Quadrilateral 2B

Which one of the following statements about a figure ABCD would always be true?

- M If ABCD is a rectangle, then it must be a square.
- If ABCD is a quadrilateral, then it must be a parallelog
- C) If ABCD is a parallelogram, then it must be a
- quadrilateral

 If ABCD is a parallelogram, then it must be a trapezoid.

Which one of the following statements is not true for any given parallelogram ABCD?

TA) m \angle B + m \angle C = 180°

 $T_{\rm B}$) $\overline{\rm AB} \cong \overline{\rm DC}$

7 C) ∠<u>A ≅ /C</u>

D) ACIDB

In which one of the following quadrilaterals are the diagonals always perpendicular?

A) rectangle

b) square

parallelogram

D) trapezoid

also xhombus rectangle and MPKI is a square If MT = 6 and TN = 14, find FN.

Math.

What is the length of a side of a square whose diagonal measures $4\sqrt{2}$?

In the accompanying diagram of trapezoid ABCD, $\overrightarrow{AD} \perp \overrightarrow{DC}$, $\overrightarrow{AB} = 6$, $\overrightarrow{DC} = 9$. and CB = 5. Find AD.

In the accompanying diagram, ABCD is an isosceles trapezoid, AD = BC = 5, AB = 10, and DC = 18. Find the length of altitude \overline{AE} .

If the base of a rectangle is 8 and one diagonal is 10, what is the height of the re

Mrs. Thompson has a square garden that has been divided into nine congruent plots as shown in the diagram below.

She would like to cut a path through the garden as indicated by \overline{DE} . If $\overline{CE} = 121$, what is the length of DE in simplest radical form?

2 BLOCKS = /2 BLOCK =6 makes DC=18

The length of the diagonal of a square is 6. Find the length of a side of the square.

In the accompanying diagram, ABCD is a rectangle. If DB = 26 and DC = 24, find BC.

 $X^{2} + 24 = 26$

12) In quadrilateral ABCD, m∠A = 80°, $m \angle B = 2x^\circ$, $m \angle C = x^\circ$, and $m \angle D = 4x^\circ$. Find x.

4x+x+2x+80= 360 7x + 80 = 360

13) In a parallelogram ABCD, $m\angle A = (2x)^{\circ}$ and $m\angle B = (2x - 20)^{\circ}$. Find x.

14) In the accompanying diagram, ABCD is a parallelogram, $\overline{DA} \equiv \overline{DE}$, and $m \angle B = 70^{\circ}$. Find mZE.

The cross section of an attic is in the shape of an isosceles trapezoid, as shown in the accompanying figure.

If the height of the attic is 9 feet, BC = 12 feet, and AD = 28 feet, find the length of \overline{AB} to the nearest foot.

$$28 - 12 = \frac{16}{2} = 8$$

8+9= 12