
SQUAD: A Spectrum-based Quality Adaptation for
Dynamic Adaptive Streaming over HTTP

Cong Wang and Amr Rizk∗

University of Massachusetts Amherst
{cwang1,arizk}@umass.edu

Michael Zink
University of Massachusetts Amherst &

Technische Universität Darmstadt
zink@ecs.umass.edu

ABSTRACT

The application-layer based control loops of dynamic adap-
tive streaming over HTTP (DASH) make video bitrate se-
lection a complex problem. In this work, we review and
present new insights into the challenges of DASH rate adap-
tation. We identify several critical issues that contribute to
the degradation of DASH performance with respect to the
rate control loops of DASH and TCP. We then introduce a
novel DASH quality adaptation algorithm SQUAD, which
is specifically designed to ensure high quality of experience
(QoE). We implement and test our algorithm together with
a number of state-of-the-art quality adaptation algorithms.
Through extensive experiments on both testbed and cross-
Atlantic Internet scenarios, we show that by sacrificing little
to none in average quality bitrate, SQUAD provides signif-
icantly better QoE in terms of number and magnitude of
quality switches.

CCS Concepts

•Information systems → Multimedia streaming;

Keywords

Adaptation, DASH, HTTP, QoE, Video, Quality

1. INTRODUCTION
Video Streaming is the most popular application in to-

day’s Internet. According to the latest Sandvine report [3]
67% of the downstream Internet traffic at peak hours in the
US is real time entertainment such as live streaming and
video on demand. Such high demand for video content re-
quires approaches to efficiently transport the data from the
content providers to the customer while providing the viewer
a satisfying Quality of Experience (QoE).

To achieve this goal, virtually all video content providers
have switched to the available bitrate streaming (ABR) mech-
anism. With ABR, the streaming rate, and thus the re-

∗This work was funded in part by DAAD exchange grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’16, May 10-13, 2016, Klagenfurt, Austria

c© 2016 ACM. ISBN 978-1-4503-4297-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910017.2910593

sulting quality of a video, can be adapted to the available
bandwidth between the video server and the client. One
of the most popular realizations of ABR streaming is the
MPEG’s Dynamic Streaming over HTTP (DASH) standard.
Its popularity can mostly be attributed to the facts that
i) DASH-format videos can be streamed from any kind of
HTTP server; ii) adaptation logic resides in the client, which
makes DASH highly scalable; and iii) it is an open standard.
In addition to DASH, there exist proprietary ABR imple-
mentations like Microsoft’s SmoothStreaming [4], Apple’s
HTTP Live Streaming (HLS) [2], and Adobe’s HDS [1].

All of these ABR approaches use HTTP and the benefits
of the underlying TCP protocol, which include standard-
ized transport, firewall penetration, and adaptation to band-
width changes. Unfortunately, the use of TCP also brings
a set of difficulties which we identify and investigate in this
paper. Examples of such challenges are, the dual control-
loop (one for DASH and one for TCP as already identified
by Huang et al. [13]), the impact of video segment size, and
the impact of dead times on congestion window size.

An additional challenge for ABR video streaming is to pro-
vide a high QoE to the viewer. From the onset, DASH has
been designed with the goal to prevent re-buffering events,
which have the most serious impact on QoE, as shown by
Krishnan and Sitaraman [17]. In addition to re-buffering
events, frequent changes in quality have also been identified
as detrimental to QoE by viewers, e.g., in Zink et al. [31].

These insights motivated us to design a new DASH adap-
tation algorithm that aims at achieving the highest possi-
ble quality bitrate while minimizing the number of quality
changes, since we believe that most existing approaches only
focus on the former and, thus, do not always result in a sat-
isfying QoE. In this paper, we make the contributions:

• Critical Observations. We perform a detailed anal-
ysis of the interplay between the DASH adaptation
mechanism and underlying TCP. Through this anal-
ysis we identify several issues that contribute to the
problem of optimizing the DASH performance. Most
notably, we identify i) the substantial impact of seg-
ment size on the download rate; ii) impact of dead time
on the congestion window; and iii) the inaccuracy of
segment-based available bandwidth estimation.

• SQUAD. We develop a new DASH rate adaption al-
gorithm that has the goal to maximize the quality of
experience of users watching video by addressing many
of our critical observations. To achieve this goal, we
consider two metrics that describe QoE and combine
these in an online optimization algorithm.

• Evaluation. We present results from an extensive
evaluation of the SQUAD algorithm. We perform a se-
ries of experiments in a controlled environment (GENI
testbed) and in the wild (public Internet) and compare
SQUAD with other, existing DASH algorithms.

The remainder of the paper is structured as follows. We
describe the basic architecture and adaptation mechanisms
in Sect. 2. In Sect. 3, we analyze the issues that arise from
the interplay of DASH and TCP. Our SQUAD algorithm
is introduced in Sect. 4 and a detailed evaluation of the
algorithm is presented in Sect. 5. Sect. 6 presents related
work in the area of DASH adaptation algorithms and we
conclude the paper in Sect. 7.

2. DASH PLAYER ARCHITECTURE
In this section, we highlight the main components of a

general DASH player architecture as depicted in Fig. 1. We
divide the client block into the following logical components
with specific functionality: (i) playout buffer, (ii) rate esti-
mation / prediction and (iii) quality adaptation.

In the following, we will provide some definitions of im-
portant DASH parameters to lay the ground for subsequent
modeling. We denote the size of a DASH video segment (in
bits) of a certain quality as si,q, with the segment number
i ∈ {1, . . . , N} and the quality level q ∈ {1, . . . , Q}. Here,
q = 1 (q = Q) denotes the lowest (highest) quality with
respect to the video quality bitrate rq, i.e., rj < rj+1 for
j ∈ {1, Q− 1}. We denote the quality of a fetched segment
i by qi and its quality bitrate by rqi and drop the subscript
when it is obvious. We consider the case where all video seg-
ments have equal length in time, i.e., every segment carries
X seconds. The fetch time of segment number i in quality
level q is given as ti,q = si,q/Ri,q, where Ri,q is segment
download rate in bit/sec. In Sect. 3 we describe how the
segment download rate Ri,q depends on a combination of
multiple factors such as the network conditions, the TCP
state and even the size of the segment si,q.

The playout buffer B(i):. The purpose of the playout
buffer is to smooth short-term variations of the network con-
ditions. Specifically, temporary fluctuations in the segment
download rates R should be absorbed by the buffer resulting
in corresponding fluctuations in the buffer filling B(i) while
keeping the steady state playback quality q unchanged.

In this work, we define B(i) as the cumulative number of
video seconds contained in the playout buffer after fetching
segment i. Note that B(i) is defined over i ∈ {0, . . . , N} and
that by convention B(0) = 0. We define the event {B(i) =
0} as the rebuffering event. For any practical application,
the playout buffer is set to a finite size Bmax. For B(i−1) <
Bmax we write down the buffer recurrence as

B(i) = max {0, B(i− 1) +X − ti} , (1)

where ti is the fetch time of segment i. For B(i) = Bmax

we have B(i+ 1) = Bmax − ti+1 since the player idles for X
seconds when the buffer is full.

Rate estimation:. One basic client-side download rate es-
timation logic in DASH simply divides the segment size si,q
over the segment fetch time ti. Here, the fetch time is given
by the time difference between the timestamps of the HTTP
GET request and the segment being delivered to the playout
buffer, i.e.,

di,q =
si,q

tdeliveredi − tGETi

(2)

HTTP

TCP

server

quality
adaptation

rate
estimation

playout
buffer

cross
traffic

Figure 1: Coarse architecture of a DASH client. Buffer filling
and download rate estimates are fed to the quality adapta-
tion logic which decides on the quality of the next segment.
The stream encounters varying network conditions, for ex-
ample, due to contending cross traffic.

10 100 1000

20

40

60

80

100

time scale [# of packets × transmission time]

es
tim

at
ed

 r
at

e
[M

bp
s]

TSO on
TSO off

(a) Impact of NIC SO

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

segment size [MB]

es
tim

at
ed

 r
at

e
[M

bp
s]

(b) Rate estimation accuracy

Figure 2: User space rate estimates in DASH: (a) Impact
of NIC segmentation offloading on rate estimation in user
space. (b) User space rate estimates in DASH become more
accurate for longer segments.

Note that the rate estimate di,q is smeared by the one-way
delay of the GET request. This error diminishes with increas-
ing segment size si,q. Rate estimation methods that calcu-
late the download rate over multiple concatenated segments
extend (2) to

di,j,q =

∑j

k=i
sk,q

tdeliveredj − tGETi

(3)

for segment indexes j ≥ i. In Sect. 3, we provide a critical
evaluation of the foundations of the DASH rate estimates.

Quality adaptation:. Next, we review basic concepts for
the segment based quality adaptation logic shown in Fig. 1.
DASH clients first fetch media presentation description
(MPD) files that contain information on the content to
be streamed such as server IPs, bitrates of different qual-
ity levels and the URIs to the segments of different qual-
ities [24]. Basically, quality adaptation algorithms have
two sources of information, i.e., the status of the playout
buffer filling and the download rate of previous segments
provided by the rate estimation logic. Buffer based qual-
ity adaptation takes, in general, the current buffer filling
B(i) and in some cases also the change of the buffer fill-
ing (B(j)−B(i)) /

(

tdeliveredj − tdeliveredi

)

for segments j ≥ i,
into account when deciding on the quality of the next seg-
ment to be fetched. The change of the buffer filling is an in-
dicator for a mismatch of the segment download rate, which
is an estimate of the available bandwidth, and the playout
rate. In DASH, there exists a subtle difference between the

 1

 10

 100 1000 10000 100000

D
o
w

n
lo

a
d
in

g
 R

a
te

 (
M

b
p
s
)

Segment Size (kbit)

2-sec: persistent
10-sec: persistent

2-sec: non-persistent
10-sec: non-persistent

(a) 10 Mbps

 1

 10

 100

 100 1000 10000 100000

D
o
w

n
lo

a
d
in

g
 R

a
te

 (
M

b
p
s
)

Segment Size (kbit)

2-sec: persistent
10-sec: persistent

2-sec: non-persistent
10-sec: non-persistent

(b) 30 Mbps

 1

 10

 100

 100 1000 10000 100000

D
o
w

n
lo

a
d
in

g
 R

a
te

 (
M

b
p
s
)

Segment Size (kbit)

2-sec: persistent
10-sec: persistent

2-sec: non-persistent
10-sec: non-persistent

(c) 100 Mbps

Figure 3: DASH segment download rates for links of different capacity. The segment size has a substantial impact.

long lived

TCP

DASH

capacity

Figure 4: DASH abstraction as source of TCP mice flows.

change of buffer filling metric and the averaged download
rate since DASH introduces inter-request time gaps. We
will provide a detailed analysis of this issue in Sect. 3.

Quality adaptation mechanisms that additionally take the
rate estimate into account aim to match the segment down-
load rate to the playout rate by choosing segment qualities
that have bitrates lower than the estimated available band-
width. The estimation of the available bandwidth for the
next segment(s) given the download rate history can rely, for
example, on network active probing techniques [15] or simply
on time series analysis. Further, the rate based adaptation
component bears the risk that the chosen segment qualities
oscillate in accordance to the available bandwidth. From
a streaming point of view, it is well known that frequent
video quality oscillations are detrimental to the quality of
experience (QoE) perceived by the users.

In the following sections, we will refer to the basic DASH
player architecture and describe the details of the modifica-
tions introduced by our adaptation algorithm SQUAD. In
the next section, we provide some critical observations on
DASH that sparked some of the specifications of SQUAD.

3. CRITICAL OBSERVATIONS IN DASH
In the following, we review fundamental observations in

Dynamic adaptive streaming over HTTP that make the
problem of optimizing DASH performance a hard one.

3.1 DASH estimates are in user space
DASH clients usually estimate the segment download rate

from segment timestamps in user space. Depending on the
hardware environment and its configuration these estimates
may vary significantly. Trivially, estimates made in virtu-
alized environments may be highly varying, because of VM
scheduling [28]. However, we first look at a non-virtualized
bare-metal topology and show the impact of different set-
tings of the network interface card (NIC), at the example
of segmentation offloading (SO), on the DASH segment
rate estimates. To this end, we use the Emulab testbed [27]
to build a topology with two bare metal nodes connected
via a 100 Mbps link. In the first experiment, we emulate a
persistent HTTP DASH flow through a long running greedy
TCP flow and consider the segment download rate estimates

obtained for different segment lengths. Figure 2a shows the
rate estimates over increasing estimation time scales. We
normalize the x-axis, i.e., the time scale, to the number of
packets that fit into one time slot at line rate. From Fig. 2a
we deduce that the user space rate estimate is indeed affected
by the segmentation offloading for small DASH segments,
i.e., in the order of 10’s to few hundreds of packets. On
the other hand, larger time scales, i.e., equivalently larger
DASH segments, allow some averaging such that the impact
of SO is negligible.

To get a better understanding of the DASH user space
segment download rate estimates we rerun the experiment
with the Python DASH player from [16]. We modified the
player to continuously measure the download rate during
segment download by taking one measurement point every
50 packets. A one-minute video is streamed in the two-node-
one-link topology with link capacities of 10Mbps, one DASH
flow and no cross traffic. The video segment length is 2 sec.
We measure the rate estimates for segments of different sizes
as shown in Fig. 2b, which depicts averages and 0.95 confi-
dence intervals. Here too, we observe that the inaccuracy of
the rate estimates is highest when the segments are small.

3.2 DASH runs over TCP
In the following, we discuss specific characteristics of

DASH that arise due to the fact that DASH utilizes TCP.

Dual control loop

The design choice of DASH to utilize HTTP for adaptive
bitrate streaming brings numerous advantages such as stan-
dardized transport, firewall penetration, adaptation to the
bandwidth changes and all the advantages of TCP. However,
since the DASH player needs to specify the quality bitrate of
the segments to be fetched, it may be regarded as an outer
control loop, while TCP running as an inner control loop
that prevents congestion. While TCP aims for the fair share
on a packet level time scale, DASH aims for the sustainable
quality bitrate, i.e., essentially the fair share, on a segment
level. The problem exacerbates since the control loop of
DASH runs on a per segment basis. Since the segments are
of different sizes, the time scale on which DASH tries to find
the fairs share is continuously changing. Figure 3 shows em-
pirical segment download rates for different segment sizes
from testbed measurements with one DASH flow using two-
node-one-link topology without cross traffic. The average
link RTT for this experiment is 1.55 ms. We vary the seg-
ment lengths (in seconds), the link capacities and use persis-
tent and non-persistent HTTP connection. Figure 3 clearly
shows the impact of the segment size on the download rate

for both HTTP connection types. The empirical download
rate may be much lower for smaller segments.

Our algorithm (SQUAD), which we present in Sect. 4
takes into account this discrepancy of the rate estimation
time scales and provides DASH with (available) download
rate information on the appropriate time scale.

DASH is TCP submissive

Although DASH utilizes HTTP over TCP/IP to retrieve
segments, we argue that it does not necessarily receive its
fair bandwidth share when competing with other long-lived
TCP cross traffic. The reason for this behavior is that a
DASH video stream does not constitute a long-lived TCP
flow from the server to the client. Figure 4 shows a sketch
of this behavior for one hypothetical case of one DASH flow
competing with one long-lived TCP flow.

Reasons for this discontinuous traffic behavior lie in the
nature of DASH streaming. First, assume a persistent
HTTP connection, since in case of DASH over non-persistent
HTTP it is simple to show that the continuous TCP cross
traffic receives more than the fair bandwidth share. In gen-
eral, there exist dead times of no DASH transmission that
result from the DASH adaptation algorithm itself, i.e., de-
pending on how often the DASH adaptation logic fetches a
new segment and the corresponding buffer filling. Figure 5d
shows the CDF of the dead times between receiving the last
packet of one DASH segment and sending out the HTTP
GET request for the next one. Clearly, there is silence time
of multiple hundred milliseconds in the median case. This
is sketched in Fig. 4 as gaps between the DASH segments.

In Fig. 5 we show the results for the experiment of compet-
ing DASH and a long-lived TCP flow as sketched in Fig. 4.
We run this experiment with two different segment sizes, i.e.,
2 sec and 10 sec, a link capacity of 10 Mbps and a DASH
repository of the Big Buck Bunny dataset with quality bi-
trates ranging from 89 Kbps to 4.2 Mbps. We emphasize
that we do not aim to investigate ABR segment size opti-
mizations in this work, but merely show that different set-
tings of DASH parameters can lead to entirely different per-
formance. Our aim is to show the fundamental roots for this
varying behavior. Figure 5a shows the segment throughput
as measured by the client as well as a finer grained through-
put measurement that is done on the wire. For a segment
size of 2 sec the quality bitrate of the DASH stream is re-
markably low with respect to the fair share. The reason for
that can be inferred from Fig. 5c, where we observe that the
corresponding congestions window does not ramp up as the
segments are “small” in size. In contrast, for 10 sec segments
the congestion window in Fig. 5c is nearly an order of mag-
nitude higher and the quality bitrate shown in Fig. 5b stays
at a high quality layer with bitrate of 3.8 Mbps.

From a modeling perspective, the interrupted TCP stream
generated by DASH can be regarded as the output of an ON-
OFF source that generates TCPmice flows (although techni-
cally imprecise because of the persistent HTTP connection).
Hence, it is known that competing long-lived (elephant) and
mice flows suffer from fairness disparities [12].

4. SPECTRUM-BASED QUALITY

ADAPTATION FOR DASH
In this section, we describe a DASH quality adaptation

algorithm that addresses many of the critical points raised
in Sect. 3. The aim of this algorithm is to maximize the

quality of experience associated with DASH streaming ses-
sion in a quantitative manner. We consider two metrics that
describe QoE and connect these into an online optimization
algorithm in a novel manner. Given a DASH streaming ses-
sion of N segments each of length X seconds, the first met-
ric we consider is the average video bitrate, i.e., the average
video quality, which we express as

r̄ =
1

N

N
∑

i=1

rqi . (4)

Recall that rqi is the quality bitrate of segment i at qual-
ity level q ∈ {1, . . . , Q}. Formula (4) does not consider the
detrimental impact of rebuffering on the average video qual-
ity. One method to capture rebuffering in (4) is to substitute
N by N ′ which equals the number of segments N in addi-
tion to the number of segments that can be fitted in the
rebuffering time as ⌈trebuf/X⌉. Trivially, the corresponding
rates rqi are set to zero.

The second metric that we consider is a centralized mea-
sure for the variation of the video quality around the average
quality which is is denoted as “spectrum” in [31]. We adapt
the spectrum definition to DASH streaming to express the
video bitrate variation around the average bitrate given N
segments as

H(N) =

N
∑

i=1

zi

(

rqi −

∑N

j=1
zjrqj

∑N

j=1
zj

)2

(5)

where zi = ✶{rqi 6=rqi−1
}. In the following, we describe our

DASH quality adaptation algorithm that has the objective
of maximizing (4) while minimizing the spectrum (5). From
a classification point of view, the algorithm can be regarded
as a rate and buffer based algorithm since it takes the infor-
mation on the buffer filling as well as the historical download
rates to decide on the quality of the next segment.

Smooth and reliable rate estimation

Given our observation in Sect. 3 that the measured segment
download rate varies with the segment size and the current
state of the server TCP state machine, we introduce two
key ideas to provide smooth and reliable estimates of the
download rate of the next segment to be fetched.
Smooth sub-segment rate estimates: Looking at the
download rate estimation methods from Sect. 3 we observe
that the estimates are usually calculated upon the arrival of
a video segment. Since segments vary in size, the different
estimates correspond to different time scales. Hence, given
the knowledge of the time scale dependence of the behavior
of network protocols (such as TCP fairness) and thus the
available bandwidth, we decide to take running estimates of
the download rate vs. the downloaded data amount. Start-
ing from the request time tGETn for segment n we calculate the
running download rate estimate as

d̂s =
s

t
cj,delivered
n − tGETn

(6)

where s denotes the segment size. t
cj,delivered
n is the time

required to download cj bits of segment n in quality q, where
cj ≤ sn,q. Figure 6a depicts this procedure. In order to gain
a more accurate rate estimation, for the rest of this paper,
we calculate the downloading rate d̂s from (6) using the
granularity of cj+1 − cj = 10 IP packets, i.e., roughly 15kB.
Reliable rate estimates: One important contributor to
the efficiency of any quality adaptation algorithm for DASH

0 50 100 150 200 250 300
0

2

4

6

8

10

time [s]

ra
te

 [
M

bp
s]

seg. DL rate
quality bitrate
DASH traffic

(a) DASH with 2-sec segments.

0 50 100 150 200 250 300
0

2

4

6

8

10

time [s]

ra
te

 [
M

bp
s]

seg. DL rate
quality bitrate
DASH traffic

(b) DASH with 10-sec segments.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

time [s]

cw
nd

2sec
10sec

(c) DASH TCP cwnd.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

time [s]

C
D

F

2sec
10sec

(d) Inter-GET times.

Figure 5: DASH is TCP submissive. Performance of DASH flow when competing with one TCP Reno flow.

empirical download rate

download size
 [Mb]

1 ssi js

d̂

(b)

...

time

cumulative
data

s

tc tc ts1 2

...

c1

c2

cj

tcj

d2
^

dj
^

ds
^

(a)

Figure 6: (a) Sub-segment rate estimates. (b) Empirical
downloading rate vs. segment download size.

is the accuracy of the download rate estimate. However, in
Sect. 3 we showed that the segment download rate in case
of DASH depends on the segments size as well as the TCP
state. Practical approaches to predict the TCP transmission
rate that are based, e.g., on machine learning techniques
have been considered in [25]. In contrast, in this work we
assume a thin client that keeps track of the segment down-
load history, however, we do not aim to predict the TCP
transmission rate in such manner. Instead, we collect the
download rates d̂s similar to Fig. 3 and deduce an empirical
lower bound on the download rate for the next segment n+1
of size sn+1,q from the percentile of the empirical distribu-
tion as

P
[

rn+1,q ≤ d̂ ε
sn+1,q

]

≤ ε, (7)

where ε is a conservatism parameter. The smaller we set
ε the more conservative is the lower bound d̂ ε

sn+1,q
for the

download rate of the next segment. We sketch this proce-
dure in Fig. 6b.

4.1 Init: A Slow Start of Segment Quality
Initially, we start the streaming session by retrieving the

corresponding MPD file which we modified to include the
segments sizes (in kB). Modifying the MPD to include seg-
ment size was first proposed by [16]. Since we do not assume
any prior information on the available bandwidth along the
path between the client and the streaming server we stream
the first segment with the lowest possible quality. Instead
of streaming only the first segment in the lowest quality we
may stream a consecutive train of the first W1 segments in
the lowest quality. This conservative choice provides the
possibility to estimate the download rate of higher quality
segments that are usually larger in size. However, the larger
W1 the longer the player is stuck with the lowest quality,
which increases the risk of video abandonment. In the se-
quel, we set W1 = 5 if not stated otherwise.

The segment quality slow start behavior follows starting
from segment W1 + 1. Here, with every segment we double

the quality level requested until we reach the highest pos-
sible quality. We conclude the initial phase and go to the
next phase, that we denote the steady state, either when
the quality slow start is finished or when the download time
of the last fetched segment is longer than double the seg-
ment length X. We choose this empirical break condition
to minimize the risk of rebuffering in the initial phase.

4.2 Steady state
In the following, we describe how the player decides on

the quality of the next segment based on the algorithm we
denote spectrum based quality adaptation.

4.2.1 Spectrum-based adaptation

After the initial phase, i.e., W1 + ⌊log(Q)⌋ segments, the
player decides for the rest of the video stream on the segment
qualities based on the spectrum H given in (5). Given the
trace of quality levels downloaded so far, the player aims
at minimizing (5) for all possible quality levels for the next
segment. However, this strategy leads to preferring segment
qualities near to the running average quality bitrate and
may not necessarily have a drift towards higher qualities.
Since we described the aim of this adaptation algorithm to
maximize the average bitrate (4) subject to minimizing the
variations around the mean (5) we modify the adaptation
algorithm as follows.

First, we order the qualities according to their calculated
spectrum H where we mark the qualities either as “sustain-
able” or “unsustainable” according to their estimated fetch
time t̂. We denote a quality sustainable if its fetch time t̂
is less or equal to the X seconds of video contained in a
segment. Considering the playout buffer evolution (1) this
is equivalent to imposing a buffer constraint such that we
do not fetch qualities that lead to buffer drain. In the se-
quel we will relax this constraint. This ordering operation
is depicted in Fig. 7 and it provides the player with a first
reference for choosing the quality of the next segment. We
conjecture that, in general, movie consumers do not recall
the movie quality after a few minutes such that the current
QoE is function of the segment qualities over a window v
of past segments. For example, it seems reasonable that
during the course of a movie the viewers will less likely re-
member the quality of a scene after a few minutes. Hence,
as depicted in Fig. 7, given n downloaded segments with
qualities qCi with i ∈ {1, . . . , n}, we calculate the ordered
quality lists Ln+1(v) for segment n+1 for multiple backward
window lengths v ∈ V , where V denotes the set of window
lengths used to calculate the spectrum. To include the drift
to higher qualities we multiply the values of Ln+1(v) each

get sustainable quality
qs

n+1

qc

n-1
qc

n{ , … , , }qc

1 +MPD

^

1 ssi j

d

s

for dsn+1

-

dsn+1

e
or

estimate fetch time

X
d

s

ns

n 



1

ˆ
1

d̂
1ns

d̂
1ns

t̂
no

unsustainable
qs

n+1

yes

calculate spectrum
H(n+1) over

windows v V

n+1n+1

apply weight

a(q)
for drift

calculate ordered
quality list

maximizing the average
of over V

choose qs

n+1



L
a
n+1(v)

L
a
n+1(v)

qs

n+1 1,...,Q :=

:=

Figure 7: Spectrum based sustainable quality identification.

with a corresponding quality weight

α(q) =

(

r1
rQ

) 1
Q−q+1

. (8)

Note that the bitrate ratio r1/rQ is less than one and that
the weighting function α(q) is concave in Q− q.

We combine the weighted quality lists Lα
n+1(v), i.e., the

element wise product of the two vectors α and Ln+1(v), and
calculate the average of Lα

n+1(v) over multiple v. The basic
adaptation algorithm sets the so-called chosen quality for
the next segment qCn+1 equal to the sustainable quality qsn+1

which minimizes the average

∑

v∈V

1

|V |
Lα

n+1(v), (9)

where |V | denotes the cardinality of V . In the following, we
use V = {4, 8, 16} segments if not stated otherwise.

4.2.2 Buffer guidance - latent fallback

Now we turn our attention to relax the restrictive buffer
constraint from above that we do not fetch qualities that
lead to buffer drain. In general, our aim is to stream a movie
in highest sustainable quality while minimizing the quality
variations. Conceptually, a quality adaptation strategy that
tries to keep the buffer filling fixed will eventually follow
the variations of the available bandwidth. Hence, we use a
buffer guidance approach to complement the spectrum based
adaptation from Sect. 4.2.1. Here, we allow the playout
buffer B to drain at most by a certain amount whenever the
available bandwidth decreases and the current quality level
becomes unsustainable. This latent fallback strategy allows
the player to sacrifice buffer filling to maintain unsustainable
but spectrum minimizing quality levels for short periods of
time to be able overcome temporary available bandwidth
fluctuations. This, however, is only possible when the buffer
filling is high enough to minimize the risk of rebuffering. In
the following we describe the details of this algorithm.

As depicted in Fig. 8, we divide the playout buffer into
three areas, “low”, “medium” and “high”. Similar divisions
have been introduced in [16] and VLC [21]. In our case, we
only allow latent fallback when the buffer is in the “high”
region. We mark the buffer division by cutoff percentages cl
and ch where the subscripts stand for the lowest and highest
area. ch is chosen to provide space for buffer latent fallback,
while cl ensures low rebuffering risk. In our implementation,

...

buffer fill B

segment #n-1 n n+1

c
l

c
h

using estimate)1(ˆ nB e
1

ˆ
nsd

admissible quality

admissible quality

non-admissible quality

s
nq 1

s
nq 1

s
nq 1

high

med

low

max

Figure 8: Estimated buffer drain δ̂(n+1, q) = B(n)− B̂(n+
1) determines the admissibility of a proposed quality qsn+1.
Latent fallback is viable only if the buffer filling is above ch.

we choose 60% and 40% for ch and cl, respectively. When
the buffer filling is above ch we calculate the ordered quality
lists Lα

n+1(v) as in Sect. 4.2.1 but we only mark qualities as
unsustainable, that lead to a buffer drain below cl. In other
words, we mark qualities q as unsustainable only when

B̂(n+ 1) := B(n)− δ̂(n+ 1, q) < cl, (10)

where δ̂(n+1, q) := t̂n+1,q −X is the estimated buffer drain
due to fetching segment n + 1 in quality level q. We keep
applying the latent fallback algorithm as long as the buffer
filling is above ch. As soon as the buffer filling is equal or
below ch we return to the buffer constraint from Sect. 4.2.1.

4.2.3 Player states

In steady state we differentiate between three states in
which the player can be, which we denote as (i) decreas-
ing, (ii) steady, (iii) increasing. These states simply
describe the relation between the current chosen segment
quality qCn and the sustainable quality level that is calcu-
lated for the next segment to be fetched qsn+1. Based on
its state the player decides on the chosen segment quality
for the next segment, i.e., qCn+1. In the following, we de-
scribe the steps that are common to all states before delving
into the particular details of every state. Fig. 9 shows an
overview of the entire algorithm.

Before fetching a new segment we always calculate the
corresponding sustainable quality level qsn+1 as described in
Sect. 4.2.1. In particular, qsn+1 is calculated as the quality
which minimizes the spectrum, technically (9), while meet-
ing the stringent buffer constraint t̂n+1 ≤ X from Sect. 4.2.1.
To this end, we first calculate the estimated fetch time for
segment n+ 1 in quality q for q ∈ {1, . . . , Q} as

t̂n+1,q =
sn+1,q

d̄sn+1,q

(11)

where d̄sn+1,q denotes the average download rate estimated
empirically from Fig. 6b (similar to Fig. 3) given the size
of the next segment sn+1,q. Hence, as stated above we find
qsn+1 that minimizes (9) and compare it to qCn to detect the
current player state. In the following, we describe the steps
carried out when the different player states are detected:
Decreasing: In the decreasing state we detect that the sus-
tainable quality level is less than the current chosen quality,
qsn+1 < qCn . Here we first invoke the latent fallback technique
that is described in Sect. 4.2.2 to avoid rapid quality changes
in exchange for buffer filling. To this end, we recalculate the

get sustainable
quality usingqs

n+1 dsn+1

-

get sustainable
quality usingqs

n+1

get sustainable
quality usingqs

n+1

?

seg #

quality

n+1

dsn+1

e
dsn+1

e

qc

n
qs

n+1>

qc

n+1
qs

n+1
:=

qc

n+1
qs

n+1
:=

qc

n
qs

n+1< qc

n
qs

n+1=

qc

n
qs

n+1=

decr flag ?

set decr flag = 0

set decr flag = 0

10

:=

set decr flag = 1

{ } and { }B(n) > c
^

h
P[B(n+1) < c] < e^

l

buffer check

qc

n+1
qs

n+1
:=

no

set decr flag = 0

yes

qc

n+1

qc

n
qs

n+1

2

+ qc

n+1
qc

n
:=

qc

n-1
qc

n{ , … , , }qc

1 +MPD

Figure 9: High-level sketch of the SQUAD algorithm. The
calculation block to get the sustainable quality is given in
Fig. 7. The buffer drain consideration in the decreasing
player state is given in Fig. 8.

sustainable quality qsn+1 that minimizes (9), however, using

the ε percentile d̂ ε
sn+1,q

from (7). In the following, we set the
percentile ε = 0.2 to strike a balance between smoothness
and responsiveness. Next, we consider the buffer filling as in
Sect. 4.2.2. If the buffer filling is higher than ch, i.e., we have
enough segments buffered, we may sacrifice buffer filling for
holding the quality level qn. Hence, as long as the estimated
buffer underflow probability after fetching the next segment
is less than ε, i.e.,

P
[

B̂(n+ 1) < cl
]

≤ ε, (12)

we set the chosen quality for the next segment as the aver-
age qCn+1 := (qCn + qsn+1)/2 with qsn+1 calculated using the

percentile d̂ ε
sn+1,q

. Note that we do not perform this averag-
ing procedure more than once during one decreasing period,
since the idea here is to hold a moderate quality level as long
as the buffer filling permits. As described in Sect. 4.2.2, as
soon as the current buffer filling qCn falls below ch we set
the chosen quality level as qCn+1 := qsn+1. This procedure is
depicted in Fig. 9.
Increasing: In the increasing state we observe that qsn+1 >
qCn through the use of the average download rate d̄sn+1,q .
The increasing state denotes that the player has room for
increasing the segment quality. In this case we set the chosen
quality as qCn+1 := qsn+1.

Optionally, to avoid large quality jump magnitudes, we
can modify SQUAD to be more conservative such that each
quality switch cannot exceed a certain threshold qJmax.
Steady: In the steady case we detect no change in the cal-
culated sustainable quality level with respect to the previ-
ously fetched segment, i.e., qsn+1 = qCn . In this case, we de-
cide to be cautious and recalculate qsn+1 using the percentile

d̂ ε
sn+1,q

. If qsn+1 stays unchanged then we set the quality as

qCn+1 := qsn+1 if we detect qsn+1 < qCn then we undergo the
same procedure as in the decreasing state.

5. EXPERIMENTAL EVALUATION
In this section, we conduct a number of experiments in

a controlled testbed, the GENI testbed, as well as in the
public Internet to evaluate the performance of SQUAD.

For all experiments we make use of an excerpt of
the BigBuckBunny dataset [18] that comprises a video
that is 300 seconds long with segment duration of
2 seconds, and an MPD that describes attributes of
the video. We extended the MPD file by provid-
ing the size of each segment in each of the available
quality levels. The quality bitrates available in this
MPD are {0.09, 0.13, 0.18, 0.22, 0.26, 0.33, 0.59,

0.79, 1.03, 1.24, 1.54, 2.48, 3.52, 4.21}Mbps. The
video segment sizes vary from 8.8KB (lowest quality) to
2.2MB (highest quality).

For better judgement of the performance of SQUAD we
compare its performance with the ones of three additional
algorithms, which we denoted “VLC”, “SARA” and “Buffer-
based”. We briefly describe them in the following:
VLC: The first algorithm we decided to chose for compar-
ison is a basic quality adaptation algorithm from [21]. The
algorithm works as follows: The client takes a pair of infor-
mation into account when deciding on the quality of the next
segment to be fetched, i.e., (i) the current playout buffer
filling, and (ii) the empirical download rate of the previous
segment. If the current buffer filling is < 25% of the max-
imum buffer size then the client always fetches the lowest
quality. In case the buffer filling is > 25% the client greed-
ily downloads the next segment at the highest sustainable
quality. In case the buffer is full the client idles.
SARA: The second algorithm we use for comparison was
proposed in [16] and coined segment aware rate adapta-
tion (SARA). This algorithm predicts the segment fetching
time based on its size and the available bandwidth estimate
through a weighted harmonic mean. Further, SARA selects
the bitrate depending on the current buffer filling and drops
to the lowest bitrate if the buffer filling falls below a certain
threshold. Note that the SARA implementation accompa-
nying [16] uses non-persistent HTTP by default.
SQUAD: Our proposed spectrum-based quality adaptation
algorithm is explained in detail in Sect. 4.
Buffer-based: This algorithm is denoted BBA-0 in [14] and
is implemented as part of the Python DASH client emula-
tor accompanying [16]. In a nutshell, the algorithm defines
a class of functions that map current buffer occupancy to
a quality bitrate (denoted rate map) to avoid unnecessary
rebuffering and maximize the average video rate. This algo-
rithm was part of a wide-scale Netflix experiment in [14].

5.1 GENI
The GENI (Global Environment for Networking Innova-

tion) testbed is a distributed virtual laboratory sponsored
by the U.S. National Science Foundation (NSF). It allows
researchers to obtain a virtualized and isolated slice of com-
pute, storage, and networking resources for the development
and validation of new approaches in networking and dis-
tributed systems [8, 9]. GENI allows the setup of larger and
potentially wide-area topologies.

For the evaluation in the GENI testbed we create a slice
that comprises a butterfly topology as shown in Fig. 10. In
the following experiments, we stream the DASH video from
server i to client i for i ∈ {1, 2, 3}. For the experiments with
one DASH flow we utilize server 1 and client 1 and for the

Algorithm
average quality bitrate [Mbps] # of quality switches spectrum H

VLC SARA SQUAD BBA VLC SARA SQUAD BBA VLC SARA SQUAD BBA

UDP-U 3.67 3.51 3.24 3.20 20 36 11 60 2277 3590 1031 6214
UDP-W 3.78 3.84 3.86 3.54 10 30 10 55 1216 3001 1053 6067

UDP-ONOFF 3.74 3.96 4.02 3.33 38 26 4 78 4691 2259 202 7652

Table 1: QoE metrics for the UDP experiments in Fig. 11 to 14. Higher average quality bitrate is better. Less quality switches
and lower spectrum values are better.

Flow #M

Flow #1

Flow #2

server 1

......

server 2

server Mclient M

client 2

client 1

Figure 10: Butterfly evaluation topology.

cross traffic flow we utilize server 2 and client 2. All links
possess a capacity of 10 Mbps with average RTT of 1.73 ms.
We make use of TCP Reno in all the GENI experiments.

We divide the GENI experiments into two categories: (i)
Single DASH algorithms vs. UDP cross traffic, (ii) concur-
rent DASH clients with no cross traffic. In the first set of
experiments, i.e., in Fig. 11 to 14 we run (v) contiguous
UDP cross traffic of 8 Mbps for 2 minutes (available band-
width has U-shape), (vv) two-level UDP cross traffic of 8
and 5 Mbps (available bandwidth has W-shape) and (vvv)
alternating ON-OFF UDP cross traffic of 8 Mbps in the ON
state. Fig. 11 to 14 depict 5 minute sample runs for each of
the studied algorithms showing the following: 1) The empir-
ical segment download rate (denoted in figures as seg. DL
rate), 2) the quality bitrate (important QoE metric), 3) the
buffer filling over time, as well as, 4) instantaneous rate mea-
surements of the cross traffic (shown as crosses) and of the
DASH flow (shown as dots). In all following figures, the
y-axis denotes the rate in Mbps and for the buffer filling
curves it denotes the buffer length in segments. Note that
one segment is 2 seconds long in this dataset and that we set
the maximum buffer size to 30 seconds, i.e., 15 segments.

From Fig. 11 to 14 we deduce the following observations:
First, the VLC algorithm is highly aggressive in choosing the
quality bitrate which may substantially drain its playback
buffer, enforcing it to significantly reduce the quality bitrate
when the buffer reaches 25%. This leads to high quality
jump magnitudes which are detrimental to QoE. Secondly,
SARA introduces many oscillations of the fetched quality
bitrate around the available bandwidth which is harmful to
the QoE. On the contrary SQUAD performance is smooth:
With the latent fallback and the percentile, respectively, av-
erage rate estimation it holds the quality bitrate over tem-
porary available bandwidth fluctuation. The buffer-based
algorithm in Fig. 14 possesses many unnecessary quality
switches. The quantitative results of the average quality bi-
trate, the number of quality jumps, as well as, the spectrum
H are given in Tab. 1. These metrics show that SQUAD pro-
vides a significant QoE improvement as seen by the strong
reduction in the number of quality jumps [31] while sac-
rificing little or no average quality bitrate. SQUAD also

Algorithm
jump magni-
tude [Mbps]

of switches
quality
bitrate
[Mbps]

avg. CI avg. CI avg. CI

VLC 1.45 ± 0.05 34.9 ± 3.1 3.1 ±0.02
SARA 0.5 ± 0.04 67.6 ± 4.6 0.8 ± 0.03
SQUAD 0.58 ± 0.05 4.6 ± 0.5 2.3 ± 0.1

Table 2: QoE metrics for the streaming experiment US-
Germany. The table also includes 0.95-confidence intervals.

outperforms its competitors in minimizing the variation of
the quality bitrates (spectrum).

The second set of experiments shown in Fig. 15 to 17 de-
pict the measurement results for 3 concurrent homogeneous
clients without cross traffic. Fig. 18 shows measurement re-
sults for 2 concurrent clients running the VLC and SQUAD
algorithms. Fig. 15 to 17 show that clients running VLC
or SQUAD fairly share the bottleneck bandwidth. Concur-
rent SARA clients suffer from fairness issues. This phe-
nomenon can be directly explained knowing that SARA uses
non-persistent HTTP by default. We ran modified SARA
measurements with persistent HTTP connections, where the
client suffered only from quality oscillations as shown in
Fig. 11b. Figure 18 shows that VLC is more aggressive than
SQUAD which uses smooth rate estimates from Sect. 4.2.
It also shows that VLC consistently overestimates the avail-
able bandwidth leading to strong variations of the quality
bitrate and quick buffer depletion.

5.2 Internet
Besides evaluating SQUAD performance in controlled

testbeds, we are also interested in its performance in the
“wild”. We perform a series of experiments over the public
Internet, where we use a web server at Darmstadt Univer-
sity of Technology in Germany which hosts the DASH movie
dataset described in the beginning of the section. The client
is located in a residential home in the east coast region of
the US and runs the SQUAD algorithm amongst the other
DASH algorithms we described earlier in this section. The
average RTT is 217 ms. We make use of TCP Cubic in
this set of experiment. Fig. 19 shows smooth playback by
SQUAD which selects the right quality bitrate. Note that
in this case a higher quality bitrate, that is chosen by VLC,
is unsustainable and leads to buffer depletion. VLC over-
estimates the available bandwidth and suffers from severe
quality switches (see the average jump magnitude and the
number of quality switches in Tab. 2). The SARA algo-
rithm struggles due to non-persistence. Figure 19 clearly
demonstrates how SQUAD outperforms VLC and SARA in
a real-world environment.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SARA.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) SQUAD.

Figure 11: Quality bitrate with UDP-U cross traffic.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SARA.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) SQUAD.

Figure 12: Quality bitrate with UDP-W cross traffic.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SARA.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) SQUAD.

Figure 13: Quality bitrate with UDP ON-OFF cross traffic.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) UDP-U.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) UDP-W.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) UDP ON-OFF.

Figure 14: Quality bitrate with Buffer-based [14] algorithm. (Implementation accompanying [16].)

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) Client1

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) Client2

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) Client3

Figure 15: Concurrent VLC clients. Clients start with 60 sec relative delay.

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) Client1

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) Client2

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) Client3

Figure 16: Concurrent SARA clients. Clients start with 60 sec relative delay.

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) Client1

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) Client2

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) Client3

Figure 17: Concurrent SQUAD clients. Clients start with 60 sec relative delay.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SQUAD

Figure 18: Concurrent clients, VLC vs. SQUAD. When the cross traffic is on, VLC overestimates the available bandwidth
leading to oscillations, buffer depletion and high quality jump magnitudes. SQUAD playback is smooth with little variations.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) VLC

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) SARA

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) SQUAD

Figure 19: Quality bitrate for streaming scenario: US-Germany.

6. RELATED WORK
Due to its popularity, ABR has been extensively studied

in recent publications. The related work for ABR can be
coarsely divided into two categories, i.e., (i) large-scale mea-
surement studies showing real-world streaming behavior of
DASH, and (ii) studies that propose new quality adaptation
mechanisms to improve the streaming performance. Next,
we review related work that is most relevant to this paper
and highlight the differences to our ABR mechanism.

Adaptive Video Streaming Measurements: Large-
scale studies of DASH performance have been conducted
in commercial video streaming platforms such as Hulu,
Netflix and Vudu [13, 7, 14]. Similar measurement studies
also covered aspects of the transmission behavior of video
clients [6], DASH network traffic characteristics [23], and
DASH QoE [11, 22]. These large-scale measurement studies
point out some of the real-world difficulties for ABR
streaming such as the high variability of the end-to-end
throughput, the inaccuracy of client based rate estimation,
as well as, rebuffering risk due to non-preemptive segment
download. These factors make a purely rate-base quality
adaptation approach highly volatile.

Rate Selection Policies: As the DASH standard does
not specify how to perform rate adaptation, many research
groups studied the impact of different rate adaptation algo-
rithms on DASH performance. The existing body of work
on DASH quality adaptation has two sources of information,
i.e., the buffer fill and the available bandwidth estimate.
Proposed algorithms usually use one of these two sources as
a main information source and the other one to cover corner
cases. The work in [14] uses measurements from a commer-
cial video streaming platform to assert that it is sufficient to
mainly use the client buffer fill level to determine the qual-
ity of the next segment to download. Here, the authors find
that it is important to obtain available bandwidth estimates
only during the startup phase.

The authors of [26] propose a traffic shaping mechanism
to alter the packet interarrival times, hence, improve the ac-
curacy of available bandwidth estimates by reducing traffic
burstiness. The work in [25] proposed a PID controller for
rate adaptation which takes the buffer filling into account to
refine the available bandwidth estimates. Similarly, the au-
thors of [10] propose a control theoretic approach to stabilize
the buffer filling at certain level.

Studies that investigate the impact of different segments
sizes and lengths include [5, 16]. In Sect. 5 we provided a
brief sketch of the SARA algorithm from [16], which takes

into account that segment sizes (in bytes) may differ widely
even within the same quality level.

Closest to our work are two existing approaches that take
QoE into account when performing DASH rate adaption.
The first approach, that is denoted PANDA (for probe-and-
adapt) [19, 20], presents a buffer filling based adaptation al-
gorithm that solves the quality selection optimization prob-
lem with respect to an α-fairness objective using a dynamic
programming approach. The authors use peak signal-to-
noise ratio (PSNR) to capture QoE. Our work differs from
this approach as we not only aim to maximize the average
quality but also minimize the number of quality changes. We
use the variation of the quality bitrates, denoted as spec-
trum, as a metric to capture QoE, since it is known, for
example from [31] that it is superior to PSNR.

The second approach that is closely related to ours is given
in [30], where the authors propose a QoE metric that is a
weighted combination of the average video quality, the av-
erage quality variation, the rebuffering time and the startup
delay. The authors formulate the rate selection problem as
a stochastic optimal control problem. The proposed algo-
rithm is based on an offline optimization section for different
scenarios, and an online section with table lookups of precal-
culated solutions. A similar approach has been leveraged in
[29] which formulates the rate selection problem as a Markov
decision process and uses dynamic programming to find an
optimal solution. For these methods to find the optimal rate
selection policy, strong assumptions have to be made on the
statistics and predictability of the network conditions.

7. CONCLUSIONS
Motivated by the critical issues resulting in performance

degradation of Dynamic Adaptive Streaming over HTTP
(DASH), we introduce a light-weight, QoE tailored DASH
quality adaptation algorithm SQUAD. SQUAD takes mul-
tiple QoE metrics into account, i.e., the average quality bi-
trate and most importantly its variation. SQUAD is espe-
cially designed to solve the discrepancies of the application
layer based DASH bandwidth estimation and the underly-
ing transport protocol by rate estimation on the appropriate
time scales. We test SQUAD against multiple other quality
adaptation algorithms in a controlled network environment,
as well as, in a cross-Atlantic Internet environment. Results
show that by sacrificing little to none in average quality bi-
trate, SQUAD provides significantly better QoE in terms of
quality switching frequency and magnitude.

As future work, we plan to extend SQUAD by measur-
ing the impact of buffer cutoffs, extended Internet-based
streaming performance and implement segment retransmis-
sion techniques to further reduce quality variations.

8. REFERENCES
[1] Adobe HTTP Dynamic Streaming. http://www.

adobe.com/products/hds-dynamic-streaming.html.
Accessed: 2015-12-09.

[2] Apple HTTP Live Streaming. https:
//developer.apple.com/resources/http-streaming/.
Accessed: 2015-11-09.

[3] Global Internet phenomena report 2h 2014.
https://www.sandvine.com/downloads/general/
global-internet-phenomena/2014/
2h-2014-global-internet-phenomena-report.pdf.
Accessed: March, 30, 2015.

[4] Microsoft Smooth Streaming. http://www.iis.net/
downloads/microsoft/smooth-streaming. Accessed:
2015-11-09.

[5] Optimal segment length for adaptive streaming
formats like MPEG-DASH & HLS.
http://www.dash-player.com/blog/2015/04/
using-the-optimal-segment-length-for-adaptive-
streaming-formats-like-mpeg-dash-hls/. Accessed:
2015-10-14.

[6] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and
C. Dovrolis. What happens when HTTP adaptive
streaming players compete for bandwidth? In
Proceedings of NOSSDAV, pages 9–14, 2012.

[7] S. Akhshabi, A. C. Begen, and C. Dovrolis. An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over HTTP. In Proceedings of
MMSys, pages 157–168, 2011.

[8] M. Berman, J. S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar.
Geni: A federated testbed for innovative network
experiments. Computer Networks, 61(0):5 – 23, 2014.
Special issue on Future Internet Testbeds – Part I.

[9] M. Berman, P. Demeester, J. W. Lee, K. Nagaraja,
M. Zink, D. Colle, D. K. Krishnappa,
D. Raychaudhuri, H. Schulzrinne, I. Seskar, and
S. Sharma. Future Internets escape the simulator.
Commun. ACM, 58(6):78–89, May 2015.

[10] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback
control for adaptive live video streaming. In
Proceedings of MMSys, pages 145–156, 2011.

[11] F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and
S. Panwar. Performance of DASH and WebRTC video
services for mobile users. In IEEE Packet Video
Workshop (PV), pages 1–8, Dec 2013.

[12] G. Giambene. Queuing Theory and
Telecommunications: Networks and Applications.
Springer US, 2005.

[13] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown,
and R. Johari. Confused, timid, and unstable: Picking
a video streaming rate is hard. In Proceedings of IMC,
pages 225–238, 2012.

[14] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A buffer-based approach to rate
adaptation: Evidence from a large video streaming
service. In Proceedings of SIGCOMM, pages 187–198,
2014.

[15] M. Jain and C. Dovrolis. End-to-end available
bandwidth: Measurement methodology, dynamics,
and relation with TCP throughput. Transactions on

Networking, 11(4):537–549, Aug. 2003.
[16] P. Juluri, V. Tamarapalli, and D. Medhi. Sara:

Segment-aware rate adaptation algorithm for dynamic
adaptive streaming over HTTP. In IEEE ICC QoE-FI
Workshop, June 2015.

[17] S. S. Krishnan and R. K. Sitaraman. Video stream
quality impacts viewer behavior: Inferring causality
using quasi-experimental designs. In Proceedings of
IMC, pages 211–224, 2012.

[18] S. Lederer, C. Müller, and C. Timmerer. Dynamic
adaptive streaming over HTTP dataset. In Proceedings
of MMSys, pages 89–94, 2012.

[19] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and
D. Oran. Streaming video over HTTP with consistent
quality. In Proceedings of MMSys, pages 248–258,
2014.

[20] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and
D. Oran. Probe and adapt: Rate adaptation for HTTP
video streaming at scale. IEEE Journal on Selected
Areas in Communications, 32(4):719–733, April 2014.

[21] C. Müller and C. Timmerer. A VLC media player
plugin enabling dynamic adaptive streaming over
HTTP. In Proceedings of MMSys, pages 723–726,
2011.

[22] O. Oyman and S. Singh. Quality of experience for
HTTP adaptive streaming services. IEEE
Communications Magazine, 50(4):20–27, April 2012.

[23] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat,
and W. Dabbous. Network characteristics of video
streaming traffic. In Proceedings of CoNEXT, pages
25:1–25:12, 2011.

[24] I. Sodagar. The MPEG-DASH standard for
multimedia streaming over the Internet. IEEE
MultiMedia, 18(4):62–67, April 2011.

[25] G. Tian and Y. Liu. Towards agile and smooth video
adaptation in dynamic HTTP streaming. In
Proceedings of CoNEXT, pages 109–120, 2012.

[26] B. Villa and P. Heegaard. Group based traffic shaping
for adaptive HTTP video streaming by segment
duration control. In Proceedings of AINA, pages
830–837, March 2013.

[27] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proceedings
of OSDI, pages 255–270, Dec. 2002.

[28] J. Whiteaker, F. Schneider, and R. Teixeira.
Explaining packet delays under virtualization.
SIGCOMM Computer Communication Review,
41(1):38–44, Jan. 2011.

[29] S. Xiang, L. Cai, and J. Pan. Adaptive scalable video
streaming in wireless networks. In Proceedings of
MMSys, pages 167–172, 2012.

[30] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
control-theoretic approach for dynamic adaptive video
streaming over HTTP. In Proceedings of ACM
SIGCOMM, pages 325–338, 2015.

[31] M. Zink, J. Schmitt, and R. Steinmetz. Layer-encoded
video in scalable adaptive streaming. IEEE
Transactions on Multimedia, 7(1):75–84, Feb 2005.

