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Building simpler, smaller, and less-expensive digital cameras
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based on a digital micromirror device (DMD—see “Spatial Light
Modulators”) with the new mathematical theory and algorithms
of compressive sampling (CS—see “CS in a Nutshell”).

CS combines sampling and compression into a single non-
adaptive linear measurement process [1]-[4]. Rather than meas-
uring pixel samples of the scene under view, we measure inner
products between the scene and a set of test functions.
Interestingly, random test functions play a key role, making each
measurement a random sum of pixel values taken across the
entire image. When the scene under view is compressible by an
algorithm like JPEG or JPEG2000, the CS theory enables us to
stably reconstruct an image of the scene from fewer measure-
ments than the number of reconstructed pixels. In this manner
we achieve sub-Nyquist image acquisition.
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[FIG1] Aerial view of the single-pixel CS camera in the lab [5].

SPATIAL LIGHT MODULATORS

A spatial light modulator (SLM) modulates the intensity of a
light beam according to a control signal. A simple example of
a transmissive SLM that either passes or blocks parts of the
beam is an overhead transparency. Another example is a lig-
uid crystal display (LCD) projector.

The Texas Instruments (TI) digital micromirror device (DMD)
is a reflective SLM that selectively redirects parts of the light
beam [31]. The DMD consists of an array of bacterium-sized,
electrostatically actuated micromirrors, where each mirror in
the array is suspended above an individual static random
access memory (SRAM) cell (see Figure 6). Each mirror rotates
about a hinge and can be positioned in one of two states
(+10°and —10° from horizontal) according to which bit is
loaded into the SRAM cell; thus light falling on the DMD can
be reflected in two directions depending on the orientation
of the mirrors.

The DMD micro-mirrors in our lab’s TI DMD 1100 developer’s
kit (Tyrex Services Group Ltd., http:/Awww.tyrexservices.com)
and accessory light modulator package (ALP, VIALUX GmbH,
http://www.vialux.de) form a pixel array of size 1024 x 768.
This limits the maximum native resolution of our single-pixel
camera. However, mega-pixel DMDs are already available for
the display and projector market.

Our “single-pixel” CS camera architecture is basically an
optical computer (comprising a DMD, two lenses, a single pho-
ton detector, and an analog-to-digital (A/D) converter) that com-
putes random linear measurements of the scene under view.
The image is then recovered or processed from the measure-
ments by a digital computer. The camera design reduces the
required size, complexity, and cost of the photon detector array
down to a single unit, which enables the use of exotic detectors
that would be impossible in a conventional digital camera. The
random CS measurements also enable a tradeoff between space
and time during image acquisition. Finally, since the camera
compresses as it images, it has the capability to efficiently and
scalably handle high-dimensional data sets from applications
like video and hyperspectral imaging.

This article is organized as follows. After describing the hard-
ware, theory, and algorithms of the single-pixel camera in detail,
we analyze its theoretical and practical performance and com-
pare it to more conventional cameras based on pixel arrays and
raster scanning. We also explain how the camera is information
scalable in that its random measurements can be used to direct-
ly perform simple image processing tasks, such as target classi-
fication, without first reconstructing the underlying imagery.
We conclude with a review of related camera architectures and a
discussion of ongoing and future work.

THE SINGLE-PIXEL CAMERA

ARCHITECTURE

The single-pixel camera is an optical computer that sequentially
measures the inner products y[m] = (x, ¢,) between an N-
pixel sampled version x of the incident light-field from the scene
under view and a set of two-dimensional (2-D) test functions
{¢m} [5]. As shown in Figure 1, the light-field is focused by
biconvex Lens 1 not onto a CCD or CMOS sampling array but
rather onto a DMD consisting of an array of IV tiny mirrors (see
“Spatial Light Modulators”).

Each mirror corresponds to a particular pixel in x and ¢y,
and can be independently oriented either towards Lens 2 (corre-
sponding to a one at that pixel in ¢,,) or away from Lens 2 (cor-
responding to a zero at that pixel in ¢,,). The reflected light is
then collected by biconvex Lens 2 and focused onto a single
photon detector (the single pixel) that integrates the product
x[n]lém[n] to compute the measurement y[m] = (x, ¢,) as its
output voltage. This voltage is then digitized by an A/D convert-
er. Values of ¢,, between zero and one can be obtained by
dithering the mirrors back and forth during the photodiode
integration time. To obtain ¢, with both positive and negative
values (£1, for example), we estimate and subtract the mean
light intensity from each measurement, which is easily meas-
ured by setting all mirrors to the full-on one position.

To compute CS randomized measurements y = ®x as in
(1), we set the mirror orientations ¢,, randomly using a
pseudorandom number generator, measure y[m], and then
repeat the process M times to obtain the measurement vec-
tor y. Recall from “CS in a Nutshell” that we can set
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M = O(Klog(N/K)) which is « N when the scene being
imaged is compressible by a compression algorithm like
JPEG or JPEG2000. Since the DMD array is programmable,

we can also employ test functions ¢, drawn randomly from
a fast transform such as a Walsh, Hadamard, or noiselet
transform [6], [7].

CS IN A NUTSHELL

CS is based on the recent understanding that a small collection
of nonadaptive linear measurements of a compressible signal or
image contain enough information for reconstruction and pro-
cessing [1]-[3]. For a tutorial treatment see [4] or the article by
Romberg in this issue.

The traditional approach to digital data acquisition samples an
analog signal uniformly at or above the Nyquist rate. In a digital
camera, the samples are obtained by a 2-D array of N pixel sensors
on a CCD or CMOS imaging chip. We represent these samples
using the vector x with elements x[n], n =1, 2, ..., N. Since N is
often very large, e.g., in the millions for today’s consumer digital
cameras, the raw image data x is often compressed in the follow-
ing multi-step transform coding process.

The first step in transform coding represents the image in terms
of the coefficients {«;} of an orthonormal basis expansion
X = ZL ajy; where {10,-}5":1 are the N x 1 basis vectors. Forming
the coefficient vector « and the N x N basis matrix
W = [y |y ... |¥n] by stacking the vectors {v;} as columns, we
can concisely write the samples as x = Wa. The aim is to find a
basis where the coefficient vector « is sparse (where only K < N
coefficients are nonzero) or r-compressible (where the sorted coef-
ficient magnitudes decay under a power law with scaling expo-
nent —r). For example, natural images tend to be compressible in
the discrete cosine transform (DCT) and wavelet bases on which
the JPEG and JPEG-2000 compression standards are based. The sec-
ond step in transform coding encodes only the values and loca-
tions of the K significant coefficients and discards the rest.

This sample-then-compress framework suffers from three
inherent inefficiencies: First, we must start with a potentially
large number of samples N even if the ultimate desired K is
small. Second, the encoder must compute all of the N transform
coefficients {«;}, even though it will discard all but K of them.
Third, the encoder faces the overhead of encoding the locations
of the large coefficients.

As an alternative, CS bypasses the sampling process and direct-
ly acquires a condensed representation using M < N linear
measurements between x and a collection of test functions
{pmIM_, as in y[m] = (X, ¢m). Stacking the measurements y[m]
into the M x 1 vector y and the test functions ¢, as rows into an
M x N matrix ® we can write

y=dx = dVoa. M

The measurement process is nonadaptive in that ® does not
depend in any way on the signal x.

The transformation from x to y is a dimensionality reduction
and so loses information in general. In particular, since
M < N, given y there are infinitely many x’ such that ®x’ = y.
The magic of CS is that ® can be designed such that
sparse/compressible x can be recovered exactly/approximately
from the measurements y.

While the design of @ is beyond the scope of this review, an
intriguing choice that works with high probability is a random

matrix. For example, we can draw the elements of @ as i.i.d.
+1 random variables from a uniform Bernoulli distribution
[22]. Then, the measurements y are merely M different ran-
domly signed linear combinations of the elements of x. Other
possible choices include i.i.d., zero-mean, 1/N-variance
Gaussian entries (white noise) [1]-[3], [22], randomly permut-
ed vectors from standard orthonormal bases, or random sub-
sets of basis vectors [7], such as Fourier, Walsh-Hadamard, or
Noiselet [6] bases. The latter choices enable more efficient
reconstruction through fast algorithmic transform implemen-
tations. In practice, we employ a pseudo-random @ driven by
a pseudo-random number generator.

To recover the image x from the random measurements y, the
traditional favorite method of least squares can be shown to fail
with high probability. Instead, it has been shown that using the
¢4 optimization [1]-[3]

@ =arg min |||y such that ®Va =y )
we can exactly reconstruct K-sparse vectors and closely approxi-
mate compressible vectors stably with high probability using just
M > O(K'log(N/K)) random measurements. This is a convex
optimization problem that conveniently reduces to a linear pro-
gram known as basis pursuit [11-[3]. There are a range of alter-
native reconstruction techniques based on greedy, stochastic,
and variational algorithms [4].

If the measurements y are corrupted by noise, then the solu-
tion to the alternative ¢, minimization, which we dub basis pur-
suit with inequality constrains (BPIC) [3]

@ =argmin|c/|l;y suchthat |y — oWd |, <e, (3)
satisfies ||&@ — a2 < Cye + Ckox (x) with overwhelming probabil-
ity. Cy and Ck are the noise and approximation error amplifica-
tion constants, respectively; € is an upper bound on the noise
magnitude, and ok (X) is the £, error incurred by approximating «
using its largest K terms. This optimization can be solved using
standard convex programming algorithms.

In addition to enabling sub-Nyquist measurement, CS enjoys
a number of attractive properties [4]. CS measurements are
universal in that the same random matrix ® works simultane-
ously for exponentially many sparsitfying bases ¥ with high
probability; no knowledge is required of the nuances of the
data being acquired. Due to the incoherent nature of the
measurements, CS is robust in that the measurements have
equal priority, unlike the Fourier or wavelet coefficients in a
transform coder. Thus, one or more measurements can be lost
without corrupting the entire reconstruction. This enables a
progressively better reconstruction of the data as more meas-
urements are obtained. Finally, CS is asymmetrical in that it
places most of its computational complexity in the recovery
system, which often has more substantial computational
resources than the measurement system.
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The single-pixel design reduces the required size, complexity,
and cost of the photon detector array down to a single unit,
which enables the use of exotic detectors that would be impossi-
ble in a conventional digital camera. Example detectors include
a photomultiplier tube or an avalanche photodiode for low-light
(photon-limited) imaging (more on this below), a sandwich of
several photodiodes sensitive to different light wavelengths for
multimodal sensing, a spectrometer for hyperspectral imaging,
and so on.

In addition to sensing flexibility, the practical advantages of
the single-pixel design include the facts that the quantum effi-
ciency of a photodiode is higher than that of the pixel sensors in
a typical CCD or CMOS array and that the fill factor of a DMD
can reach 90% whereas that of a CCD/CMOS array is only about
50%. An important advantage to highlight is the fact that each
CS measurement receives about NV/2 times more photons than
an average pixel sensor, which significantly reduces image dis-
tortion from dark noise and read-out noise. Theoretical advan-
tages that the design inherits from the CS theory include its
universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cam-
eras [8]. The baseline standard for multiplexing is classical
raster scanning, where the test functions {¢,,} are a sequence of
delta functions §[n — m] that turn on each mirror in turn. As
we will see below, there are substantial advantages to operating
in a CS rather than raster scan mode, including fewer total
measurements (M for CS rather than N for raster scan) and sig-
nificantly reduced dark noise.

IMAGE ACQUISITION EXAMPLES

Figure 2(a) and (b) illustrates a target object (a black-and-white
printout of an “R”) x and reconstructed image X taken by the sin-
gle-pixel camera prototype in Figure 1 using NV = 256 x 256 and
M = N/50 [5]. Figure 2(c) illustrates an N = 256 x 256 color
single-pixel photograph of a printout of the Mandrill test image
taken under low-light conditions using RGB color filters and a
photomultiplier tube with M = N/10. In both cases, the images
were reconstructed using Total Variation minimization, which is
closely related to wavelet coefficient £; minimization [2].

(a) (b)

[FIG2] Single-pixel photo album. (a) 256 x 256 conventional image of a black-and-white
R. (b) Single-pixel camera reconstructed image from M = 1, 300 random measurements
(50x sub-Nyquist). (c) 256 x 256 pixel color reconstruction of a printout of the Mandrill
test image imaged in a low-light setting using a single photomultiplier tube sensor, RGB

color filters, and M = 6, 500 random measurements.

STRUCTURED ILLUMINATION CONFIGURATION

In a reciprocal configuration to that in Figure 1, we can illumi-
nate the scene using a projector displaying a sequence of ran-
dom patterns {¢;,} and collect the reflected light using a single
lens and photodetector. Such a “structured illumination” setup
has advantages in applications where we can control the light
source. In particular, there are intriguing possible combinations
of single-pixel imaging with techniques such as three-dimen-
sional (3-D) imaging and dual photography [9].

SHUTTERLESS VIDEO IMAGING

We can also acquire video sequences using the single-pixel
camera. Recall that a traditional video camera opens a shutter
periodically to capture a sequence of images (called video
frames) that are then compressed by an algorithm like MPEG
that jointly exploits their spatiotemporal redundancy. In con-
trast, the single-pixel video camera needs no shutter; we mere-
ly continuously sequence through randomized test functions
¢m and then reconstruct a video sequence using an optimiza-
tion that exploits the video’s spatiotemporal redundancy [10].

If we view a video sequence as a 3-D space/time cube, then
the test functions ¢, lie concentrated along a periodic sequence
of 2-D image slices through the cube. A naive way to reconstruct
the video sequence would group the corresponding measure-
ments y[m] into groups where the video is quasi-stationary and
then perform a 2-D frame-by-frame reconstruction on each
group. This exploits the compressibility of the 3-D video cube in
the space but not time direction.

A more powerful alternative exploits the fact that even though
each ¢y, is testing a different 2-D image slice, the image slices
are often related temporally through smooth object motions in
the video. Exploiting this 3-D compressibility in both the space
and time directions and inspired by modern 3-D video coding
techniques [11], we can, for example, attempt to reconstruct the
sparsest video space/time cube in the 3-D wavelet domain.

These two approaches are compared in the simulation study
illustrated in Figure 3. We employed simplistic 3-D tensor prod-
uct Daubechies-4 wavelets in all cases. As we see from the figure,
3-D reconstruction from 2-D random measurements performs
almost as well as 3-D reconstruction from
3-D random measurements, which are
not directly implementable with the sin-
gle-pixel camera.

SINGLE-PIXEL CAMERA TRADEOFFS

The single-pixel camera is a flexible
architecture to implement a range of
different multiplexing methodologies,
just one of them being CS. In this sec-
tion, we analyze the performance of CS
and two other candidate multiplexing
methodologies and compare them to
the performance of a brute-force array
of N pixel sensors. Integral to our analy-
sis is the consideration of Poisson pho-
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ton counting noise at the detector, which is image dependent.
We conduct two separate analyses to assess the “bang for the
buck” of CS. The first is a theoretical analysis that provides
general guidance. The second is an experimental study that
indicates how the systems typically perform in practice.

SCANNING METHODOLOGIES
The four imaging methodologies we consider are:

Pixel array (PA): a separate sensor for each of the IV pixels
receives light throughout the total capture time 7. This is
actually not a multiplexing system, but we use it as the gold
standard for comparison.

Raster scan (RS): a single sensor takes N light measure-
ments sequentially from each of the IV pixels over the cap-
ture time. This corresponds to test functions {¢,,} that are
delta functions and thus ® = /. The measurements y thus
directly provide the acquired image X.

Basis scan (BS): a single sensor takes N light measure-
ments sequentially from different combinations of the NV pix-
els as determined by test functions {¢,,} that are not delta
functions but from some more general basis [12]. In our
analysis, we assume a Walsh basis modified to take the values
0/1 rather than £1; thus ® = W, where W is the 0/1 Walsh
matrix. The acquired image is obtained from the measure-
ments ybyx = & 1y = W1y

CS: a single sensor takes M < N light measurements
sequentially from different combinations of the N pixels
as determined by random 0/1 test functions {¢n}.
Typically, we set M = O (K log(N/K)) which is < N when
the image is compressible. In our analysis, we assume that
the M rows of the matrix ® consist of randomly drawn
rows from a 0/1 Walsh matrix that are then randomly per-
muted (we ignore the first row con-
sisting of all ones). The acquired
image is obtained from the meas-
urements y via a sparse reconstruc-
tion algorithm such as BPIC (see
“CS in a Nutshell”).

THEORETICAL ANALYSIS

In this section, we conduct a theoreti-
cal performance analysis of the above
four scanning methodologies in terms
of the required dynamic range of the
photodetector, the required bit depth of
the A/D converter, and the amount of
Poisson photon counting noise. Our
results are pessimistic in general; we
show in the next section that the aver-
age performance in practice can be
considerably better. Our results are
summarized in Table 1. An alternative
analysis of CS imaging for piecewise
smooth images in Gaussian noise has
been reported in [13].

(@) (b) (c)
[FIG3] Frame 32 from a reconstructed video sequence using (top row) M = 20, 000 and
(bottom row) M = 50, 000 measurements (simulation from [10]). (a) Original frame of an
N = 64 x 64 x 64 video of a disk simultaneously dilating and translating. (b) Frame-by-
frame 2-D measurements + frame-by-frame 2-D reconstruction; MSE = 3.63 and 0.82,
respectively. (c) Frame-by-frame 2-D measurements + joint 3-D reconstruction; MSE = 0.99

and 0.24, respectively. (d) Joint 3-D measurements + joint 3-D reconstruction; MSE = 0.76
and 0.18, respectively.

DYNAMIC RANGE

We first consider the photodetector dynamic range required
to match the performance of the baseline PA. If each detector
in the PA has a linear dynamic range of 0 to D, then it is easy
to see that single-pixel RS detector need only have that same
dynamic range. In contrast, each Walsh basis test function
contains N/2 ones and so directs V/2 times more light to the
detector. Thus, BS and CS each require a larger linear
dynamic range of 0 to ND/2. On the positive side, since BS
and CS collect considerably more light per measurement
than the PA and RS, they benefit from reduced detector non-
idealities like dark currents.

QUANTIZATION ERROR

We now consider the number of A/D bits required within the
required dynamic range to match the performance of the base-
line PA in terms of worst-case quantization distortion. Define
the mean-squared error (MSE) between the true image x and
its acquired version X as MSE = 1%,||x — 3?||§. Assuming that
each measurement in the PA and RS is quantized to B bits, the
worst-case mean-squared quantization error for the quantized
PA and RS images is MSE = +/N D2~5-1 [14]. Due to its larg-
er dynamic range, BS requires B+ logy N bits per measure-
ment to reach the same MSE distortion level. Since the
distortion of CS reconstruction is up to Cy times larger than
the distortion in the measurement vector (see “CS in a
Nutshell”), we require up to an additional logs Cy bits per
measurement. One empirical study has found roughly that Cy
lies between eight and ten for a range of different random
measurement configurations [15]. Thus, BS and CS require a
higher-resolution A/D converter than PA and RS to acquire an
image with the same worst-case quantization distortion.

(d)
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[TABLE 1] COMPARISON OF THE FOUR CAMERA SCANNING METHODOLOGIES.

PIXEL ARRAY RASTER SCAN
NUMBER OF MEASUREMENTS N N
DYNAMIC RANGE D D
QUANTIZATION (TOTAL BITS) NB NB
PHOTON COUNTING MSE 4 N2

PHOTON COUNTING NOISE

In addition to quantization error from the A/D converter, each
camera will also be affected by image-dependent Poisson noise
due to photon counting [16]. We compare the MSE due to pho-
ton counting for each of the scanning methodologies. The details
are worked out in the Appendix and are summarized in Table 1.
We see that the MSE of BS is about three times that of RS.
Moreover, when M < N/(SCA%), the MSE of CS is lower than
that of RS. We emphasize that in the CS case, we have only a fair-
ly loose upper bound and that there exist alternative CS recon-
struction algorithms with better performance guarantees, such
as the Dantzig selector [3].

SUMMARY

From Table 1, we see that the advantages of a single-pixel cam-
era over a PA come at the cost of more stringent demands on the
sensor dynamic range and A/D quantization and larger MSE due
to photon counting effects. Additionally, the linear dependence of
the MSE on the number of image pixels NV for BS and RS is a
potential deal-breaker for high-resolution imaging. The promis-
ing aspect of CS is the logarithmic dependence of its MSE on N
through the relationship M = O (K log(N/K)).

EXPERIMENTAL RESULTS
Since CS acquisition/reconstruction methods often perform
much better in practice than the above theoretical bounds
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[FIG4] Average MSE for RS, BS, and CS single-pixel images as a
function of the total image capture time T (real data).

BASIS SCAN COMPRESSIVE SAMPLING
N M<N
ND ND
2 2
N(B + log, N) M(B+log, N +log, Cy + 1)
(3N — 2)% < 3C,2VM$

suggest, in this section we conduct a simple experiment using
real data from the CS imaging testbed depicted in Figure 1.
Thanks to the programmability of the testbed, we acquired
RS, BS, and CS measurements from the same hardware. We
fixed the number of A/D converter bits across all methodolo-
gies. Figure 4 shows the pixel-wise MSE for the capture of a
N = 128 x 128 pixel “R” test image as a function of the total
capture time 7. Here the MSE combines both quantization
and photon counting effects. For CS we took M = N/10 total
measurements per capture and used a Daubechies-4 wavelet
basis for the sparse reconstruction.

We make two observations. First, the performance gain of BS
over RS contradicts the above worst-case theoretical calcula-
tions. We speculate that the contribution of the sensor’s dark
current, which is not accounted for in our analysis, severely
degrades RS’s performance. Second, the performance gain of CS
over both RS and BS is clear: images can either be acquired in
much less time for the same MSE or with much lower MSE in
the same amount of time.

INFORMATION SCALABILITY AND THE SMASHED FILTER
While the CS literature has focused almost exclusively on
problems in signal and image reconstruction or approxima-
tion, reconstruction is frequently not the ultimate goal. For
instance, in many image processing and computer vision
applications, data is acquired only for the purpose of making a
detection, classification, or recognition decision. Fortunately,
the CS framework is information scalable to a much wider
range of statistical inference tasks [17]-[19]. Tasks such as
detection do not require reconstruction, but only require esti-
mates of the relevant sufficient statistics for the problem at
hand. Moreover, in many cases it is possible to directly extract
these statistics from a small number of random measurements
without ever reconstructing the image.

The mafched filter is a key tool in detection and classifica-
tion problems that involve searching for a target template in a
scene. A complicating factor is that often the target is trans-
formed in some parametric way—for example the time or
Doppler shift of a radar return signal; the translation and rota-
tion of a face in a face recognition task; or the roll, pitch, yaw,
and scale of a vehicle viewed from an aircraft. The matched filter
detector operates by forming comparisons between the given
test data and all possible transformations of the template to find
the match that optimizes some performance metric. The
matched filter classifier operates in the same way but chooses
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the best match from a number of different potential trans-
formed templates.

The naive approach to matched filtering with CS would first
reconstruct the images under consideration and then apply a
standard matched filtering technique. In contrast, the smashed
filter (for dimensionally reduced matched filter) performs all of
its operations directly on the random measurements [18].

The two key elements of the smashed filter are the general-
ized likelihood ratio test and the concept of an image appear-
ance manifold [20]. If the parametric transformation affecting
the template image is well behaved, then the set of trans-
formed templates forms a low-dimensional manifold in the
high-dimensional pixel space RY with the dimension X equal
to the number of independent parameters. (For the purposes
of the discussion here, a K-dimensional manifold can be inter-
preted as a K-dimensional hypersurface in RY.) Thus, the
matched filter classifier can be interpreted as classifying a test
image according to the closest template manifold in R and
no reconstruction is necessary.

The smashed filter exploits a recent result that the struc-
ture of a smooth K-dimensional manifold in R¥ is preserved
with high probability under a random projection to the lower
dimensional space R as long as M = O (Klog N) [21]. This
is reminiscent of the number of measurements required for
successful CS but with A now the manifold dimension. Thus,
to classify an N-pixel test image, we can alternatively compare
M random measurements of the test image to the M-dimen-
sional projections (using the same @) of the candidate image
template manifolds. The upshot is that all necessary computa-
tions can be made directly in R rather than in RY. As in the
conventional matched filter, a by-product of the closest mani-
fold search is an estimate of the template parameters that best
match the test image. Previous work in the computer science
community (the other “CS”) has also employed the Johnson-
Lindenstrauss lemma [22] to reduce the data dimensionality
prior to computing features for classification; however, they
have not considered the intrinsic manifold structure mani-
fested in many image processing and
computer vision settings.

Figure 5 demonstrates the effective-
ness of smashed filtering for the task of
classifying an N = 128 x 128 pixel test
image under an unknown translation in
the vertical and horizontal directions
(hence K = 2). The three classes corre-
spond to different translations of a bus,
truck, or tank. The test data was generat-
ed randomly from one of the three class-
es. The random measurements were
produced using a simulated single-pixel
CS camera that takes into account the
Poisson photon counting noise associated
with a total measurement interval of
length 7. We average over 10,000 itera-
tions of each experiment. We see that

Mirror —10°

increasing the number of measurements improves performance
at first; however, performance then degrades due to the reduced
time available to obtain each measurement. Correspondingly,
increasing the total capture time improves the performance of
the algorithm.

OTHER MULTIPLEXING CAMERA ARCHITECTURES

Two notable existing DMD-driven imaging applications involve
confocal microscopy (which relates closely to the raster scan
strategy studied above) [23], [24] and micro-optoelectromechani-
cal (MOEM) systems [12], [25], [26]. In a MOEM system, a DMD
is positioned between the scene and the sensing array to perform
columnwise multiplexing by allowing only the light from the
desired pixels to pass through. In [12] and [25] the authors pro-
pose sets of N Hadamard patterns, which enables simple demul-
tiplexing, and randomized Hadamard patterns, which yield a
uniform signal-to-noise ratio among the measurements.
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[FIG5] Smashed filter image classification performance plotted as
a function of the number of random measurements M from a
simulated single-pixel CS camera and the total acquisition time T.
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[FIG6] (a) Schematic of two mirrors from a Texas Instruments digital micromirror device
(DMD). (b) A portion of an actual DMD array with an ant leg for scale. (Image provided by
DLP Products, Texas Instruments.)
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Other compressive cameras developed to date include [27],
and [28], which employ optical elements to perform transform
coding of multispectral images. These designs obtain sampled
outputs that correspond to coded information of interest, such
as the wavelength of a given light signal or the transform coeffi-
cients in a basis of interest. The elegant hardware designed for
these purposes uses optical projections, group testing, and sig-
nal inference. Recent work in [29] has compared several single
and multiple pixel imaging strategies of varying complexities;
their simulation results for Poisson counting noise agree closely
with those above.

Finally, in [30] the authors use CS principles and a random-
izing lens to boost both the resolution and robustness of a con-
ventional digital camera.

CONCLUSIONS
For certain applications, CS promises to substantially increase
the performance and capabilities of data acquisition, processing,
and fusion systems while lowering the cost and complexity of
deployment. A useful practical feature of the CS approach is that
it off-loads processing from data acquisition (which can be com-
plicated and expensive) into data reconstruction or processing
(which can be performed on a digital computer, perhaps not
even colocated with the sensor).

We have presented an overview of the theory and practice of
a simple yet flexible single-pixel architecture for CS based on a
DMD spatial light modulator. While there are promising poten-
tial applications where current digital cameras have difficulty
imaging, there are clear tradeoffs and challenges in the single-
pixel design. Our current and planned work involves better
understanding and addressing these tradeoffs and challenges.
Other potential avenues for research include extending the sin-
gle-pixel concept to wavelengths where the DMD fails as a mod-
ulator, such as THz and X rays.

ACKNOWLEDGMENTS

Thanks to Dave Brady for suggesting the Poisson noise analy-
sis, to Dennis Healy and Courtney Lane for many enlightening
discussions, and to Michael Wakin for his many contributions.
This work was supported by grants DARPA/ONR N66001-06-1-
2011 and N00014-06-1-0610, NSF CCF-0431150, ONR
N00014-07-1-0936, AFOSR FA9550-07-1-0301, ARO W911NF-
07-1-0502, ARO MURI W311NF-07-1-0185, and the Texas
Instruments Leadership University Program. Special thanks to
TI for providing the DMD developer’s kit and accessory light
modulator package.

AUTHORS

Marco F Duarte (duarte@rice.edu) received the B.S. degree in
computer engineering (with distinction) and the M.S. degree in
electrical engineering from the University of Wisconsin at
Madison in 2002 and 2004, respectively. He is currently a Ph.D.
student at Rice University. He spent the summer of 2006 at Ricoh
Innovations, Palo Alto, California. His research interests include
pattern recognition, sensor networks, compressive sensing and

optical image coding. He received the Presidential Fellowship and
the Texas Instruments Distinguished Fellowship in 2004 from
Rice University. He is a member of Tau Beta Pi and a Student
Member of IEEE and SIAM.

Mark A. Davenport (md@rice.edu) received the M.S. degree
in electrical engineering in 2007 and the B.S. degree in electri-
cal engineering in 2004, both from Rice University. He is cur-
rently pursuing a Ph.D. in electrical engineering at Rice
University. His research interests include sparse approximation,
high-dimensional geometry, and machine learning.

Dharmpal Takhar (kaka@rice.edu) is currently a Ph.D. stu-
dent at Rice University. He received the B.Tech. degree in metal-
lurgical engineering and materials science and the M.Tech.
degree in ceramics and composites, both from LI.T. Bombay. His
current interests include compressed sensing-based imaging
techniques and atomic level investigation of functionalized car-
bon nanotubes.

Jason N. Laska (laska@rice.edu) completed the B.S. degree
in computer engineering from the University of Illinois—Urbana-
Champaign in 2005. He is currently an M.S. student in electrical
engineering at Rice University. His research interests include
signal processing (especially for audio and images), sparse
approximation, and algorithms.

Ting Sun (ting.sun@rice.edu) is currently a Ph.D. student in
applied physics at Rice University. Her interests include optical
imaging systems and compressive sensing.

Kevin F. Kelly (kkelly@rice.edu) is an assistant professor of
Electrical and Computer Engineering at Rice University. He
earned a B.S. in engineering physics from the Colorado School of
Mines in 1993 and the M.S. and Ph.D. degrees in applied physics
from Rice University in 1996 and 1999, respectively. He was a
post-doctoral researcher with Toshio Sakurai in Japan and with
Penn State University. His research interests include molecular
electronics, carbon nanotubes, scanning tunneling microscopy,
compressed sensing, and near-field microscopy.

Richard G. Baraniuk (richb@rice.edu) is the Victor E.
Cameron Professor of Electrical and Computer Engineering at
Rice University. His research interests lie in new theory, algo-
rithms, and hardware for signal processing and imaging. He is a
Fellow of the IEEE and has received National Young Investigator
Awards from the National Science Foundation and the Office of
Naval Research, the Rosenbaum Fellowship from the Isaac Newton
Institute of Cambridge University, and the ECE Young Alumni
Achievement Award from the University of Illinois. He has received
the George R. Brown Award for Superior Teaching at Rice three
times, received the C. Holmes MacDonald National Outstanding
Teaching Award from Eta Kappa Nu, and was selected as one of
Edutopia Magazine’s Daring Dozen Education Innovators in 2007.

REFERENCES
[1] D.L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, pp.
1289-1306, Sept. 2006.

[2] E.J. Candeés and T. Tao, “Near optimal signal recovery from random projections:
Universal encoding strategies?,” IEEE Trans. Inform. Theory, vol. 52, pp.
5406-5425, Dec. 2006.

[3] E.J. Candes, “Compressive sampling,” in Proc. Int. Cong. Mathematicians,
Madrid, Spain, vol. 3, 2006, pp. 1433-1452.

IEEE SIGNAL PROCESSING MAGAZINE [90] MARCH 2008



[4] R.G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Mag., vol. 24,
no. 4, pp. 118-120, 124, 2007.

[5] D. Takhar, J.N. Laska, M.B. Wakin, M.F. Duarte, D. Baron, S. Sarvotham, K.F.
Kelly, and R.G. Baraniuk, “A new compressive imaging camera architecture using
optical-domain compression,” in Proc. Computational Imaging IV, vol. 6065, San
Jose, CA, 2006, pp. 43-52.

[6] R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Appl. Comp. Harmon.
Anal., vol. 10, no.1, pp. 27-44, 2001.

[7] E.J. Candes and J. Romberg, “Sparsity and incoherence in compressive sam-
pling,” Inverse Prob., vol. 23, pp. 969-985, June 2007.

[8] D. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett.,
vol. 27, no. 1, pp. 16-18, 2002.

[9] P. Sen, B. Chen, G. Garg, S. Marschner, M. Horowitz, M. Levoy, and H. Lensch,
“Dual photography,” ACM Trans. Graph., vol. 24, no. 3, pp. 745-755, 2005.

[10] M.B. Wakin, J.N. Laska, M.F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K.F.
Kelly, and R.G. Baraniuk, “Compressive imaging for video representation and cod-
ing,” in Proc. Picture Coding Symp., Beijing, China, 2006.

[11] A. Secker and D. Taubman, “Motion-compensated highly scalable video com-
pression using an adaptive 3D wavelet transform based on lifting,” in Proc. IEEE
Int. Conf. Image Processing, vol. 2, Thessaloniki, Greece, 2001, pp. 1029-1032.

[12] R.A. DeVerse, R.R. Coifman, A.C. Coppi, W.G. Fateley, F. Geshwind, R.M.
Hammaker, S. Valenti, and F.J. Warner, “Application of spatial light modulators for
new modalities in spectrometry and imaging,” in Spectral Imaging: Instrumentat.,
Applicat. Anal. II, vol. 4959, pp. 12-22, 2003.

[13] J. Haupt and R. Nowak, “Compressive sampling versus conventional imaging,”
in Proc IEEE Int. Conf. Image ., Atlanta, GA, 2006, pp. 1269-1272.

[14] R.M. Gray and D.L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, vol.
44, pp. 2325-2383, Oct. 1998.

[15] E.J. Candgs, J. Romberg, and T. Tao, “Stable signal recovery from incomplete
and inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, pp. 1207-1223,
Aug. 2006.

[16] R. Constantini and S. Susstrunk, “Virtual sensor design,” in Sens. Camera
Syst. Scientif. Ind. Digital Photo. Applicat. V, vol. 5301, pp. 408419, June 2004.

[17] M.F. Duarte, M.A. Davenport, M.B. Wakin, and R.G. Baraniuk, “Sparse signal
detection from incoherent projections,” in Proc. IEEE Int. Conf. Acoustics,
Speech, Signal Processing, Toulouse, France, 2006, pp. I11-872-875.

[18] M.A. Davenport, M.F. Duarte, D. Takhar, J.N. Laska, K.K. Kelly, and R.G.
Baraniuk, “The smashed filter for compressive classification and target recogni-
tion,” in Computat. Imag. V, San Jose, CA, vol. 6498, pp. 142-153, Jan. 2007.

[19] J. Haupt, R. Castro, R. Nowak, G. Fudge, and A. Yeh, “Compressive sampling
for signal classification,” in Proc. Asilomar Conf. Signals, Systems, Computers,
Pacific Grove, CA, Oct. 2006, pp. 1430-1434.

[20] M.B. Wakin, D.L. Donoho, H. Choi, and R.G. Baraniuk, “The multiscale struc-
ture of non-differentiable image manifolds,” in Proc. Wavelets XI, vol. 5914, San
Diego, CA, 2005, pp. 413-429.

[21] R.G. Baraniuk and M.B. Wakin, “Random projections of smooth manifolds,”
submitted for publication.

[22] R.G. Baraniuk, M. Davenport, R.A. DeVore, and M.B. Wakin, “A simple proof of
the restricted isometry property for random matrices,” submitted for publication.

[23] PM. Lane, R.P. Elliott, and C.E. MacAulay, “Confocal microendoscopy with
chromatic sectioning,” in Spectral Imaging: Instrumentat., Applicat. Anal. II, vol.
4959, pp. 23-26, July 2003.

[24] V. Bansal, S. Patel, and P. Saggau, “High-speed confocal laser scanning
microscopy using acousto-optic deflectors and a digital micromirror device,” in
Proc. Three-Dimensional Multidimensional Microscopy: Image Acquisition
Processing XI, vol. 5324, 2004, San Jose, CA, pp. 47-54.

[25] G.L. Davis, M. Maggioni, F.J. Warner, F.B. Geshwind, A.C. Coppi, R.A. DeVerse,
and R.R. Coifman, “Hyper-spectral analysis of normal and malignant microarray
tissue sections using a novel micro-optoelectrical-mechanical system,” Modern
Pathology, vol. 17 Supplement 1, p. 3584, 2004.

[26] R. Muise and A. Mahalanobis, “Target detection using integrated hyper spec-
tral sensing and processing,” presented at Proc. IMA Workshop Integration of
Sensing Processing, Minneapolis, MN, Dec. 2005.

[27] N.P. Pitsianis, D.J. Brady, and X. Sun, “Sensor-layer image compression based
on the quantized cosine transform,” in Proc. SPIE Visual Information Processing
XIV, vol. 5817, Orlando, FL, 2005, p. 250.

[28] D.J. Brady, M. Feldman, N. Pitsianis, J.P. Guo, A. Portnoy, and M. Fiddy,
“Compressive optical MONTAGE photography,” in Proc. SPIE Photonic Devices
Algorithms Computing VII, vol. 5907, San Diego, CA, 2005, pp. 44-50.

[29] J. Ke and M. Neifeld, “Optical architectures for compresssive imaging,” Appl.
Opt., vol. 46, pp. 5293-5303, Aug. 2007.

[30] R. Fergus, A. Torralba, and W.T. Freeman, “Random lens imaging,” MIT
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, Tech.
Rep. MIT-CSAIL-TR-2006-058, Sept. 2006.

[31] J. Sampsell, “An overview of the digital micromirror device (DMD) and its
application to projection displays,” in Proc. SID Int. Symp. Digest Technical
Papers, vol. 24, May 1993, p. 1012.

APPENDIX: POISSON PHOTON COUNTING CALCULATIONS
This appendix derives the average MSE of the four camera
schemes studied in the “Single-Pixel Camera Tradeoffs” sec-
tion under Poisson counting noise (the last row of Table 1).
Let X be the estimated version of the ideal image x. Assuming
that the pixel estimates are unbiased and independent with
variances af\[n], we calculate that

1 ] 1&,
E[MSE] = E[Nnx— x||2] = N;aﬂn]. %)

We now briefly review the Poisson model of photon detec-
tion. Consider a point in the scene under view that emits pho-
tons at a rate of P photons/s; then over T s the number of
photons follows a Poisson distribution with mean and vari-
ance A = Pr. To form an unbiased estimate P of the rate, we
collect and count photons with a photodetector over t s and
then normalize the count by dividing by t. The variance of
this estimator is then o2 = P/t. To simplify the analysis we
assume that the photon rate of each image pixel
x[nl,n=1,2,...,N is an independent and identically dis-
tributed (i.i.d.) Gaussian random variable with mean
txn) = P. Let the total image capture time be T's.

In the PA, each pixel x[n] has its own dedicated sensor that
counts photons for the entire period 7. The number of received
photons p[n] is Poisson with mean A[n] = Tx[n].The time nor-

malized measurement Xx[n]=p[n]7T has variance
a%[n] = (x[n]/ D), and thus as N — oo we have

E[MSE] = 3 —[ P 5

[ NZ Ux[n] ; T ~ ?, ( )

The RS is similar, except that one sensor is time shared over
each of the N pixels, meaning that the time for each measure-
ment is reduced from 7'to 7'/N. Accounting for this, we obtain
as N — oo that £ [MSE] ~ N%.

In BS and CS, the single sensor measures the sum of a group
of N/2 pixels for T/N s in BS and T/M s in CS. As N — oo, the
photon rate incident at the sensor is approximately
(NE[x[n]]/2), and so each measurement follows a Poisson dis-
tribution with mean and variance (P 7/2) for BS and (PTM/2N)
for CS. The time-normalized measurement y[m] thus has vari-
ance (N 2P/27) for BS and (NMP/2T)for CS. Continuing for
BS, we estimate the image as x = W1 y. The variance of the
pixel estimates is (2(N + 1)P/T) and thus the average MSE
equals £ [MSE] = [(3N — 2)P/ T].

For CS, we estimate the image via a nonlinear optimization
that requires that the entries of ® be +1/+/M rather than 0/1.
Hence, we correct the measurements y by recentering and scal-
ing, which changes the measurement variances to (3NP/ 7) and
results in the measurement average squared error norm
Ellly —:z7||§] = ff 10/_1/\ = (3MNP/T). Assuming that we
reconstruct the image usmg a technique such as BPIC (see “CS
in a Nutshell”), we obtain £ [MSE] < 3C2M%. SP
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