Average Best Test Coverage

 E

(%)

B

(%)

T

(%)

Best

Size

Final

Size
DSC Evo 88.10 62.10 94.40

3344

7208

Rnd 88.00 92.77 95.00 3344

FD 86.16 65.08 90.62 3344

ASC Evo 87.30 63.10 94.30

3743

7128

Rnd 88.00 93.17 95.52 3743

FD 85.42 58.73 89.17 3743

BIRTH Evo 87.20 67.50 94.10

4277

7522

Rnd 88.00 94.48 95.00 4277

FD 86.58 70.70 91.54 4277

The figures in Table 1 are an average over 10 experiments conducted per

configuration. These averages are the achieved coverage by the single best test

created at each of the 10 experiments.

As explained in Section 3.3, it was decided that for the generation of Rnd and FD

tests the size will be determined by the Evo runs as follows. As soon as the best test

was discovered on each of the 10 Evo runs, it would be noted and once all the 10 runs

would conclude, the average size of those best tests would be fixed for Rnd and FD

tests. This number was preferred over the total average of sizes on Evo runs, i.e.

~7000 instructions, because 100 epochs were only used to explore the full potential of

Evo uGP runs. Thus the „Best Size‟ column contains this average while the „Final

Size‟ column shows the average test size at the 100
th

 epoch of the Evo runs.

As can be seen, randomly created uGP tests have been able to achieve better results

in terms of code coverage. This outcome differs from the reported experimental

behaviour of uGP as given in [4-8]. Upon closer investigation it was found that the

most prominent reason behind this behaviour is the lack of test code diversity in Evo

uGP tests or conversely the high test code diversity in Rnd uGP tests. Also raising the

level of abstraction in the test generation phase, as described in Section 3.2, has not

allowed the GA mechanism to guide more effectively the test evolution.

At the same time, randomly created tests were better than those generated by

FireDrill. It was known that FireDrill‟s default biasing was not optimally configured

for targeting code coverage metrics and the results obtained pointed to this fact.

Despite the poor performance of Evo uGP in comparison to Rnd, it has managed to

produce tests that achieved on average better coverage than the FD created ones

consistently on all coverage metrics apart from Branch coverage.

Feedback-based Coverage Directed Test Generation: An industrial evaluation 13

4.3 Results – Cumulative

In terms of cumulative coverage, Table 2 shows the results of running a regression

suite from tests developed by each of the experimental configurations.

Table 2. Cumulative Coverage

E

(%)

B

(%)

T

(%)

Total

Tests

Regr.

Suite

Size

Instr.

At

Peak
DSC Evo 87 98 97 29 16 117326

Rnd 89 99 98 2448 20 66880

FD 89 99 93 1021 39 130416

ASC Evo 88 98 97 25 20 141809

Rnd 89 99 98 2740 61 228323

FD 89 99 98 887 72 269496

BIRTH Evo 88 98 96 18 11 82895

Rnd 89 99 98 2373 126 538902

FD 89 99 98 1644 65 278005

The table contains the results of a single run rather than the average over 10 runs as

is the case for Table 1. It is included here solely as an indication of the quality of tests

created by each of the experimental settings.

The column „Total Tests‟ shows the number of tests being considered for inclusion

into a regression suite. The column „Regr. Suite Size‟ shows at which test (after they

were sorted in descending order of coverage) the maximum cumulative coverage is

reached; these tests were selected for the regression suite. To make the comparison

more complete the column „Instructions at Peak‟, shows the total number of

instructions in each regression suite.

Although Rnd regressions have produced equal, if not in some cases better

cumulative coverage in comparison to the FD generated tests, these results also point

to the fact that FireDrill is more likely to produce tests that collectively reach

maximum attainable coverage than single best tests. This is because FireDrill was

designed for regression test generation, in contrast to uGP. The comparison between

the two, although not necessarily fair, is also done as an indicative measure of how

well the two test generators perform on roles other than their original intent.

Another observation made is the low count of tests and instructions needed to

reach comparably near-optimal coverage with Evo uGP generated tests. This is due to

the quality of tests evolved as a result of the evolutionary search. The downside is the

evolution and simulation time required; so although far fewer tests manage to cover

almost the same amount of RTL code, the time it takes to evolve them is considerable.

Thus it is worth using uGP to evolve tests that will be part of a regression suite that

should contain few tests and with as low instruction count as possible.

14 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

4.4 Results – Coverage Progression

The following graph is provided as an indication of the progress of learning achieved

while running the Evolutionary uGP algorithm.

BEST INDIVIDUAL (BIRTH)

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

EPOCH

P
E

R
F

O
R

M
A

N
C

E

T

E

B

Length/100

Fig. 9. Best Individuals progression (BIRTH)

The graph shows the progression of code coverage and test size for the best

individual in the parent population at each of the 100 learning epochs the algorithm

was run for, averaged over 10 runs.

One of the key points noted was that regardless of the secondary sorting order

chosen (i.e. ASC, DSC, BIRTH) a convergence towards the best test to be evolved

occurred around epochs 25-35. This behaviour is explained in the Discussion section.

Due to similarity of graphs only the BIRTH configuration was chosen to be shown.

All three sorting order experiment results have shown that the size of tests after

epoch 35 tails off while within additional 10-20 epochs it remains with some variation

stable. In the DSC results we noticed a sharper increase of test size compared to the

other two configurations but with no added coverage achieved. In fact, ASC runs have

achieved better coverage results with smaller tests.

Another trend observed was the increased Expression coverage in relation to

Branch coverage achieved. These results are counter-intuitive as one would expect

normally branch to be exceeding expression coverage count. The reason for this

behaviour was that the missing branch coverage is made of conditions that are not

very complicated, or that depend on a single signal or register. Thus it was discovered

that the remaining Expression coverage consisted of many different branches that

could potentially be reached if simpler antecedent variable values were satisfied.

Concluding on the progression of coverage, the best of the Evo experiments was

the BIRTH configuration as it was able to produce tests that on average achieved

Feedback-based Coverage Directed Test Generation: An industrial evaluation 15

better Branch coverage results while matching the Expression and Toggle coverage

achieved by the other two configurations. The BIRTH results also reaffirmed the

original impression on the correlation between test size and Branch coverage.

5 Discussion

The experiments described in this paper are the first to be produced on an industrial

level design and verification flow created without contribution from the original

authors of uGP; this alone points to the importance of the points made herewith.

During testing no bugs were found something that is consistent with the maturity

of the DUV used. The full time implementation effort on the project is estimated to be

5 man months. The initial set of experimental results which informed the final

experiments conducted (as presented in this work), took an extra month, while the

data presented herewith took an additional month. The estimated time required to set

up a similar environment for another verification project, within the company, is

expected to be less than one month. This is due to two reasons. Firstly, all of the

elements comprising the verification environment, as shown in Figure 7, are fully

implemented. Future users of this setup would only need to construct the IL. A further

reason is the experience gained in using uGP to conduct CDG on a given DUV. This

initial study had quite a steep learning curve and future tool use will clearly benefit

from this experience.

Each of the Evolutionary uGP runs required 72-96 hours to finish with the

bottleneck being the creation of increasingly large offspring test programs during the

execution of the main uGP program. During Rnd uGP experiments the time required

for both creation and simulation/evaluation of tests required about 24 hours. For

FireDrill the tests were created and simulated in batches of 20 tests thus the creation

and simulation of tests would finish in 4-5 hours.

Judging from uGP‟s previous experimental results [4-8], it was expected that Evo

uGP runs would produce better quality tests than Rnd uGP. The observed behaviour

though, has given valuable insight into the reasons behind this discrepancy. Inspecting

the uGP induced tests it was discovered they contained varying blocks of repeating

code. In effect, improvement on learning stops after the 35
th

 epoch because diversity

in the population decreases, despite test size increase. A local maximum is reached

and then the probability of activation of genetic operators (especially mutation), that

would be expected to increase diversity are reduced by the auto-adaptation algorithm.

Although this correlates with the Genetic Algorithm discovering “useful” building

blocks that one might argue are able to achieve good coverage, it also points to a lack

of instruction diversity in the test. In fact it was noted that only a small fraction of the

2635 macros in the IL was represented in each test belonging to the final population

(i.e. the existent test population at the 100
th

 learning epoch).

Additionally, FireDrill‟s stand alone performance in comparison to the Evo and

Rnd uGP configurations has pointed to its selective effectiveness as a regression test

generator and the need to improve some of its default biasing in increasing attained

code coverage.

Given the results obtained it was concluded that μ and λ parameters and the GA

selection strategy could be improved. Thus, a useful future improvement proposed

16 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

would be utilising a non-steady state, instead of the default steady state, population

selection strategy. This means that a single best individual would be kept from epoch

to epoch while the rest of the tests created would be variants of it via random

mutations. This would potentially increase the diversity by simulating to a great

extent the observed test generation behaviour of the Rnd uGP runs.

Finally, it was noted that using uGP did not require knowledge on evolutionary

algorithms, thus increasing its usability. On the other hand, given the non-optimal

behaviour observed, expertise would be required to understand and fix any issues.

6 Conclusions

MicroGP has proven to be a tool that can effectively guide a test generator such as

FireDrill in producing compact single tests that achieve near optimal coverage.

On the other hand, quite unexpectedly, the increased effectiveness of the randomly

induced uGP tests over the evolved ones pointed to the inability of the uGP algorithm

to maintain diversity of tests during the learning phase. This weakness was made

particularly evident in our work and this would in general be the case for LIW

processors where there are several hundred thousand possible instructions.

MicroGP v.2.7 would benefit from the inclusion of alternative selection strategies

and possibly more effective genetic operators that would enable the evolution of more

diverse tests faster, while increasing the overall coverage attained by them.

Additionally, a more expressive syntax for creating more dynamic macros inside

the IL would be useful. This would enable choosing calculated parameter values

instead of a preset range of values, e.g. based on constraints that describe how current

parameters depend on preceding ones. The end effect would be to increase the

diversity and expressiveness, thus effectiveness, of tests produced by uGP.

Concluding on the overall experience, it needs to be said that the objective of

verification is to eliminate as many bugs from the design as possible using the least

resources. A useful first step towards this goal is maximising efficiently the coverage

and test diversity achieved by the test generation methodology used. Random test

generation has proved effective because, once a generation system has been set up, in

the general case, many unexpected corner case bugs can be found, while in the

specific case of this work, many coverage points can be hit with little intervention

from the engineers. The generation and testing process is highly parallelisable and

therefore achieves a lot of coverage in little elapsed time. In contrast, the

evolutionary approach has a sequential bottleneck around the evaluation and breeding

process which tends to dominate the elapsed time of the entire process.

Inevitably, the best answer is not going to be either random or evolutionary and

will be a synthesis of both. Recent developments in uGP (i.e. uGP v.3 [19]) appear to

be intended to address this.

Feedback-based Coverage Directed Test Generation: An industrial evaluation 17

7 Acknowledgements

The authors would like to thank Dr. G. Squillero, one of the original authors of uGP,

for his constructive feedback and comments. Also A. Dawson, C. Randall, H. Tao

and M. Desai, all engineers at Broadcom UK, for their invaluable support during the

course of this project. Charalambos Ioannides is an EPSRC funded research engineer

at the IDC in Systems, University of Bristol.

8 References

[1] ITRS, “International Technology Roadmap for Semiconductors, Design Chapter, 2008

Edition,” 2008.

[2] G. Squillero, “MicroGP—An Evolutionary Assembly Program Generator,” Genetic

Programming and Evolvable Machines, vol. 6, 2005, pp. 247-263.

[3] A. Piziali, Functional verification coverage measurement and analysis, Berlin:

Springer, 2007.

[4] F. Corno, G. Squillero, and M.S. Reorda, “Code Generation for Functional Validation of

Pipelined Microprocessors,” Proceedings of the 8th IEEE European Test Workshop,

IEEE Computer Society, 2003, p. 113.

[5] F. Corno, G. Cumani, and G. Squillero, “Exploiting Auto-adaptive μGP for Highly

Effective Test Programs Generation,” Evolvable Systems: From Biology to Hardware,

Trondheim (Norway): Springer Berlin / Heidelberg, 2003, pp. 262--273.

[6] F. Corno, G. Cumani, M.S. Reorda, and G. Squillero, “Fully Automatic Test Program

Generation for Microprocessor Cores,” Proceedings of the conference on Design,

Automation and Test in Europe - Volume 1, IEEE Computer Society, 2003, pp. 1006--

1011.

[7] F. Corno, E. Sánchez, M.S. Reorda, and G. Squillero, “Automatic Test Program

Generation: A Case Study,” IEEE Design & Test of Computers, vol. 21, 2004, pp. 102-

109.

[8] F. Corno, G. Cumani, M.S. Reorda, and G. Squillero, “Automatic test program

generation for pipelined processors,” Proceedings of the 2003 ACM symposium on

Applied computing, Melbourne, Florida: ACM, 2003, pp. 736-740.

[9] Politecnico di Torino, “Research: MicroGP,” Nov. 2007. Available from

http://www.cad.polito.it/research/microgp.html, Accessed 2010-03-14

[10] S. Ur and Y. Yadin, “Micro architecture coverage directed generation of test programs,”

Proceedings of the 36th annual ACM/IEEE Design Automation Conference, New

Orleans, Louisiana, United States: ACM, 1999, pp. 175-180.

[11] M. Bose, J. Shin, E.M. Rudnick, T. Dukes, and M. Abadir, “A genetic approach to

automatic bias generation for biased random instruction generation,” 2001, pp. 442-448.

[12] S. Tasiran, F. Fallah, D.G. Chinnery, S.J. Weber, and K. Keutzer, “A functional

validation technique: Biased-random simulation guided by observability-based

coverage,” Institute of Electrical and Electronics Engineers Inc., 2001, pp. 82-88.

[13] D. Ashlock, Evolutionary Computation for Modeling and Optimization, Springer, 2005.

[14] J.R. Koza, “Evolution and co-evolution of computer programs to control independently-

acting agents,” Proceedings of the first international conference on simulation of

adaptive behavior on From animals to animats, Paris, France: MIT Press, 1990, pp.

366-375.

[15] P. Bernardi, K. Christou, M. Grosso, M.K. Michael, E. Sanchez, and M.S. Reorda,

“Exploiting MOEA to automatically generate test programs for path-delay faults in

18 Charalambos Ioannides, Geoff Barrett, Kerstin Eder

microprocessors,” Heidelberg, D-69121, Germany: Springer Verlag, 2008, pp. 224-234.

[16] D. Ravotto, E. Sanchez, M. Schillaci, and G. Squillero, “An evolutionary methodology

for test generation for peripheral cores via dynamic FSM extraction,” Heidelberg, D-

69121, Germany: Springer Verlag, 2008, pp. 214-223.

[17] S. Wilson, The FirePath Processor Architecture Guide, Broadcom Corporation, 2008.

[18] D. Robinson, Aspect-Oriented Programming with the e Verification Language: A

Pragmatic Guide for Testbench Developers, Morgan Kaufmann, 2007.

[19] E. Sanchez, M. Schillaci, and G. Squillero, Evolutionary Optimization: the µGP toolkit,

Springer, 2010.

