Analyzing Simulation Results

Dr. John Mellor-Crummey

Department of Computer Science Rice University

johnmc@cs.rice.edu

Topics for Today

Understand

- Model verification
- Model validation
- Transient removal
- Terminating simulations
- Stopping criteria

Model Goodness

Fidelity to modeled system

- Measuring goodness
 - —validation: are assumptions reasonable?
 - —verification: does model implement assumptions correctly?
- Possible model states

invalid, unverified	invalid, verified
valid, unverified	valid, verified

- correctly implements bad assumptions
- incorrectly implements good assumptions
- correctly implements good assumptions

Model Verification Techniques I

- Strategies for avoiding bugs
 - —software engineering
 - top-down design
 - layered (hierarchical) system structure
 - modularity
 - well-defined interfaces
 - unit testing
 - —assertions to check invariants
 - e.g., # packets received = # packets sent # packets lost # in flight
 - entity accounting
 - —structured walk through
- Deterministic models
 - —run simulation with known distributions for random variates
- Simplified test cases with easily analyzed results
- Tracing: events, procedures, variables

Model Verification Techniques II

- On-line graphical visualizations
 - —convey progress of simulation
- Continuity test
 - —test simulation with slightly different parameters
 - —investigate sudden changes in output

- Degeneracy tests
 - —check model works for extreme cases
 - —e.g. networking: no routers, no router delays, no sources, ...

Model Verification Techniques III

- Consistency tests
 - —similar results for parameters that should have similar effects
 - e.g. router simulation: 2 sources, rate r ~ 1 source, rate 2r
- Seed independence
 - —similar results for different seed values

Model Validation Techniques I

- What to check
 - -assumptions
 - —input parameter values and distributions
 - —output values and conclusions
- How

-expert intuition: most common and practical

- —measurements of real system
 - are simulation results and measurements distinguishable?
 - can use statistical tests, e.g. paired observations
 - verify input distributions, e.g. chi-square test

Model Validation Techniques II

- How (continued)
 - —theoretical results, e.g. queueing model
 - simplifying assumptions helps
 - validate a few simple cases of theoretical model with simulation or intuition
 - use analytical model to predict complex cases

Caution: myth of a fully-validated model

- —generally possible only to prove model not wrong for some cases
- —more comparisons increase confidence, but prove nothing!

Transient Removal

- Transient state: prefix of simulation before steady state
- Steady state performance is usually that of interest
 - —e.g. cache performance after cache is "warm"
- Goal: results exclude transient state before steady state
- Problem: identifying end of transient state
- Heuristic approaches for removing transient state
 - —long runs
 - —proper initialization
 - —truncation
 - —initial data deletion
 - —moving average of independent replications
 - —batch means

Transient Removal: Long Runs

- Long run = steady state results long enough to dominate effects of initial transients
- Disadvantages
 - —wastes resources (computer time and real time)
 - —difficult to ensure length of run is "long enough"
- Recommendation: avoid this method

Transient Removal: Proper Initialization

- Proper initialization = starting simulation in state close to expected steady state
 - —e.g. start CPU scheduling simulation with non-empty job queue
 - —e.g. start WWW cache trace-driven simulation with most frequently referenced files in cache
- Effect: reduces length of transient behavior

Transient Removal: Truncation

- Assumption: variability of steady state < transient state
- Truncation method assumes variability = range
- Truncation algorithm

```
input: n observations \{x_1, x_2, ..., x_n\}

for k = 2, n

\min_k = \min (\{x_k, ..., x_n\})
\max_k = \max (\{x_k, ..., x_n\})
\text{if } \min_k \neq x_k \&\& \max_k \neq x_k \text{ break}
is there a flaw?
```

post condition: if $k \neq n$ then k - 1 = length of transient state

Terminating Simulations: Initial Data Deletion

Conceptual idea

- —compute average after some of initial observations omitted
- —during steady state average does not change much as additional observations are deleted
- Problem
 - —randomness in observations causes avg to change even in SS
- Solution
 - —average across several replications
 - replication: same parameter values; only seed values differ
 - rationale: smooths trajectory
- Input: m replications, each of length n

Initial Data Deletion: First Steps

Compute mean trajectory by averaging across replications

$$\overline{x}_j = \frac{1}{m} \sum_{i=1}^m x_{ij}, \quad j = 1, 2, ..., n$$

Compute overall mean

$$\overline{\overline{x}} = \frac{1}{n} \sum_{j=1}^{n} \overline{x}_{j}$$

Initial Data Deletion: Remaining Steps

for k = 1, n - 1

assume transient state is of length k delete first k observations from mean trajectory compute overall mean from remaining n - k values

$$\overline{\overline{x}} = \frac{1}{n-k} \sum_{j=k+1}^{n} \overline{x}_{j}$$

compute relative change in overall mean

Relative change =
$$\frac{\overline{\overline{x}}_k - \overline{\overline{x}}}{\overline{\overline{x}}}$$

find knee in a curve showing the relative change in overall mean

Initial Deletion: Putting it all Together

Moving Average of Independent Replications

Compute mean trajectory by averaging across replications

$$\overline{x}_j = \frac{1}{m} \sum_{i=1}^m x_{ij}, \quad j = 1, 2, ..., n$$

- for k = 1 to n
 - —plot trajectory of moving average of successive 2k+1 values

$$\overline{x}_j = \frac{1}{2k+1} \sum_{l=-k}^{k} \overline{x}_{j+l}, \quad j=k+1, k+2, ..., n-k$$

- —if trajectory is "sufficiently smooth", break
- find the knee in the curve.
- j at the knee gives the length of the transient phase

Moving Average of Independent Replications

Batch Means

- Run a very long simulation
- Afterward, divide it into several parts of equal duration
- Each part is a <u>batch</u>
- Batch mean = mean of observations in each batch

Input: m batches of floor(M/n)

Algorithm

- —for each batch, compute a batch mean $\bar{x}_i = \frac{1}{n} \sum_{j=1}^n x_{ij}$, i = 1, 2, ..., m
- —compute the overall mean across all batches

$$\overline{\overline{x}} = \frac{1}{m} \sum_{i=1}^{m} \overline{x}_{i}$$

- —compute variance of batch means $Var(\bar{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\bar{x}_i \bar{\bar{x}})^2$
- —repeat for increasing n=3,4,5,...
- —plot variance as function of batch size
- —length of transient interval is length at which variance starts decreasing

Terminating Simulations

- Most simulations reach a steady state, but some don't
 - —Example
 - network traffic consists of xfer of small files (1-3 packets each)
 - steady state simulations using large files give results of no interest to typical user
- Necessary to study such systems in transient state
- Terminating simulations: ones that don't reach steady state
- Other terminating simulations
 - —one that shuts down at 10PM every day
 - —systems with parameters that change over time
- Terminating simulations don't require transient removal
- Final conditions
 - —may not be typical. can remove like "initial conditions"

Stopping Criteria: Variance Estimation

- Choosing proper simulation length is important
 - —too short: results highly variable
 - —too long: wastes time and resources
- Simulation should be run until confidence interval for mean response narrows to desired width

$$\bar{x} \pm z_{1-\alpha/2} \sqrt{\operatorname{Var}(\bar{x})}$$

- Problem: how to estimate the variance
 - —observations in simulation are not independent
 - —e.g. waiting time for job I+1 depends on time for job I

Variance Estimation: Independent Replications

- Replications obtained by repeating simulation with different seed
- Method assumption: means of independent replications are independent even though observations within a replication are correlated
- Input: m replications of size n + n_o (n_o is size transient phase)
- Algorithm
 - —compute mean for each replication, excluding transient phase
 - —compute overall mean for all replications \bar{x}
 - —calculate variance of replicate means

$$\operatorname{Var}(\overline{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\overline{x}_i - \overline{\overline{x}})^2$$

—confidence interval is then

 $\overline{\overline{x}} \pm z_{1-\alpha/2} \sqrt{\text{Var}(\overline{x})}$ Note: conf interval inversely proportional to $\sqrt{\text{mn}}$ waste less by increasing n rather than m $_2$

Variance Estimation: Batch Means

- Run long simulation; remove transient & divide into batches
- **Algorithm**
 - —compute mean for each batch
 - —compute overall mean for all batches \bar{x}
 - —calculate variance of batch means

$$\operatorname{Var}(\overline{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\overline{x}_i - \overline{\overline{x}})^2$$

-confidence interval is then

$$\overline{\overline{x}} \pm z_{1-\alpha/2} \sqrt{\frac{\operatorname{Var}(\overline{x})}{m}}$$

- **Notes**
 - —increase confidence by increasing # batches (m) or batch size (n)
 - —batch size must be large so batch means have little correlation
 - —finding correct n
 - increase batch size until autocovariance between batch means is small w.r.t. variance

- autocovariance =
$$\operatorname{Cov}(\overline{x}_i, \overline{x}_{i+1}) = \frac{1}{m-2} \sum_{i=1}^{m} (\overline{x}_i - \overline{\overline{x}})(\overline{x}_{i+1} - \overline{\overline{x}})$$
 23

Variance Estimation: Batch Means

- Run long simulation; remove transient & divide into batches
- Algorithm
 - —compute mean for each batch
 - —compute overall mean for all batches \bar{x}
 - —calculate variance of batch means

$$\operatorname{Var}(\overline{x}) = \frac{1}{m-1} \sum_{i=1}^{m} (\overline{x}_i - \overline{\overline{x}})^2$$

—confidence interval is then

$$\bar{\bar{x}} \pm z_{1-\alpha/2} \sqrt{\frac{\operatorname{Var}(\bar{x})}{m}}$$

- Notes
 - —increase confidence by increasing # batches (m) or batch size (n)
 - —batch size must be large so batch means have little correlation
 - —finding correct n
 - increase batch size until autocovariance between batch means is small w.r.t. variance

- autocovariance =
$$\operatorname{Cov}(\overline{x}_{i}, \overline{x}_{i+1}) = \frac{1}{m-2} \sum_{i=1}^{m} (\overline{x}_{i} - \overline{\overline{x}})(\overline{x}_{i+1} - \overline{\overline{x}})$$
 24

Variance Estimation: Method of Regeneration

- Consider CPU scheduling algorithm
 - —every time queue is empty, it is like a fresh start for the simulation
 - trajectory in interval after empty state does not depend on prior trajectory
 - —this phenomenon called regeneration
- Regeneration point:
 - when a simulation enters an independent phase

- Regenerative period: duration between 2 regeneration points
- Not all systems are regenerative
 - —system with many queues regenerates only when all are empty

Variance Estimation: Method of Regeneration

Algorithm

m cycles of size $n_1, n_2, ..., n_m$

- —compute cycle sums $y_i = \sum_{i=1}^{n_i} x_{ij}$
- —compute the overall mean $\overline{\overline{x}} = \sum y_i / \sum n_i$
- —calculate difference between expected and observed cycle sums

$$w_i = y_i - n_i \bar{x}, \quad i = 1, 2, ..., m \quad (w_i \text{ IID mean } 0)$$

- —calculate variance of differences $Var(w) = \frac{1}{m-1} \sum_{i=1}^{m} w_i^2$
- —compute the mean cycle length $\overline{n} = \frac{1}{m} \sum_{i=1}^{m} n_i$
- —confidence interval for mean response

$$\overline{\overline{x}} \pm z_{1-\alpha/2} \frac{1}{\overline{n}} \sqrt{\frac{\operatorname{Var}(w)}{m}}$$