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Topics for Today

Understand
Model verification
Model validation
Transient removal
Terminating simulations
Stopping criteria



Model Goodness

Fidelity to modeled system

* Measuring goodness
—validation: are assumptions reasonable?
—verification: does model implement assumptions correctly?

* Possible model states

invalid, unverified invalid, verified

valid, unverified valid, verified

— correctly implements bad assumptions
— incorrectly implements good assumptions

— correctly implements good assumptions



Model Verification Techniques |

Strategies for avoiding bugs
—software engineering
— top-down design
* layered (hierarchical) system structure
— modularity
o well-defined interfaces
e unit testing
—assertions to check invariants
— e.g., # packets received = # packets sent - # packets lost - # in flight
— entity accounting

—structured walk through

Deterministic models
—run simulation with known distributions for random variates

Simplified test cases with easily analyzed results
Tracing: events, procedures, variables



Model Verification Techniques Il

* On-line graphical visualizations
—convey progress of simulation

* Continuity test
—test simulation with slightly different parameters
—investigate sudden changes in output
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* Degeneracy tests
—check model works for extreme cases
—e.g. networking: no routers, no router delays, no sources, ...



Model Verification Techniques llI

* Consistency tests

—similar results for parameters that should have similar effects
— e.g. router simulation: 2 sources, rate r ~ 1 source, rate 2r

* Seed independence
—similar results for different seed values



Model Validation Techniques |

What to check
—assumptions
—input parameter values and distributions
—output values and conclusions
How
—expert intuition: most common and practical

Throughput
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—measurements of real system
— are simulation results and measurements distinguishable?

e can use statistical tests, e.g. paired observations
— verify input distributions, e.g. chi-square test




Model Validation Techniques li

* How (continued)

—theoretical results, e.g. queueing model
— simplifying assumptions helps
— validate a few simple cases of theoretical model with simulation or
intuition
— use analytical model to predict complex cases

Caution: myth of a fully-validated model

—generally possible only to prove model not wrong for some cases
—more comparisons increase confidence, but prove nothing!




Transient Removal

Transient state: prefix of simulation before steady state

Steady state performance is usually that of interest
—e.g. cache performance after cache is “warm”

Goal: results exclude transient state before steady state
Problem: identifying end of transient state

Heuristic approaches for removing transient state
—long runs

—proper initialization

—truncation

—initial data deletion

—moving average of independent replications
—batch means



Transient Removal: Long Runs

Long run = steady state results long enough to dominate
effects of initial transients

Disadvantages
—wastes resources (computer time and real time)
—difficult to ensure length of run is “long enough”

Recommendation: avoid this method
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Transient Removal: Proper Initialization

* Proper initialization = starting simulation in state close to
expected steady state

—e.g. start CPU scheduling simulation with non-empty job queue

—e.g. start WWW cache trace-driven simulation with most
frequently referenced files in cache

* Effect: reduces length of transient behavior
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Transient Removal: Truncation

Assumption: variability of steady state < transient state
Truncation method assumes variability = range
Truncation algorithm

input: n observations {x,, x,, ..., X}

fork=2,n
min, = min ({X,, ..., X.}) | is there a flaw? |
max, = max ({Xy, ..., Xp}) | can we fix it? |

if min, = X, && max, = X, break
post condition: if k = n then k - 1 = length of transient state
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Terminating Simulations: Initial Data Deletion

* Conceptual idea
—compute average after some of initial observations omitted

—during steady state average does not change much as additional
observations are deleted

* Problem
—randomness in observations causes avg to change even in SS
* Solution

—average across several replications
— replication: same parameter values; only seed values differ
— rationale: smooths trajectory

* Input: m replications, each of length n
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Initial Data Deletion: First Steps

* Compute mean trajectory by averaging across replications

Individual replications Mean across replications

* Compute overall mean
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Initial Data Deletion: Remaining Steps

fork=1,n-1
assume transient state is of length k
delete first k observations from mean trajectory
compute overall mean from remaining n - k values
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compute relative change in overall mean

. X, — X
Relative change = —£—

=

find knee in a curve showing the relative change in overall mean
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Initial Deletion: Putting it all Together

Individual replications

Mean across replications

Mean of last n-k observations

Relative change

transient interval
L

b

knee
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Moving Average of Independent Replications

Compute mean trajectory by averaging across replications
_ 1Y .
X =;;xlj, j=L2,..,n

fork=1ton
—plot trajectory of moving average of successive 2k+1 values

k
%, = 2k1+1 NX.. j=k+lk+2..n-k

I=—k

—if trajectory is “sufficiently smooth”, break
find the knee in the curve.

* jat the knee gives the length of the transient phase
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Moving Average of Independent Replications

mean trajectory

moving average k=1

moving average k=2

transient
interval

knee
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Batch Means

* Run a very long simulation

* Afterward, divide it into several parts of equal duration
* Each part is a batch

* Batch mean = mean of observations in each batch
Input: m batches of floor(M/n)

Algorithm . 1x .
X, = —Ex.., i=12,...m
—for each batch, compute a batch mean "' Y
—compute the overall mean across all batches !

= 1 oo

X=— )X,

m ; ’

—compute variance of batch means Var(x) = —E()‘c. - X)
—repeat for increasing n=3,4,5,... i=1

—plot variance as function of batch size

—Ilength of transient interval is length at which variance starts
decreasing 19



Terminating Simulations

Most simulations reach a steady state, but some don’t

—Example
— network traffic consists of xfer of small files (1-3 packets each)

— steady state simulations using large files give results of no interest
to typical user

Necessary to study such systems in transient state
Terminating simulations: ones that don’t reach steady state

Other terminating simulations

—one that shuts down at 10PM every day

—systems with parameters that change over time
Terminating simulations don’t require transient removal
Final conditions

—may not be typical. can remove like “initial conditions”
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Stopping Criteria: Variance Estimation

Choosing proper simulation length is important
—too short: results highly variable
—too long: wastes time and resources

Simulation should be run until confidence interval for mean
response narrows to desired width

X+z_,4Var(x)

Problem: how to estimate the variance
—observations in simulation are not independent
—e.g. waiting time for job I1+1 depends on time for job |
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Variance Estimation: Independent Replications

Replications obtained by repeating simulation with different
seed

Method assumption: means of independent replications are
independent even though observations within a replication
are correlated

Input: m replications of size n + n_(n, is size transient phase)

Algorithm
—compute mean for each replication, excluding transient phase
—compute overall mean for all replications X
—calculate variance of replicate means

Var(x) = L i (X, - X)*

—confidence interval is then
x+z_,,4Var(x) Note: conf interval inversely proportional to vmn

waste less by increasing n rather thanm



Variance Estimation: Batch Means

* Run long simulation; remove transient & divide into batches
* Algorithm

—compute mean for each batch

—compute overall mean for all batches x

—calculate variance of batch means

i=1
—confidence interval is then —
— Var(Xx)
* Notes
—increase confidence by increasing # batches (m) or batch size (n)
—batch size must be large so batch means have little correlation

—finding correct n

— increase batch size until autocovariance between batch means is
small w.r.t. variance

— autocovariance = — — 1 o = —
Cov(x,x,,,) = —E(xi - X)(X;,;, = X) s
Tl



Variance Estimation: Batch Means

* Run long simulation; remove transient & divide into batches
* Algorithm

—compute mean for each batch

—compute overall mean for all batches x

—calculate variance of batch means

i=1

—confidence interval is then -
— Var(Xx)
XEZa/

* Notes
—increase confidence by increasing # batches (m) or batch size (n)
—batch size must be large so batch means have little correlation

—finding correct n

— increase batch size until autocovariance between batch means is
small w.r.t. variance

— autocovariance = — — 1 o = —
Cov(x,x,,,) = —E(xi - X)(X;,;, = X) o
Tl



Variance Estimation: Method of Regeneration

* Consider CPU scheduling algorithm

—every time queue is empty, it is like a fresh start for the simulation
— trajectory in interval after empty state does not depend on prior trajectory

—this phenomenon called regeneration
* Regeneration point:
when a simulation enters an independent phase
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* Regenerative period: duration between 2 regeneration points

* Not all systems are regenerative

—system with many queues regenerates only when all are empty o5



Variance Estimation: Method of Regeneration

. Algorithm . | m cycles of size n,,n,,...,n,, |
—compute cycle sums Y; = Exij

j=1

—compute the overall mean x = Eyi/z n,

—calculate difference between expected and observed cycle sums
w,=y,-nx, i=12,..,m (w, IID meanO0)
—calculate variance of differences Var(w) = szlz
m—14
_ 1 ¢
—compute the mean cycle length n =— ) n,
m i=1

—confidence interval for mean response

1 /Var(w)
T an=
n m 26
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