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16.1 Introduction 

Oxidation-reduction (redox) reactions, along with hydrolysis and acid-base reactions, 
account for the vast majority of chemical reactions that occur in aquatic environmental sys­
tems (soils, sediments, aquifers, rivers, lakes, and many remediation operations). This 
chapter provides a survey of the environmental and substrate characteristics that govern 
redox transformations in aquatic systems, and it suggests methods for estimating the ther­
modynamic and kinetic properties for redox reactions involving organic contaminants. The 
scope of this chapter is limited to non-photochemical, abiotic processes; photochemical 
processes are the focus of chapters 14 and 15, and microbial transformations are discussed 
in Chapter 12. Chapters focusing on estimation of properties for redox reactions involving 
inorganic substances have been published previously (1). 

The distinction between biotic and abiotic processes is a particularly important issue in 
defining the scope of this chapter. Living organisms are responsible for creating the condi­
tions that determine the redox chemistry of most aquatic environmental systems. So, in this 
sense, most redox reactions in natural systems ultimately are driven by biological activity. 
Once environmental conditions are established, however, many important redox reactions 
proceed without further mediation by organisms. These reactions are considered to be 
"abiotic" when it is no longer practical (or possible) to link them to any particular biological 
activity (2, 3). This distinction is often clear at the conceptual level, even when operational 
tests (such as comparing the effects of various antimicrobial treatments) give ambiguous 
results, and thus increasing numbers of studies treat environmental transformations of 
organic contaminants as abiotic redox reactions. Much work in this area remains to be 
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done, but this chapter attempts to synthesize recent developments into a general frame­
work for estimating the environmental fate of organic chemicals by abiotic redox reactions. 

16.2 Background 

16.2.1 Redox Reactions Involving Organic Contaminants 

16.2.1.1 Assigning Oxidation States 
Redox reactions involve oxidation and reduction; they occur by the exchange of electrons 
between reacting chemical species. Electrons (or electron density) are lost (or donated) in 
oxidation and gained (or accepted) in reduction. An oxidizing agent (or oxidant), which 
accepts electrons (and is thereby reduced), causes oxidation of a species. Similarly, reduc­
tion results from reaction with a reducing agent (or reductant), which donates electrons 
(and is oxidized). 

To interpret redox reactions in terms of electron exchange, one must account for electrons 
in the various reacting species. Various textbooks (e.g., 4, 5) provide simple rules, such as 
the following, for assigning oxidation states for inorganic redox couples: 

•	 For free elements, each atom is assigned oxidation number 0, 

•	 Monoatomic ions have an oxidation number equal to the charge of the ion, 

•	 Oxygen, in most compounds, has the oxidation number -2, 

•	 Hydrogen, in most compounds, has the oxidation number +1, 

•	 Halogens, in most environmentally relevant compounds, have the oxidation 
number -1. 

These rules, however, are not easily applied to organic redox reactions, and this difficulty 
has led to a steady stream of alternative methods for assigning oxidation states (e.g., 6, 7). 

16.2.1.1.1 Simplest Method 

For present purposes, familiarity with two methods for assigning oxidation states to 
organic molecules is sufficient. The first, and easiest where it applies, reflects the qualitative 
observations from which the historical concepts of oxidation and reduction originated (8): 

•	 Oxidation is the gain of 0, CI, or double bonds, and/or the loss of H. 

•	 Reduction is the gain of H, saturation of double bonds, and/or loss of °or Cl. 

Thus, for example, "mineralization" of any hydrocarbon to CO2 and H20 involves oxida­
tion (see Chapter 12), and dechlorination of any halogenated compound to hydrocarbon 
products involves reduction. 

16.2.1.1.2 Recommended Method 

For more-complex cases, or where a quantitative accounting of oxidation states is needed, 
the following method is most commonly used (9, 10). For each atom of interest, its oxida­
tion state is assigned the sum of: 
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• +1 for each bond to a more electronegative atom, 

• -1 for each bond to a less electronegative atom,and 

• 0 for each bond to an atom of identical electronegativity. 

Recall that electronegativities increase across rows and up columns of the periodic table, 
but the increments are not consistent, so the absolute electronegativities of common ele­
ments increase in the order H < P < C, 5, I < Br < N, Cl < 0 < F. 

Example: Assigning Oxidation Numbers
 
To illustrate the use of the recommended method, consider the reduction of N, N-nitroso­

dimethylamine (NOMA), a mutagenic and carcinogenic contaminant that has been subject
 
to considerable study (11). Reduction can occur at the N-N bond (Equation I), or at the N­

O bond (not shown).
 

H3C,-1_1 -1 -1 
---.....~ N-H + H-N=O 

-1 (1)H3C/-1 

-III -III 

For each N atom, the numbers in italics are assigned according to the rules given above. 
The sum of these values gives the oxidation state for each N, which changes from -II in 
NOMA to -III in the two products, consistent with a net 2-electron reduction. 

In certain cases, these rules, and most other definitions of oxidation and reduction, 
give counter-intuitive or contradictory results (12). For this reason, in part, few general 
works on organic reactivity place significant emphasis on reactions classified as oxida­
tions or reductions (major exceptions are 13-17). Environmental chemists, on the other 
hand, still find it useful to classify organic transformations as oxidations or reductions 
(e.g., 2, 9,11,18,19) because the environments in which they occur are often distinctive 
in this regard. The major (abiotic, non-photochemical) oxidation and reduction reactions 
that influence the environmental fate of organic contaminants are summarized in the 
two sections that follow. 

16.2.1.2 Oxidations 

Organic chemicals that are susceptible to oxidation and are of concern from the perspective 
of contamination and environmental degradation include aliphatic and aromatic hydrocar­
bons, alcohols, aldehydes, and ketones; phenols, polyphenols, and hydroquinones; sul­
fides (thiols) and sulfoxides; nitriles, amines, and diamines; nitrogen and sulfur 
heterocyclic compounds; mono- and di-halogenated aliphatics; linear alkybenzene­
sulfonate and nonylphenol polyethoxylate surfactants; and thiophosphate esters. Table 
16.1 shows half-reactions for oxidation of some of these chemical groups. See other reviews 
(9, 18, 19) for additional discussion of the mechanisms of oxidation reactions involving 
organic substances of environmental interest. 

16.2.1.2.1 Example: Oxidation of Phenols 

Oxidation of phenols (and anilines) involves free radical reactions that can produce com­
plex mixtures of products, including hydroperoxides and polymers. Simple examples of 
these two types of products appear below for oxidation of 2,6-di-(t-butyl) phenol (OBP). 
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TABLE 16.1
 

Oxidations of Environmentally Relevant Organic Chemicals
 

Type . Oxidation Half-Reaction 

Alkanes to alcohols 
Alcohols to aldehydes 
Aldehydes to acids 
Dehydrogenation 
Oxidative coupling (Example 2.1.2.1) 
Hydroquinones to quinones (Example 2.1.2.2) 
Sulfoxida tion 
Coupling of thiols 

R-H + HP --) R-OH + 2H+ + 2e­

RCH,OH --) RCHO + 2H+ + 2e­

RCHO + Hp --) RCOOH + 2H+ + 2e­

R,HC-CHR'2 --) R,C=CR', + 2H+ + 2e­
2 H0-C6Hs --) H0-C6Hc O-C6Hs + 2H+ + 2e­

HO-C6H,-OH H O=C6H,=O + 2H+ + 2e­

R-5-R' + Hp H R-S(O)-R' + 2H+ + 2e­

R-SH + R'-SH H R-5-5-R' + 2H+ + 2e­

(2) 

Further oxidation of these products can result in the consumption of many equivalents of 
oxidant for each molecule of DBP. This is the chemistry by which antioxidants protect 
many commercial products from spoilage or material damage by oxidation (20). Antioxi­
dants such as DBP, and the more familiar BHT (butylated hydroxy toluene or 2,6-di-(t­
butyl)-4-methyl phenol), are used very widely, so these compounds and their oxidation 
products are widely distributed in the environment (21). 

16.2.1.2.2 Example: Oxidation of Hydroquinones 

Oxidation of polyphenolic compounds to their corresponding quinones is another impor­
tant class of environmental oxidations. When the hydroxyl groups are ortho (vicinal) to one 
another, the resulting quinone is unstable, which can lead to ring cleavage at the shared 
c-c bond. In contrast, two hydroxyl groups in para orientation constitute a hydroquinone, 
which forms a reversible redox couple with the corresponding quinone. The hydroquinone 
analogue of anthracene, anthrahydroquinone, forITis such a redox couple with 9,10­
anthraquinone. 

OH o 

....-
OH Anthra o Anthraquinonehydroquinone 

Various hydroquinones have been used as model electron donors to study both abiotic deg­
radation pathways (22-25) and microbial respiration (26). However, since quinones rather 
than hydroquinones are stable under aerobic conditions, the common form of contami­
nants is quinonoid and the pathway of primary environmental interest is reduction of 
quinones to the hydroquinone (i.e., the reverse of Equation 3). 
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16.2.1.3 Reductions 

Most interest in reductive transformations of environmental chemicals involves dehalo­
genation of chlorinated aliphatic or aromatic contaminants and the reduction of nitroar­
omatic compounds. Other reductive transformations that may occur abiotically in the 
environment include reduction of azo compounds, quinones, disulfides, and sulfoxides 
(Table 16.2). See other reviews (2, 9, 11) for additional discussion of the mechanisms of 
these reactions. 

TABLE 16.2
 

Reductions of Environmentally Relevant Organic Chemicals.
 

Type Reduction Half-Reaction 

Reductive dehalogenation (Example 2.1.3.1) R-X + H+ + 2e- ~ R-H + X-
Vicinal dehalogenation: (Example 2.1.3.2) X-R-R'-X + 2e- ~ R=R' + 2X­
Nitro reduction: (Example 2.1.3.3) R-N02 + 6H+ + 6e- ~ R-NH2 + 2H20 
Azo reduction Ar-N=N-Ar' + 4H+ + 4e- ~ ArNH2 + Ar'NH2 

Disulfides to tluols R-5-5-R' + 2H+ + 2e- H R-SH + R'-SH 
Deoxygenation of sulfoxides R-S(O)-R' + 2H+ + 2e- H R-5-R' +H20 
Nitrosamine reduction (Example 2.1.1.2) R2N-N=0 + 2H+ + 2e- ~ R2N-H + HNO 
Quinones to hydroquinones (Example 2.1.2.2) 0=C6H.=0 + 2H+ + 2e- H HQ-C6H.--OH 
DeaJkylation R-Y-R' + 2H+ + 2e- ~ R-YH + R'H 

Rand R' = unspecified moieties; Ar = Aryl; X = F, Cl, Br, or I; Y = NH, 0, or S. 

16.2.1.3.1 Example: Reductive Dehalogenation 

Dehalogenation can occur by several reductive pathways. The simplest results in replace­
ment of a C-bonded halogen atom with a hydrogen and is known as hydrogenolysis or reduc­
tive dehalogenation. The process is illustrated for trichloroethene, TCE, 

H H CI H H H CI H CICI + H+ + 2e- + H+ + 2e­\ I \ / \ I \ / \ /
C=C .. C=C or C=C or C=C .. C=C 

/ \ I \ / \ / \ I \
-CI- -CI­CI CI H CI CI CI CI H H H (4) 

TCE 1,1-DCE c-1,2-DCE t-1,2-DCE VC 

where complete dechlorination by this pathway requires multiple hydrogenolysis steps. 
The relative rate of each step is a critical concern because the steps tend to become 
slower with each dechlorination (and DCE and VC are at least as hazardous as TCE). 
Aryl halogens, such as those in the pesticide chlorpyrifos, also are subject to hydro­
genolysis, but this reaction rarely occurs abiotically. One notable exception is the rapid 
abiotic dechlorination of polychlorinated biphenyls (PCBs) by zero-valent iron with 
catalysis by Pd (27). 

16.2.1.3.2 Example: Vicinal Dehalogenation 

The other major dehalogenation pathway involves elimination of two halogens, leaving 
behind a pair of electrons that usually goes to form a carbon-carbon double bond. Where 
the pathway involves halogens on adjacent carbons, it is known as vicinal dehalogenation or 
reductive ~elimination. The major pathway for reductive transformation of lindane involves 
vicinal dehalogenation, which can proceed by steps all the way to benzene (28). Recently, 
data has shown that this pathway not only can convert alkanes to alkenes, but can produce 
alkynes from dihaloalkenes (29). 
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CI CI 

+ 2e- + 2e­
• • • (5)CI*CI + 2e- CI-Q-CI 0-2CI- -2CI- -2CI­

CI CI CI CI Benzene 
Lindane g-BTC 

16.2.1.3.3 Example: Nitro Reduction 

Reduction of aromatic nitro groups occurs in three steps, via nitroso and hydroxylamine 
intermediates, to the amine. The amine can go on to form polymeric residues by a mecha­
nism analogous to that for oxidative coupling of phenols, as in Equation 2. Abiotic nitro 
reduction is well documented for pesticides that contain aromatic nitro groups, such as the 
phosphorothioate esters methyl and ethyl parathion (22, 30-33). 

A great deal of information is also available on the reduction of nitrobenzene, substituted 
nitrobenzenes, and di- and tri-nitrobenzenes, due to their convenience as model com­
pounds and importance as munitions (e.g., 34-40). 

16.2.2 Oxidants and Reductants Relevant to Environmental Systems 

The contaminant redox reactions just summarized only occur when coupled with suitable 
half-reactions involving oxidants or reductants from the environment. In a particular envi­
ronmental system, these redox agents (along with the physico-chemical factors discussed 
in section 4.2) collectively determine the nature, rate, and extent of contaminant transfor­
mation. Under favorable circumstances, the dominant redox agent(s) can be identified and 
quantified, thereby providing a rigorous basis for estimating the potential for, and rate of, 
transformation by abiotic redox reactions. 

Such specificity is often possible with systems engineered for contaminant remediation. 
However, natural systems frequently involve complex mixtures of redox-active substances 
that cannot be characterized readily. The characterization of redox conditions in complex 
environmental media is a long-standing challenge to environmental scientists that contin­
ues to be an active area of research (Section 3.3). 

The remainder of this Section summarizes what is currently known about the identity of 
oxidants and reductants relevant to environmental systems, in order to provide a basis for 
estimating rates of contaminant transformations by specific pathways. With respect to nat­
ural reductants, however, a great deal remains to be learned, so substantial developments 
can be expected as new research in this area becomes available. 

16.2.2.1 Oxidants 

The best opportunities for predicting redox transformations come from engineered systems 
where a known oxidant is added to achieve contaminant remediation. Well-documented 
examples include the use of ozone (Example 2.2.1.1) and chlorine dioxide (e.g., 41, 42) in 
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TABLE 16.3
 

Environmental Oxidants.
 

Oxidants Reduction Half-Reaction 

Oxygen (dissolved, groWld-state triplet) 
Hydrogen peroxide 
Ozone 
Hypochlorite 
Chlorine dioxide 
Ferrate 
Permanganate 
Chromate 

O2+ 4H+ + 4e- ~ 2 H20 
H20 2 + 2H+ + 2e- ~ 2 H20 
0 3 + 2H+ + 2e- ~ O2 + H20 
OCI- + 2H+ + 2e- ~ Cl- + 2 H,o 
Cl02 + e- H Cl02­

FeO/- + 8 H+ + 3e- H Fe3++ 4H20 
Mn04- + 8 H+ + Se- H Mn2+ + 4H20 
HCr04- + 7 H+ + 3e- H CrY + 4H20 

drinking water treatment. In natural systems, important oxidants are oxides of iron and 
manganese (43-45), as well as molecular oxygen and various photooxidants (see Chapter 
15). Table 16.3 summarizes some of the oxidants responsible for contaminant transforma­
tions by abiotic, non-photolytic pathways. 

16.2.2.1.1 Example: Oxidation by Ozone 

The reactivity of ozone reflects two modes of oxidation: non-selective free radical reactions 
involving hydroxyl radical, and the selective addition of ozone to form an ozonide inter­
mediate and eventually various carbonyls and carboxylic acids (46). The latter sequence, 
known as ozonolysis, is shown below for anthracene. 

-----i.~ anthraquinone,
phthalic acid, etc. (7) 

The enormous quantity of research that has been done on environmental effects of ozone 
reflects its importance in atmospheric chemistry, disinfection, bleaching, and advanced 
technologies for wastewater treatment (47). 

16.2.2.1.2 Oxygen Species 

The presence of molecular oxygen, 02' is used widely as the defining characteristic of "oxi­
dizing" environments, because the overwhelming supply of molecular oxygen makes it the 
ultimate source of oxidizing equivalents. However, O2in its thermodynamic ground-state 
(02) is a rather poor oxidizing agent and it is not usually the oxidant directly responsible 
for oxidative transformations of contaminants. Instead, "activated" oxygen species may be 
involved where they are formed by the action of light on natural organic matter (NOM), 
peroxides, or various inorganic catalysts (19,48). Activated oxygen species include singlet 
oxygen (102), hydroperoxyl radical and superoxide (H02/02-), hydrogen peroxide and 
hydroperoxide anion (H20 2/H02-), hydroxyl radical (OH), and ozone (03). 

16.2.2.1.3 Other Oxidants 

Aside from oxygen and the activated oxygen species,there are several other oxidants that 
cause abiotic oxidation reactions involving environmental contaminants. In engineered 
systems, these include chlorine (49), chlorine dioxide (50-52), permanganate (53,54) and 
ferrate (55,56). At highly contaminated sites, anthropogenic oxidants such as chromate, 
arsenate, and selenate may react with co-contaminants such as phenols (57, 58). 
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In natural anoxic environments, the major alternative oxidants are iron(III) and manga­
nese(IV) oxides and hydroxides. Both are common in natural systems, as crystalline or 
amorphous particles or coatings on other particles. In the' absence of photocatalysis, how­
ever, iron and manganese oxides are weak oxidants. As a result, they appear to react at sig­
nificant rates only with phenols and anilines (45,59-64). 

In the dissolved phase, few alternative abiotic oxidants are available in the natural envi­
ronment. Nitrate, sulfate, and other terminal electron acceptors used by anaerobic micro­
organisms are thermodynamically capable of oxidizing some organic contaminants, but it 
appears that these reactions almost always require microbial mediation. 

16.2.2.2 Reductants 

Abiotic environmental reductants are not as well characterized as the oxidants because 
there are fewer remediation applications of reductants, and natural reducing environments 
are characterized by especially complex biogeochemistry. The most familiar natural reduc­
tants are sulfide (present primarily as HS- and H2S), Fe(II) and Mn(II), and NOM. Table 16.4 
summarizes some of the species that may contribute to abiotic reduction reactions in envi­
ronmental systems. 

TABLE 16.4 

Environmental Reductants. 

Reductants Oxidation Half-Reaction 

Low molecular weight organics (e,g" oxalate) H02CC02H ~ 2 CO2 + 2e- + 2H+
 
High molecular weight organics (NOM) NOMred H NOMa' + 2e- +2H+
 
Dithionite H20,- + 2H,o H 2H2S03 + H+ + 2e­

Sulfides (and polysulfides) SH- H SO + H+ + 2e­
Fe(II) at mineral surfaces Fe(II)surl H Fe(III)su,1 + e-

Zero-valent iron FeO H Fe2+ + 2e­

red = unspecified reduced form; ox = oxidized form; surf = surface species (either 
adsorbed or part of a mineral lattice, i.e., "structural" (65, 66)), 

The transformation of contaminants by sulfur species in anaerobic environments can 
involve both reduction and nUcleophilic substitution pathways. These processes have been 
studied extensively (67-74), but the complex speciation of sulfur makes routine predictions 
regarding these reactions difficult. 

A similar situation applies for reduced forms of iron (35, 36, 39, 65, 75, 76). As with oxi­
dations, some of the best opportunities for reliably estimating rates of redox transforma­
tions are afforded by engineered systems where a reductant of known composition and 
quantity is added to achieve contaminant remediation. In addition to zero-valent iron, 
other chemical methods for reduction of contaminants involve dithionite (77-79) and elec­
trolysis (where, in effect, electrons are added directly, e.g., 80, 81). 

16.2.2.2.1 Example: Reduction by Zero-Valent Iron 

The most established technology for treating contaminants by abiotic reduction reactions 
relies on zero-valent iron metal (82). In addition to effecting hydrogenolysis (Equation (4)) 
and reductive elimination (Equation (5)), Feo readily reduces nitro aromatics (Equation (6)), 
azo dyes, nitrate, chromate, chlorine residual, and some radionuclides. Recently, an inves­
tigation of soils contaminated with the herbicide alachlor provided evidence for reductive 
N-dealkylation (as well as dechlorination) by Feo (83). 
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• 

The redox chemistry of these systems is relatively well defined: contaminant reduction 
results in oxidative dissolution of FeD by a reaction that is equivalent to corrosion of FeD 
by organic oxidants. Metals such as Zn and Sn can reduce contaminants by similar 
reactions. 

16.2.2.2.3 NOM as a Reductant 

The role of natural organic reductants in environmental systems is even more difficult to 
characterize than the roles of sulfur and iron because most natural organic matter is of 
indeterminant composition. To accommodate this, Table 15.4 shows two general catego­
ries: high molecular weight organic materials such as humic and fulvic acid, and low 
molecular weight compounds such as acids, alcohols, etc. Specific examples of the latter 
include glycolate, citrate, pyruvate, oxalate, and ascorbate (84). These types of com­
pounds have been studied extensively for their role in global cycling of carbon (e.g., 85, 
86, 87), but very little work has been done on whether they act as specific reductants of 
organic contaminants. 

In contrast, the possibility that high molecular weight NOM acts as a reductant in envi­
ronmental systems is widely acknowledged. Although most evidence for this involves 
the reduction of metal ions (88-95), several studies have shown that the process extends 
to various model organic contaminants (24, 40). Presumably, the reducing potential of 
NOM is due to specific moieties such as complexed metals (96) or conjugated polyphe­
nols (22-24). Often, redox reactions involving these moieties are reversible, which means 
that NOM may serve as a mediator of redox reactions rather than being just an electron 
donor (or acceptor). 

16.2.3 Mediators and Catalysts 

An additional consideration in formulating redox reactions is the possibility of catalysis by 
substances that mediate the transfer of electrons between the bulk reductant (or oxidant) 
and the substrate being transformed. Such considerations arise frequently in many areas of 
chemistry, especially electrochemistry and biochemistry (e.g., 97). In environmental appli­
cations, the most common model for mediated electron transfer involves a rapid and 
reversible redox couple that shuttles electrons from a bulk electron donor to a contaminant 
that is transformed by reduction. 

Bulk Oxidized Reduced 
Donor Mediator Contaminant 

(9))( )(
Bulk Reduced Contaminant 
Acceptor Mediator (Oxidized) 
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16.2.3.1 Criteria for Mediated Electron Transfer 

Demonstrating that a redox transformation of a contaminant involves mediated elec­
tron transfer requires meeting several criteria: (i) the overall reaction must be energeti­
cally favorable, (ii) the mediator must have a reduction potential that lies between the 
bulk donor and the terminal acceptor so that both steps in the electron transfer chain 
will be energetically favorable, and (iii) both steps in the mediated reaction must be 
kinetically fast relative to the direct reaction between bulk donor and terminal acceptor. 
Most evidence for involvement of mediators in reduction of contaminants comes from 
studies with model systems, because natural reducing media (such as anaerobic sedi­
ments) consist of more redox couples than can be characterized readily. Although this 
is an active area of research, we can identify a variety of likely mediator half-reactions 
(see Table 16.5). 

TABLE 16.5 

Mediators and Catalysts of Environmental Redox Reactions 

Type Redox Half-Reaction 

Hydroquinones/Quinones HO-Ar-OH H O=Ar=O + 2H+ + 2e­
High molecular weight organics (NOM) NOM red H NOMox + 2H+ + 2e­
Fe(II) at mineral surfaces Fe(ll)surl H Fe(I1I)surl + e-
Porphyrins, corronoids, etc. Fe(II)porphY'in H Fe(lIl)porphY'u. + e-

Ar = aryl moiety; red = unspecified reduced form; ox = oxidized form; surf = surface. 

16.2.3.2 Advantage of the Model 

An advantage of the mediator model (Equation 9) is that it can be used to simplify the 
problem of describing contaminant reduction reactions if the mediator is characterized 
more easily than the bulk donor. In this case, the bulk donor is best neglected and the 
problem reduced to the mediator and contaminant half-reactions. The advantage is 
greatest when a complex microbiological transformation process can be reduced to a 
reaction with a well defined biogenic mediators, such as quinones (98, 99), porphyrins, 
or corronoids (100-102). 

16.2.3.3 Example: Mediated Reduction of Nitro Compounds 

Reduction of nitro aromatic compounds often appears to be a two-step process, in which a 
mediator is required for facile transfer of electrons from a bulk reductant to the contami­
nant. A well docum,ented example is the coupling of organic matter oxidation by iron 
reducing bacteria to "abiotic" nitro reduction by biogenic Fe(II) that is adsorbed to mineral 
surfaces in a column containing aquifer material (36,39,76). 

NOM 
)( Fe(III)"rt )( 

(10) 

Fe(lI)surf 
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Although it has long been known that the adsorbed Fe(Il) can be an effective reductant, 
its potential role as a mediator of reductive transformations of contaminants only recently 
has gained widespread recognition. Of particular interest are its possible roles in "natural 
attenuation" (65) and remediation technologies where the bulk reductant is dithionite (79) 
or Feo (66). 

16.2.3.4 NOM as a Mediator 

Like the various forms of iron, NOM apparently serves as both bulk reductant and media­
tor of reduction as well as bulk reductant (recall section 2.2.2). NOM also can act as an elec­
tron acceptor for microbial respiration by iron reducing bacteria (26), thereby facilitating 
the catabolism of aromatic hydrocarbons under anaerobic conditions (103). In general, it 
appears that NOM can mediate electron transfer between a wide range of donors and 
acceptors in environmental systems (104, 105). In this way, NOM probably facilitates many 
redox reactions that are favorable in a thermodynamic sense but do not occur by direct 
interaction between donor and acceptor due to unfavorable kinetics. 

16.3 Methods for Estimating the Thermodynamics of Redox Reactions 

16.3.1 Assessing the Energetics of a Transformation Reaction 

Once the relevant oxidation and reduction half-reactions have been identified (e.g., from 
Tables 16.1-5), they can be combined and balanced to determine the overall reaction for any 
redox transformation. In generalized form, this can be written 

where 0 and R represent the oxidant and reductant, respectively (106). The sum of the stan­
dard reduction and oxidation potentials for the two half-reactions gives the net potential 
(EOnet ), which can be used to assess the thermodynamic feasibility of a particular redox 
reaction, 

(14)
 

where n equals the number of electrons exchanged in the net reaction, F is the Faraday con­
stant (96,485 JV-I mol-I), and EOred and EOox are the standard potentials for Equation 11 and 
Equation (12), respectively. Note that the sign on EOox is opposite that of the standard reduc­
tion potential for the corresponding reduction half-reaction. Complete redox reactions (i.e., 
Equation (13)) with positive EOnet (or negative ~G) can occur spontaneously. 

To use Equation (14), it is necessary to have appropriate values of EOred and EOox . Reduc­
tion potentials are widely tabulated for the classical"standard" conditions of 25°C and unit 
activity for all reactants and products (including H+, i.e., pH = 0). Tables 16.6 gives selected 
values of E°red . However, for the evaluation of energetics under environmental conditions, 
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it is convenient to define a standard state for conditions that more closely approximate 
those of natural systems. These conditions are usually taken to be [H+] =10-7 (i.e., pH =7.0), 
[HC03-] =10-3 M, [Cl-] =10-3 M, [Br -] = lO-sM, and [0] = [R] =1M. The environmental lit­
erature (9), designates the corresponding standard potential as EOw, although the standard 
state designated by most biochemists as EO' has essentially the same meaning. In Table 16.6, 
values of EOware given for selected reduction half-reactions. Calculation of the EOwvalue for 
the overall redox transformation reaction indicates whether the free energy change for the 
reaction is favorable under typical environmental conditions. 

TABLE 16.6 

Selected values of EO and EOw. 

Reduction Half-Reaction EO EOw 

C2C1. (perchloroethene) + H+ + 2e- ~ C2HCl3 (trichloroethene) + CI­
C2C~ (hexachloroethane) + 2e- ~ C2C1. (tetrachloroethene) + 2 CI­
C2HCl3 (trichloroethene) + H+ + 2e- ~ C2H2CL, (cis-l,2-dichloroethene) + CI­
C6C1sOH (pentachlorophenol) + H+ + 2e- ~ C6HCI.OH (2,3A,6-tetrachlorophenol) + CI­
C6C16 (hexachlorobenzene) + H+ + 2e- ~ C6HCls (pentachlorobenzene) + CI­
C6Hs-N02 + 6H+ + 6e- ~ C6H,-NH2 + 2H20 
CCl3C(0)OH (trichloroacetate) + H+ + 2e- ~ CHCl2C(0)OH (dichloroacetate) + CI­
CCI. (carbon tetrachloride) + H+ + 2e- ~ CHCl3 (chloroform) + CI­
CH3-S(0)--eH3 (dimethylsulfoxide) + 2H+ + 2e- H CH3-5--eH3 + H20 
Clo- + 2 H+ + 2e- H CI- + H20 
Cl02 + e- H Cl02­
CO2 + 4H+ + 4e- ~ 1/6 C6H120 6 (glucose) + H20 
CrO/- + 8 H+ + 3 e- H Cr3+ + 4 H20 
Fe(III)po'!'hyCin + e- H Fe(II)po'!'hycin 
Fe2+ + 2e- H Feo 
Fe20 3(s, hematite) + 6 H+ + 2e- H 2 Fe2+ + 3 H20 
Fe3+ + e- H Fe2+ 
FeO/- + 8 H+ + 3e- H Fe3++ 4 H20 
FeOOH(s, goethite) + 3 H+ + e- H Fe2+ + 2 H20 
H+ + e- H 1/2 H2(g) 
H20 2 + 2 H+ + 2 e- H 2 H20 
HC03- + 9 H+ + 8e- ~ CH.(g) + H20 
103- + 6 H+ + 5e- H 1/2 12(s) + 3 H20 
Mn02(s, vemadite) + 4 H+ + 2 e- H Mn2+ + 2 H20 
MnO.- + 4 H+ + 3e- H Mn02 + 2 H20 
MnO.- + 8 H+ + 5e- H Mn2++ 4 H20 
MnOOH(s, manganite) + 3 H+ + e- H Mn2++ 2 H20 
N03- + 10 H+ + 8 e- H NH; + 3 H20 
N03- + 2 H+ + 2 e- H N02- + H20 
N03- + 6 H+ + 5 e- H 1/2 N2(g) + 3/2 H20 
02(g) + 4 H+ + 4 e- H 2 H20 
0 3 + 2H+ + 2e- H 02 + H20 
0=C6H.=0 + 2H+ + 2e- H H0--C6H.--DH (Catechol) 
0=C6H.=0 + 2H+ + 2e- H H0--C6H.--DH (hydroquinone) 
SO(s) + H+ + 2e- H SH­
SOi- + 2 H+ + e- H 1/2 S20/- + H20 
SO/- + 9 H+ + 8 e- H SH- + 4 H20 
(-SCH2CH(NH2)COOHh (cystine) + 2W + 2e- H 2 HSCH2CH(NH2)COOH (cysteine) 

+0.79 +0.58 
+1.14 +1.14 
+0.75 +0.54 
+0.66 +0.45 
+0.68 +0.47 
+0.83 +0.42 
+0.68 +0.47 
+0.88 +0.67 
+0.57 +0.16 
+1.71 +1.30 
+0.95 +0.95 
-2.01 -0.432 
+1.51 +0.48 
+0.17 +0.06 
--0.44 -0.44 
+0.66 -0.35 
+0.77 +2.77 
+1.70 +2.59 
+0.67 -0.34 
0.00 -0.41 

+1.76 +1.35 
+0.23 -0.22 
+1.18 +0.68 
+1.29 +0.58 
+1.69 +1.14 
+1.51 +0.84 
+1.50 +0.49 
+0.88 +0.36 
+0.83 +0.42 
+1.24 +0.74 
+1.23 +0.81 
+2.08 +1.66 
+0.79 +0.38 
+0.70 +0.29 
-0.06 --0.27 
0.42 --0.41 

+0.25 --0.21 
+O,O~ -0.39 

Sources include (5, 8, 84, 107-112). 

16.3.1.1 Example: Energetics of Redox Reactions 

Perhalogenated aliphatic compounds such as hexachloroethane and perchloro­
ethene (PCE) are highly oxidized compounds that are subject to reductive dehalogenation 
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(Example, 2.1.3.1) with relatively large positive standard potentials. Dihydric phenols such 
as hydroquinone and catechol are moderately reducing'substances that can be oxidized to 
the corresponding quinones (Example 2.1.2.2). For the case of PCE and catechol, the com­
bination of these reactions gives: 

EO EOw 

C2Cl, (PCE) + W + 2e- H C2HCl3 (TCE) + Cl­ +0.79 +0.58 
HO-C6H,-OH (Catechol) H O=C6H,=O + 2H+ + 2e- -0.79 -D.38 

-D.09 +0.20 

Note that the net potential is zero at standard conditions (EO) and positive at standard 
aquatic conditions (EOw ), so the reaction is not favorable except, perhaps, at extremely low 
pH. 

For non-standard conditions, cell (or half-cell) potentials, E, can be calculated with the 
Nemst equation 

E = EO - (RT/nF) In Q (15) 

where EO refers to the standard potential (red, ox, or net), R is the universal gas constant 
(8.314 JK-l mol-1), T is the absolute temperature (K), and Q is the cell quotient. For the gen­
eral reduction half-reaction in Equation (11), Q is 

(16)
 

and for the general net redox reaction in Equation 13, Q is 

(17) 

Note that 2.303 RT/F = 0.059 V at 25°C, so Equation 15 can be simplified to 

E = EO - (0.059/n) log Q (18) 

and this equation is adequate to relate EO to EOw for most of the redox couples in Table 16.6. 
Systems involving more than one pKa can become quite complex, in which case it may 

be useful to compare redox couples graphically in Eh-pH (or Pourbaix) diagrams. These 
diagrams can be drawn by traditional methods (5,113-115), obtained from existing compi­
lations (116, 117), or generated with at least one commercially available software package 
(HSC Chemistry: Outokumpu Research, Pori, Finland). Eh-pH diagrams involving organic 
substances are not common, but their construction and interpretation are not fundamen­
tally different from those for inorganic substances (8, 118). 

16.3.1.2 Example: Effect of pH on Energetics of Redox Reactions 

The boundary between all oxidized forms and all reduced forms of a substance can be 
drawn from Equation (18) by expanding Q (Equation (17)) to include acid/base speciation. 
Figure 16.1 shows this for five substances that exhibit moderately complex, but well char­
acterized, speciation as a function of pH (uncomplexed Fe(II)/Fe(III), iron porphyrin, 
juglone, lawsone, and anthraquinone disulfonate). The resulting Eh-pH diagram shows, 
for example, that the hydroquinone of lawsone is a reductant relative to anthraquinone dis­
ulfonate, below pH 7.5, but the relationship is inverted at higher pH. A similar crossing 
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FIGURE 16.1 
Eh-pH diagram showing the predominance fields for oxidized (upper right) and reduced (lower left) forms of 
selected redox-active species. Note that the curves represent totals for each species; i.e., further speciation is not 
shown. Curves are drawn from variations on Equation (18) for 25°C, using values of EO from Table 16.6 and 
additional constants from various sources (5, 8, 23). Dashed diagonal lines are for the H2/HP (lower) and 
H20/02 (upper) couples and together they enclose the conditions over which water is stable. 

exists just beloe pH9 for total inorganic ferrous/ferric iron versus both juglone and iron 
porphyrin. 

16.3.2 Estimating Thermodynamic Data for Redox Reactions 

The availability of appropriate thermodynamic data for organic redox couples often limits 
application of the simple formulation presented in section 3.1. This is primarily because 
few organic substances form reversible redox couples amenable to direct measurement of 
Nernstian standard potentials. 

Two approaches for estimating standard potentials can be used for preliminary assess­
ments of reaction energetics of irreversible redox couples. The first involves measurement 
of surrogate parameters such as half-wave potentials, and the second involves calculation 
from free energies of formation. 

16.3.2.1 Half-Wave Potentials 

Half-wave potentials, EI/2, can be obtained from current-potential curves measured using 
a variety of voltammetric teclmiques. EI/2 is a good approximation of EO when the redox 
couple is reversible and the diffusion coefficients of 0 and R are equal (119), and a few of 
the standard potentials in Table 16.6 were obtained in this way. When the redox couple is 
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not reversible, it may still be possible to determine an E1/ 2t but such values cannot be used 
to derive quantitative estimates of standard potentials without data on electrode kinetics. 
They can be useful, however, for qualitative or relative assessments of reaction energetics. 

The qualitative application is illustrated by the approximate location of EOw for the 
azobenzene / aniline couple on redox ladders constructed by Schwarzenbach et a1. (e.g., 
Figure K.3 in Reference 120). The estimate, around -0.1 V vs. NHE, comes from electro­
chemical studies that report non-Nemstian dependence of EI/2 on pH and additional evi­
dence for the non-reversibility of this reaction (8, 121). 

The relative use of E1/ 2values is exemplified by the ranking of relative reducing poten­
tials for various pesticides Ceer et a1. developed (28, 122) based on values of EI/2 measured 
at a mercury-coated Pt electrode in dimethyl sulfoxide. 

16.3.2.2 Free Energies of Formation 

The estimation of standard potentials from other thermodynamic data follows a simple 
additive procedure. Typically, these calculations are based on published, gas-phase free 
energies of formation, dGJ (g), for reactants and products. These gas phase data are 
adjusted to aqueous phase tree energies, dGJ (aq), using 

dGJ(aq) = dGJ(g) + RTln H (19) 

where H is the Henry's constant for each substance. Then the free energies of formation are 
combined using 

dGO = LdGJ(products) - LdGJ(reactants) (20) 

to give dCo, the free energy of reaction in aqueous solution. Finally, the resulting value can 
be adjusted to BOw using Equation (14) and Equation (18). 

One important envirorunental application of this procedure has been for assessing the 
energetics of the dehalogenation of chlorinated solvents (110); in fact, all of the values for 
chlorinated solvents in Table 16.6 were obtained by this method. 

Another way to obtain estimates of dCo is with the group-contribution methods devel­
oped by Benson (123) and Mavrovouniotis (124, 125). This approach has been used to 
extend the list of chlorinated aliphatics for which there are published estimates of BOw to 
include chloroacetates, chloroproprionates, and PCBs (111, 112, 126). A few of these com­
pOurtd also have been included in Table 16.6. 

16.3.3 Characterizing the Redox Potential of Environmental Media 

Section 5.2 provides the thermodynamic basis for predicting whether or not a specific redox 
transformation can occur spontaneously in a given envirorunent. The necessary redox half­
reactions involving contaminants are usually well characterized because contaminants are 
the primary motivation for many studies of envirorunental systems. However, difficulties 
often arise in selecting the appropriate "envirorunental" half-reaction with which to balance 
the overall equation. When an envirorunental half-reaction cannot be identified, it is tempt­
ing to use traditional electrode potential measurements (127, 128) as a generic measure of in 
situ redox conditions. These values (E ) then might be used as E°red or EO in Equation 14,meas ox 

to assess the thermodynamic potential of a particular contaminant transformation in a par­
ticular environment. However, a number of fundamental difficulties arise with this 
approach, so we do not recommend the procedure. 
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16.3.3.1 Problems with Emeas (Not Recommended) 

The problems with using E to estimate EOred or EO are related to the general problem of meas ox 

how redox conditions can be characterized for complex mixtures. Many approaches to this 
problem have been proposed, but none provide a solution that is both rigorous with 
respect to chemical fundamentals and practical with respect to application in the field. The 
issues here are subtle but important. 

Several of the key issues are reflected in the debate over the appropriate use of pE to 
describe redox conditions in natural waters (129-131). The parameter is defined in terms of 
the activity of solvated electrons in solution (i.e., pE =-log {e-aq}), but the species e-aq does 
not exist under environmental conditions to any significant degree. The related concept of 
pe (132), referring to the activity of electrons in the electrode material, may have a more 
realistic physical basis with respect to electrode potentials, but it does not provide an 
improved basis for describing redox transformations in solution. The fundamental prob­
lem is that the mechanisms of oxidation and reduction under environmental conditions do 
not involve electron transfer from solution (or from electrode materials, except in a few 
remediation applications). Instead, these mechanisms involve reactions with specific oxi­
dant or reductant molecules, and it is these species that define the half-reactions on which 
estimates of environmental redox reactions should be based. 

Values of Emeas (measured at Pt, Au, or carbon electrodes) are of little help because they 
are not a simple function of the concentrations of specific oxidants and reductants in the 
solution. Instead, the electrode gives a mixed potential in response to all the redox active 
species in a given solution, weighted by the sensitivity of the electrode to each species (i.e., 
the exchange current density). Resolving mixed potentials into concentrations of all the 
contributing species is not a practical way to characterize the availability of oxidants or 
reductants to react with a particular contaminant. In fact, the only environmental condition 
where measured electrode potentials have been related quantitatively to concentrations of 
redox-active species is in relatively simple systems dominated by relatively high concen­
trations of dissolved iron (133-136). Inorganic oxidants, such as O2 and H 20 2, tend to have 
small exchange current densities, so their presence is not reliably indicated by electrode 
potential determinations (137). 

16.3.3.2 Techniques Based on Specific Species (Recommended) 

A related problem associated with efforts to characterize redox conditions of environmen­
tal materials is the lack of equilibrium among the chemical constituents of an environmen­
tal system (138-141) or between the environmental constituents and a sensor material (142). 
Thus, even techniques that are based on specific redox active species-such as H 2 (143­
146), Hg (147), indicator dyes (148, 149), or other mediators (137)- cannot provide a gen­
eral characterization of redox conditions. However, we do recommend techniques that 
quantify the activity of specific oxidants or reductants, because they are necessary for the 
rigorous application of the approach Section 5.1 describes. Similar considerations apply to 
the characterization of redox kinetics. 

16.4 Methods for Estimating the Kinetics of Redox Reactions 

Estimates of the free energy change of redox transformations indicate only which reactions 
can occur spontaneously, not whether they will occur at appreciable rates in a given envi­
ronment. For example, reduction of hexachloroethane by water is energetically favorable, 
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and yet the reaction rate is apparently negligible because hexachloroethane is a persistent 
contaminant in aerobic groundwaters. In fact, in this context, environmental scientists, 
engineers, and regulators most often need to estimate rates for transformation reactions 
already known to be possible. 

16.4.1 Recommended Method: A Simple Bimolecular Kinetic Model 

Estimation of rates for redox reactions in environmental systems requires that the problem 
be formulated in terms of specific oxidation and reduction half-reactions. In addition, we 
assume that the rate-limiting step of the transformation mechanism is bimolecular-that is, 
the slow step requires an encounter (collision) between the electron donor and electron 
acceptor. Under most conditions found in environmental systems, such reactions exhibit 
rate laws for the disappearance of a pollutant, P, that are first-order in concentration of P 
and first-order in the concentration of environmental oxidant or reductant, E, 

- d[P]/dt = k [P] [E] (21) 

where k is the second-order rate constant for the reaction. The major advantage of this 
approach is that values of k are conventional rate constants in that they should be indepen­
dent of environmental conditions except for temperature, and, in some cases, ionic 
strength(150). Quantitative corrections for temperature and ionic strength are discussed in 
section 4.2.2. 

In many cases, the concentration of the environmental oxidant or reductant is effectively 
constant over the time frame of interest, so Equation (21) can be simplified to a pseudo­
first-order rate law 

- d[P]/dt = kobs [P] (22) 

where the rate constant kobs is the product of k and [E]. From Equation (21) and Equation 
(22) it is apparent that kobs is defined by 

kobs = k [E]ss (23) 

where the subscript, ss, indicates the steady-state concentration of E. Thus, kobs (or t1/2, from 
In 2/kob,) can be calculated for any redox reaction as long as [E]ss can be determined, and k 
for reaction of P with E is known. Table 16.7 gives selected rate constants for oxidations and 
Table 16.8, for reductions. Section 5 discusses methods for estimating additional values of k. 

16.4.1.1 Example: Kinetics of Oxidation of Aromatics by Ozone 

Oxidation by ozone is a homogeneous (solution-phase) reaction, so oxidation rates are readily 
estimated using Equation (23) and second-order rates constants from the literature (151-154, 
159, 160). Thus, for a typical concentration of ozone used in drinking water disinfection oper­
ations (10-5 M), and the appropriate k for, say, benzene (from 152), we can estimate 

kobs = 2 M-l S-1 X 10-5 M = 2 X 10-5 S-1 (24) 

which corresponds to a half-life of 9.6 hours. Direct reaction of aromatic compounds with 
ozone (i.e., ozonolysis as in example 2.2.1.1) becomes more rapid with increasing numbers 
of fused rings: e.g., k for naphthalene is 3000 M-l S-1 (152). Presumably, anthracene will react 
with ozone even more rapidly. 
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TABLE 16.7
 

Selected Rate Constants for Oxidations of Environmental Contaminants.
 

Donor, P Acceptor, E k (M-1 S-l ) Source 

Alachlor ozone 3.8 ± 0.4 (151) 
Benzene! ozone 2.0 ± 0.2 (152) 
Carbon tetrachloride ozone <0.005 (152) 
Diethylether ozone 1.1 ± 0.1 (152) 
2,6-Dimethylphenol! ozone 1.9 x 104 (kA'ClH) (153) 
Naphthalene ozone (3.0 ± 0.6) x 1()3 (152) 
PhenoP ozone (1.3 ± 0.2) x 1()3 (kA'OH) (154) 

(1.4 ± 0.4) x 109 (kMO-) 
PhenoP chromate (2.63 ± 0.06) x 10-5 (k,OH) (58) 
PhenoP chlorine dioxide 0.4 ± 0.1 (k'OH) (42) 

(4.9 ± 0.5) x 1Q7 (/c,o-) 
Trichloroethene ozone 17 ± 4, 15 ± 2 (151,152) 
Trichloroethene permanganate 6.57 x 10-4 (155) 

!	 Source includes data for other related compounds. For additional data on ozone, 
chlorine dioxide, and other inorganic radicals see (156). Data on hydroxyl radicals 
can be found in (157, 158) and chapters 14 and 15. 

TABLE 16.8
 

Selected Rate Constants for Reductions of Environmental Contaminants.
 

Acceptor, P Donor, E k Source 

Trichloroethene Dithionite 0.15 M-! S-I (77) 
Nitrobenzenel Iron porphyrin 0.96 M-I S-I (23) 
Nitrobenzene! Mercaptojuglone 0.079 M-I S-I (23) 
Hexachloroethane Mercaptojuglone 0.55 M-I S-I (25) 
Nitrobenzene! Zero-valent iron 3.9 x 10-2 L min-1 m-2 (34) 
Carbon tetrachloride2 Zero-valent iron 0.1 L hrl m-2 (161, 162) 
Trichloroethene Zero-valent iron 3.9 x 10-4 L hrl m-2 (161, 162) 

!	 Source includes data for other related compounds. Data for hydrated electrons 
and hydrogen atoms are available in (157). 

16.4.1.2 Example: Reduction of Chlorinated Alkenes by Zero- Valent Iron 

Reduction by FeD is a surface reaction, so reduction rates are most conveniently estimated 
from Equation 23 using surface-area normalized values of kobs (kSA )' Representative values 
have been tabulated for a wide range of chlorinated solvents (161, 162). The corresponding 
value for TeE is kSA =3.9 X 10--4 L m-2 h-t Thus, we can calculate a half-life of 

tt/2 =In 2j(ksA x 3.5 m2 mL-t x 1000 mL L-t) =30 min (25) 

in a treatment zone containing 3.5 m2 mL-I iron surface area, which is fairly typical of cur­
rent engineering practice. Note that actual barrier performance varies considerably, but 
progress has been made in quantifying this uncertainty (163, 164). 

16.4.2 Factors that Affect Redox Kinetics 

The kinetic model just described is a compromise that affords a realistic possibility of mak­
ing quantitative estimates with available data and yet preserves a level of deterministic 
rigor by requiring that the problem be formulated in terms of specific redox-active species. 
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As discussed in section 3.3, there is no reason to expect that measures of "overall" redox 
conditions (such as Pt electrode potentials or concentrations of dissolved H2) will ever pro­
vide an improved basis for quantitatively predicting rates of environmental redox reac­
tions. However, extensions and refinements to the simplified bimolecular model can be 
made when sufficient data are available. 

16.4.2.1 Temperature 

Temperature affects the rates of redox reactions, just as it does other transformation reac­
tions like hydrolysis. Although a variety of models describe the effect of temperature (165), 
the approach is to resolve k into a function of temperature with the Arrhenius equation 

Ae-EaIRTk = (26) 

where A is a constant known as the pre-exponential factor, and Ea is the energy of activa­
tion. Unfortunately, activation energies are rarely available for redox reactions of environ­
mental interest. The few exceptions include limited data for reduction of chlorinated 
aliphatics by iron metal (166). 

In the absence of compound specific data on temperature effects, Equation 26 can still be 
useful for approximate corrections using assumed values of Ea. Thus, the rule-of-thumb 
that reaction rates approximately double for every lOoC increase in temperature, is justified 
because most reactions of organic substances in solution have anE. of about 50 kJ Imo!. 
Most reported rate constants probably overestimate environmental rates slightly because 
the former typically are measured near 25°C, and 15°C is more typical of natural waters. 

16.4.2.2 Effect of Ionic Strength 

Throughout this chapter we have formulated rate laws in terms of concentrations and 
ignored activity corrections, as is almost always done in environmental chemistry. How­
ever, where ionic strength, I, varies and both reactants are charged, a substantial "primary 
salt effect" can be expected (167). The effect is described by 

log (klko) = 2.34 Zox Zred [112 (27) 

where Zox and Zred are the charges on each reactant and kois the rate constant extrapolated 
to zero ionic strength. Although ionic strength effects are likely for, say, the oxidation of 
pentachlorophenol (which exist mostly as the phenoxide anion at neutral pH) by chromate, 
there seem to be no documented examples where the effect of ionic strength on kinetics of 
a redox reaction is significant under environmental conditions. 

16.4.2.3 pH 

When hydrogen ions are directly involved in the rate-limiting step of a reaction, they usu­
ally appear as explicit terms in the rate law. However, the role of hydrogen ions in both 
halves of the redox reaction must be well-defined before generalizing on the effect of pH. 
Protonated and deprotonated forms of redox agents react as independent species, so the 
observed rate constant will vary with pH due to changes in speciation of the reactants. The 
second-order rate law (Equation (21» can be modified to take this into account, 

(28) 
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where the subscripts i and j reflect the various degrees of protonation for P and E, 
respectively. . 

This approach will be rigorous if a complete speciation calculation is done for P and 
E (as described in standard textbooks of aquatic chemistry) and all the necessary values 
of kif are available. Fortunately, the analysis can usually be simplified to reaction 
between one or two dominant species, and most of the available rate constants are for 
these same species. 

16.4.2.4 Example: Speciation Effects on Phenol Oxidation 

The oxidation of substituted phenols illustrates the importance of including speciation. 
Dissociation of the phenolic hydroxyl group results in an equilibrium mixture of the parent 
compound and its dissociated form, the phenoxide (or phenolate) anion. The undissociated 
phenol and the phenoxide anion react as independent species with very different rate con­
stants, designated k ArOH and kAro-' For the oxidation of 4-nitrophenol (pKa =7.2) by Cl02, 

=1.4 X 10-] M-] S-I, andkAro- =4.0 x 103 M-I s-] (42). Estimates of the pH-corrected sec­k ArOH 

ond-order rate constant, ktatal' can be made using 

(29) 

where IArOH is the fraction of the phenol which is in the protonated form, 

IArOH = lO(pKa-pH) / (1 + 10(pKa-pH») (30) 

and IArO- is the fraction in the deprotonated form. 

IArO- = 1/(1 + lO(PKa-pH)) (31) 

Thus, ktataf is 25.3 M-] s-] at pH 5 and 3.45 x 103 M-] s-] at pH 8, a 136-fold increase as the 
speciation shifts from 99% phenol to 86% phenoxide. A similar trend can be expected if the 
oxidant were 03' In contrast, the protonated phenol dominates the oxidation rate of most 
phenols by aqueous chromate (57, 58). 

16.4.2.5 Sorption 

Sorption to surfaces can have important effects on the rates of contaminant transforma­
tion, but these effects may be very different, depending on how the mechanism of sorp­
tion (i.e., hydrophobic partitioning, donor-acceptor interactions, or ligand exchange) 
relates to the mechanism of contaminant transformation (i.e., reaction in solution, reac­
tion at surface sites, etc.). In general, however, the contributions of each compartment can 
be treated as additive as long as the kinetics of adsorption/desorption are fast, relative 
to contaminant transformation (168). Just as with the effect of pH (Section 4.2.3), each 
term is simply the product of the reactant concentrations in the compartment and the cor­
responding rate constant. 

(32) 

where, in this case, the subscript i reflects the various compartments into which the reac­
tants are distributed: including the solution phase, non-reactive surface sites, and reactive 
surface sites. 
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16.4.2.6 Example: Sorption Effects on Reduction of Azo Dyes
 

Hydrophobic adsorption to sediment particles appears to retard reduction of organic con­

taminants in anaerobic sediment slurries, so a quantitative kinetic model has been pro­

posed that involves two types of "sites"(168-170),
 

(33) 

where isurf is the fraction of contaminant adsorbed onto the sediment particles, 

isurf = p~/ (1 + p~) (34) 

isoln is the fraction in the dissolved phase, 

(35) 

P is the sediment to water mass ratio (effectively, the "concentration" of sediment), and ~ 

is the coefficient describing equilibrium partitioning between the contaminant and the sed­
iment. Note, that this formulation uses p for a particular sediment sample as a surrogate 
for an unspecified [E]. Only when the model can be rewritten in terms of specific reduc­
tants, will it be possible to estimate reduction rates in sediments in general. A slightly more 
rigorous model involving reactive and non-reactive sites has been applied to dehalogena­
tion kinetics by Feo (17t 172). 

16.5	 Quantitative Structure-Activity Relationships (QSARs) to 
Predict Properties 

For redox reactions of a series of closely related compounds, redox potentials and rate con­
stants often correlate to descriptor variables that reflect the electron donor or electron accep­
tor properties of P. Such correlations can be used to derive quantitative structure-activity 
relationships (QSARs), and these QSARs provide the basis for predicting properties of envi­
rorunental contaminants that have not previously been measured (173). 

16.5.1 Common Descriptor Variables 

Commonly used descriptor variables for QSARs involving redox reactions include substit­
uent constants (0), ionization potential, electron affinity, energy of the highest occupied 
molecular orbital (EHOMO)or lowest unoccupied molecular orbital (ELUMO)' one-electron 
reduction or oxidation potential (E1'), and half-wave potential (E1/2)' One descriptor vari­
able (D), fit to a log-linear modet is usually sufficient to describe a redox property of P. Such 
a QSAR will have the form 

(36)
 

where Ri is response variable of interest (in this context, usually Ejo or k;), D i is the descriptor 
variable, the subscript i distinguishes the congeners that make up the training set of com­
pounds, and the fitted intercept and slope are ~o and ~1J respectively. Table 16.9 and Table 
16.10 summarize QSARs that are currently available for envirorunental redox reactions. 
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TABLE 16.9
 

QSARs for Environmental Oxidation Reactions
 

Substrates Oxidant QSAR Equation' R2(nl Source 

Phenols C102 log kA,o­ = 3.2 Lcro,m,p- + 8.2 0.94 (23) (41,173) 
Phenols 
Phenols2 

Cl02 

0 3 

log kA,o­ = - 4.5 EHOMO - 49 
log k/ko = -3.1 <J+ 

0.76 (22) 
(7) 

(41,174) 
(152) 

Phenols3 

Phenols 
CI02and 102

Mn°2 

log k(l02) = 5.5 + 0.36 log k(Cl02) 

log kA,OH = 6.1 - 9.7 E1/2 

0.82 (10) 
0.85 (10) 

(173,175) 
(173, 176) 

Phenols Mn02 log kA'OH = - 3.7 EHOMO - 36 0.86 (9) (174,176) 
Phenols Chromate log kA'OH = 6.2 - 17 EI /2 0.95 (10) (58) 

(HCr04-) 

Phenols Chromate log kA,OH = ­ 7.8 EHOMO - 67 0.90 (13) (58, 174) 
(HCr04-) 

Phenols Peroxy-disulfate log kA,OH = ­ 7.8 EHOMO - 67 1 0.90 (43) (174, 177) 
(S20t) 

1 All le's in M-1 s-1 

2 For para-substituted phenols only. 
3 For phenoxide anions (ArO-) 

TABLE 16.10 

QSARs for Environmental Reduction Reactions 

Substrates Reductant QSAR Equation R2(nl Source 

Nitrobenzenes Mercapto-juglone log k = £1'/0.059 + 7.21 0.98 (7) (23) 
Nitrobenzenes NOM log k = £1'/0.059 + 4.4 ' 0.91 (10) (40) 
Halocarbons FeD log k = - 3.2 ELUMO - 3.32 0.85 (11) (178) 

1 kin M-I S-1 for pH 7.5 with 5 mM hydrogen sulfide as bulk reductant (25°C), and El' 
is the one-electron potential in V vs SHE. 

2 kin L hr' m-2 and ELUMO is the energy of the lowest unoccupied molecular orbital. 

16.5.2 Example: Rate Constants for Oxidation of DBP by CI02 

The antioxidant 2,6-di-(t-butyl)phenol (DBP) has bulky substitutes in both positions ortho 
to the phenolic moiety, so steric effects are likely to make predictions of oxidation rate con­
stants unreliable. However, the QSAR for kAro- of substituted phenols reacting with CI02 

(Table 16.9) has been shown to be relatively robust with respect to ortho effects (179). 
Assuming additivity of substituent effects, and no steric effects, we can use cr - =-0.15 for 
t-butyl groups (180) to estimate kAro- =1.7 x 107 M-l S-1 for oxidation of DBP by Cl02. Then, 
equations (29), (30) and (31) can be used to compute the effect of pH and estimate ~olal' 

16.5.3 Reliability Limits 

Properties estimated by interpolation within the range of conditions over which a QSAR 
was calibrated should be reliable, but extrapolations beyond this range caIUlot be made 
with certainty. A similar restriction applies to experimental variables factored out of the 
training set data before deriving the QSAR (e.g., the effect of pH on oxidation of phenolic 
compounds, or the effect of surface area on reductions with FeD). 

All properties estimated from QSARs should be treated with caution, because most 
QSARs exhibit outliers due to molecular effects that the correlation model does not take 
into account, and the occurrence of outliers is not always easy to anticipate. To make the 
most reliable use of available QSARs such as those in Table 16.9 and Table 16.10, consult the 
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original study from which the QSAR was derived for a complete description of the model's 
limitations. 
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16.7 List of Symbols 

al , a2 

~O, ~l 
0", 0" -, 0"+ 

bl , b2 

~Go 

~Gl(aq) 

~Gl(g) 
D; 
E 
EOox' EOred, EOnel! Eio, EO 

EO 
ox 

EO' 

El / 2 

EHoMO 
ELUMO 
Emeas 

Ej 

[E]ss 
F 
fArO­

fArOH 

!soln 

!sllrf 
H 

k 
Iko 
kAro­

kArOH 

Stoichiometric coefficients for oxidized species 
Intercept and slope of the linear QSAR 
Hammett sigma constants 
Stoichiometric coeffients for reduce species 
Free energy of reaction 
Free energy of formation in aqueous phase 
Free energy of formation in gas phase 
Descriptor variable for QSAR, subscripts i distinguish congeners 
Potential under non-standard conditions 
Standard potentials (reactants and products at unit activity, 
hydrogen ion activity of 1, i.e. pH = 0), of reduction, oxidation, 
net reaction, the ith redox-active species, and any half-reaction 
Standard reduction potential at hydrogen ion activity of 10-7 (pH 
=7.0) 
One-electron reduction potential 
Half-wave potential 
Energy of the highest occupied molecular orbital (HOMO) 
Energy of the lowest unoccupied molecular orbital (LUMO) 
Redox potential measured at a Pt, Au, or C electrode 
The jth environmental oxidant or reductant 
Concentration of E at a steady-state 
Faraday constant, 96,485 Jy-l mol-l 

Fraction in the deprotonated phenoxide form 
Fraction in the protonated phenolic form 
Fraction in solution phase 
Fraction sorbed to surfaces 
Hemy's constant 
Ionic strength 
Second-order rate constant 
Rate constant extrapolated to ionic strength =0 
Rate constant for the phenoxide (deprotonated) form 
Rate constant for the phenolic (protonated) form 

I 
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Rate constant for the ith species or phase 
Second-order rate constant for reaction between the ith and jth 
species 
Observed, pseudo-first-order rate constant 
Equilibrium partition coefficient between aqueous and adsorbed 
phases 

ksoJn Rate constant for the dissolve species 
ksur/ Rate constant for the adsorbed species 
k,olaJ Combined second-order rate constant for all forms of a reactant 
ml,mz Stoichiometric coefficient for the number of hydrogen ions 
n, nl , nz Number of electrons exchanged in the net reaction 

Oxidized species °I'OZ 
Pj The ith pollutant 
pe,pE - log Ie-] for electrons of an electrode, - log [e-] of solvated 

electrons 
PKa -log of the acid dissociation constant 
Q Cell quotient 
R Gas constant (8.314 JK-I mol-I) 

Sediment to water mass ratio, Le., IIconcentration" of sedimentP 
RI,Rz Reduced species 
R; Response variable of interest (in this context, usually Ejo or kJ 
T Absolute temperature (K) 
tl /2 Half-life 
wI,WZ Stoichiometric coefficient for water 
Zox, Zred Charge on the oxidized and reduced species 
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P.G. Tratnyek and D.L. Macalady (2000) 
“Oxidation-Reduction Reactions in the Aquatic Environment” 
In: “Handbook of Property Estimation Methods for Chemicals” 

R.S. Boethling and D. Mackay (eds.) Lewis Publishers 
Boca Raton, FL, pp. 383-415. 

 
Note: The galley proof that we received from Lewis Publishers for this chapter contained a 
huge number of typographical and formatting errors that were not in the manuscript that we 
submitted. Due to the large number of corrections that were necessary, we asked them for a 
chance to review a second set of proofs. The Publisher’s representative said “there wasn’t 
time” so only one round of corrections was made and the result went directly to press. Not 
surprisingly, a review of the comparatively-clean final version revealed a considerable 
number of additional errors. To our amazement, the final result also included typographical 
errors that were introduced while the publisher was making the galley proof corrections! 
Fortunately, most of the half-dozen or so errors per page are only cosmetic and they should 
not distract from the technical content of the chapter. A considerable number, however, are 
potential sources of confusion, and these are documented below. We apologize for the few 
of these that arose from mistakes in our original manuscript, but most are the fault of the 
publisher. 

Page 383 
• Table of Contents entry for 16.2.1.2: Should reference page 387 (not 386) 
• Table of Contents entry for 16.2.1.2.1: Should reference page 387 (not 386) 
• Table of Contents entry for 16.3.1.2: Should reference page 387 (not 386) 

Page 384 
• Table of Contents entry for 16.3.3: Should reference page 398 (not 400) 
• Table of Contents entry for 16.3.3.1: Should reference page 399 (not 401) 
• Table of Contents entry for 16.3.3.2: Should reference page 399 (not 401) 
• Table of Contents entry for 16.4: Should reference page 399 (not 401) 
• Table of Contents entry for 16.4.1: Should reference page 400 (not 402) 
• Table of Contents entry for 16.4.1.1: Should reference page 400 (not 402) 
• Table of Contents entry for 16.4.1.2: Should reference page 401 (not 403) 
• Table of Contents entry for 16.4.2: Should reference page 401 (not 403) 
• Table of Contents entry for 16.4.2.1: Should reference page 402 (not 404) 
• Table of Contents entry for 16.4.2.2: Should reference page 402 (not 404) 
• Table of Contents entry for 16.4.2.3: Should reference page 402 (not 404) 
• Table of Contents entry for 16.4.2.4: Should reference page 403 (not 405) 
• Table of Contents entry for 16.4.2.5: Should reference page 403 (not 405) 
• Table of Contents entry for 16.4.2.6: Should reference page 404 (not 406) 
• Table of Contents entry for 16.5: Delete “Method Using” 
• Table of Contents entry for 16.5: Should reference page 404 (not 406) 



• Table of Contents entry for 16.5.1: Should reference page 404 (not 406) 
• Table of Contents entry for 16.5.2: Should reference page 405 (not 407) 
• Table of Contents entry for 16.5.3: Should reference page 405 (not 407) 
• Table of Contents entry for 16.6: Should reference page 406 (not 408) 
• Table of Contents entry for “List of Symbols”: Should reference page 406 (not 408) 
• Table of Contents entry for “References”: Should reference page 407 (not 409) 
• Section 16.1, paragraph 2, Line 10: should read “results, and thus an increasing number 

of studies that treat…”. 

Page 385 
• Section 16.2.1.1.2, line 1: no hyphen in “more-complex” 

Page 386 
• Section 16.2.1.1.2, Example on Assigning Oxidation Numbers: Equation 1 should be 

 

• Section 16.2.1.1.2, Lines 2-3 after Equation 1: Should read “… which changes from 0 
(not –II) in NDMA to –III and +I in the two products…”. 

• Section 16.2.1.2.1, Last line on the page: “below” refers to Equation 2 on the page that 
follows. 

Page 387 
• Section 16.2.1.2.2, Last line on the page: should read “quinones to hydroquinones (i.e., 

the reverse of Equation 3).” 

Page 388 
• Section 16.2.1.3.2, line 3: should read “the pathway involves elimination of halogens..” 

Page 389 
• Equation 5: g-BTC should be -BTC, i.e., 

 

Page 390 
• Table 16.3, the half-reaction for permanganate should read: 

MnO4
- + 2 H2O + 3e-  s  MnO2 + 4 OH- 



• Table 16.3, the half-reaction for chromate should read: 

Cr2O7
2- + 7 H2O + 6e-  s  2 Cr3+

 + 14 OH- 

Page 391 
• Section 16.2.2.2, Line 4: Should read “Fe(II), Mn(II), and NOM”. 
• Table 16.4, the half-reaction for dithionite should read: 

HS2O4
- + 2 H2O  s  2 H2SO3 + H+ + 2e-   

Page 392 
• Section 16.2.2.2.3, Line 3: Cross-reference should be to Table 16.4. 

Page 394 
• Section 16.2.3.4, Line 2: Cross-reference should be to Section 7.2.2.3. 

Page 395 
• Table 16.6, Line 22: Requires 3 H2O to balance. 
• Table 16.6, Line 30: Requires 3 H2O to balance. 
• Table 16.6, Line 32: Subscript the 2 on Oxygen. 
• Table 16.6, Line 38: E0 for cystine/cysteine should be +0.02 

Page 396 
• Line 7: E0 for the net reaction should be 0.00 not –0.09. 

Page 397 
• Line 1: should be “exists just below pH 9 for …”. 

Page 403 
• Section 16.4.2.5, Line 7: Cross-reference should be to Section 16.4.2.3. 

Page 406 
• Section 16.6, last line: Should be “by T. Mill, M. Scherer, and D. McCubbery.” 
• Section 16.7, line 4: Should be “for reduced species”. 
• Section 16.7, line 13: Should be E0

w not E0
ox. 

Page 407 
• Section 16.7, line 7: Should be “for the dissolved species”. 
• Section 16.7, line 16: Should be pKa not Pka. 

Page 408 
• Ref.34, Line 1: Should be P.G. Tratnyek not T.G. Tratnyek. 



Page 409 
• Ref.37, Line 1: Should be “controlling” not “contolling” 
• Ref. 39, Line 1: Add “H. Mosbeek” after C. Zrauning. 
• Ref. 55, Line 2, Pages should be 2486-2491. 




