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A celebrated Beth’s experiment contradicts the angular momentum conservation law in the frame of 
Maxwell electrodynamics because Beth’s birefringent plate experienced a torque without an angular 
momentum flux in the surrounding space. However, this paradox can be removed by introducing a 
classical spin tensor.  
 

1. Angular momentum of a circularly polarized light 
 

It has been known for long time that, on the basis of either the wave theory [1, 2] or the quantum 
theory (by assigning an angular momentum of π± 2/h  to a photon), a circularly polarized light should exert 
a torque on a doubly refracting plate which changes the state of polarization of the light, or on a medium 
which (maybe partly) absorbs the light. 

R. A. Beth explained [3] that the moment of force or torque exerted on a doubly refracting medium 
by a light wave passing through it arises from the fact that the dielectric constant ε  is a tensor. Consequently 
the electric intensity E  is, in general, not parallel to the electric polarization  in the medium. The torque 
per unit volume produced by the action of the electric field on the polarization of the medium is  

P

EP×=τ V/ .                                              (1.1) 
R. Feynman repeated this explanation [4]. We quote 

him from [4] with insignificant abridgements. 
“If we have a beam of light containing a large number of 

photons all circularly polarized the same way, it will carry 
angular momentum. If the total energy carried by the beam 
in a certain time is W , then there are ωπ= hWN  
photons. Each one carries the angular momentum 

/2
π2/

ω

h , so 
there is a total angular momentum of 

=π= /2/ WNhJ z .                                (1.2) 
Can we provide classically that light which is right 

circularly polarized carries an angular momentum and 
energy in proportion ω/

(a). 

1 ? Here we have a case where we 
can go from the quantum things to the classical things. 
Remember what right circularly polarized light is, 
classically. It’s described by an electric field so that the 
electric vector E  goes in a circle – as drawn in Fig. 17-5
Now suppose that such a light shines on a wall which is 
going to absorb it – or at least some of it – and consider an 
atom in the wall according to the classical physics. We’ll 
suppose that the atom is isotropic, so the result is that the 
electron moves in a circle, as shown in Fig. 17-5(b). The 
electron is displaced at some displacement r  from its 
equilibrium position at the origin and goes around with 
some phase lag with respect to the vector E . The relation 
between E  and r  might be as shown in Fig. 17-5(b). As 
time goes on, the electric field rotates and the displacement 
rotates with the same frequency, so their relative orientation 
stays the same. Now let’s look at the work being done on 
this electron. The rate that energy is being put into this 
electron is v , its velocity, times the component of E  
parallel to the velocity: 



veEdtdW t=/ .                                                    (1.3) 
But look, there is angular momentum being poured into this electron, because there is always a torque 
about the origin. The torque is  which must be equal to the rate of change of angular momentum 

: 
reEt

dtdJ z /
reEdtdJ tz =/ .                                               (1.4) 

Remembering that rv ω= , we have that  
ω= /1/ dWdJ z .                                             (1.5) 

Therefore, if we integrate the total angular momentum which is absorbed, it is proportional to the total 
energy – the constant of proportionality being ω/1 .”  

Thus Beth’s and Feynman’s reasoning prove that a circularly polarized plane wave carries angular 
momentum whose density is proportional to the energy density. Unfortunately, the authors did not give an 
expression for the angular momentum flux density through the field quantities. At the same time, the 
scientific community denies angular momentum of plane waves at all.  
Heitler wrote [5]:  

“In Maxwell’s theory the Poynting vector HE×  (divided by ) is interpreted as the density of 
momentum of the field. We can then also define an angular momentum relative to a given point  or to 
a given axis, 

2c
O

∫ ××=
V

dV)( HErJ                                                 (1.6) 

where  is the distance from  and V  is  the volume of a transverse slice of the beam [  in this 
paper]. 

r O 1=c

A plane wave traveling in the z-direction and with infinite extension in the xy-directions can have no 
angular momentum about the z-axis, because HE×  is in the z-direction and . 
However, this is no longer the case for a wave with finite extension in the xy-plane. Consider a 
cylindrical wave with its axis in the z-direction and traveling in this direction. At the wall of the cylinder 

0)]([ =×× zHEr

Rr = , say, we let the amplitude drop to zero. It can be shown that the wall of such a wave packet gives 
a finite contribution to .” zJ

Ohanian wrote [6]: 
“In an infinite plane wave, the E  and 
 fields are everywhere perpendicular 

to the wave vector and the energy flow is 
everywhere parallel to the wave vector. 
However, in a wave of finite transverse 
extent, the E  and H  fields have a 
component parallel to the wave vector 
(the field lines are closed loops) and the 
energy flow has components 
perpendicular to the wave vector. For 
instance, Fig. 1 shows the time-average 
transverse energy flow in a circularly 
polarized wave propagating in the z-
direction; the wave has a finite extent in 
the x and y directions. The circulating 
energy flow in the wave implies the 
existence of angular momentum, whose 
direction is along the direction of 
propagation.” 

H

Simmonds and Guttman wrote [7]: 
“The electric and magnetic field of a 

cylindrical beam can have a nonzero z-component only within the ‘skin’ region of the wave. Having z-
component within this region implies the possibility of a nonzero z-component of angular momentum 
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within this region. Since the wave is identically zero outside the skin and constant inside the skin region, 
the skin region is the only one 
in which the z-component of 
angular momentum does not 
vanish. 

In Fig. 9.3 we plot an 
acceptable function 

. We have 
explicitly made  constant 
over a large central region of 
the wave and confined the 
variation of the function from 
this constant value to zero to lie 
within a ‘skin’ of thickness 

)(),( 0 rEyx =0E

0E

δ  
which lies a distance  from 

the axis.” 
0R

A calculation of the angular momentum , according to eqn. (1.6), requires an explicit expression for 
the beam. We use the Jackson’s expressions [8] with 

J
ω=k  here, 

),()](1)[exp( 0 yxEiitizi yx ∂−∂
ω

++ω−ω= zyxE ,    ,                 (1.7) EH i−=

Transform the integrand of  from eqn. (1.6), zJ
2/)]()([2/])()([ ∗∗∗∗∗∗ −−−ℜ=×−×ℜ yzzyzxxzxy HEHEyHEHExyx HEHE  

][2/)]()([ ∗∗∗∗∗∗ +−ℑ=−+−ℜ= yzxzzyyzzxxz EEyExEiEEiEEyiEEiEEx  

ω∂+∂−=ω∂−∂−+∂−∂−ℑ= 2/)(/]))(()([ 2
00000 EyxEiiEyEixE yxyxyx .                  (1.8) 

Substituting (1.8) into (1.6) and integrating by part yields 

∫ ω= /2
0 dVEJ z .                                                            (1.9) 

The power P  of the beam is,   

∫∫∫ =−ℜ=×= ∗∗

aa xyyxa z daEdaHEHEda 2
0)()( HEP                          (1.10) 

where  is an area of the beam section. If  is a length of the transverse slice of the beam, i.e. Va l la= , the 
energy of the slice is 

∫= dVEW 2
0                                                             (1.11) 

because . So the relation between the total angular momentum  and the total energy W , 1=c zJ
ω= /1/WJ z ,                                                         (1.12) 

is the same in Beth – Feynman paradigm and in the scientific community paradigm. However, the 
distribution of the angular momentum is different. According to Beth – Feynman, the angular momentum 
density is proportional to energy density in a beam or in a plane wave, but, according to the community, the 
angular momentum is located near the wall of the beam and is absent in the plane wave. 

In connection with this difference an important question was raised at the V. L. Ginsburg Moscow 
Physical Seminar in the spring of 1999. The question was about absorption of a circularly polarized light by 
a round flat target, which is divided concentrically into an inner disc and a closely fitting outer annulus [8].  

If the target absorbs a circularly polarized beam, the annulus absorbs the wall or ‘skin’ of the beam, 
which carries the angular momentum, according to the community, and the disc absorbs the body of the 
beam, which has no angular momentum. Since the Poynting vector is perpendicular to the disc, an 
infinitesimal force 

j
iji daTd =F                                                     (1.13) 
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acting on a surface element  of the disc is also perpendicular to the disc (jda ijT  is the Maxwell stress 
tensor). So, the disc does not perceive a torque when the target absorbs a circularly polarized beam. There 
are no ponderomotive forces, which are capable to twist the disc. Tangential forces act only on the annulus.  

But it is clear that in reality the disc does perceive a torque from the wave, since the disc gets angular 
momentum, according to Beth – Feynman. The disc will be twisted in contradiction with the community 
paradigm. 

Allen and Padgett [9] attempted to explain the torque acting on the disc within the scope of the 
paradigm. They mentally decomposed the beam into three beams: the inner beam, the annulus beam, and the 
remainder. They wrote, “Any form of aperture introduces an intensity gradient, so a field component is 
induced in the propagation direction and the dilemma is potentially resolved.”  

Alas! A small clearance between the inner disc and outer annulus does not aperture a beam and does 
not induce longitudinal field components. The imaginary decomposition of a wave is not capable to create 
longitudinal field components and, correspondingly, transverse momentum and torque acting on the disc. 
Maxwell stress tensor cannot supply the disc with a torque. According to the Maxwell theory, the disc 
absorbs energy and feels normal pressure only. 

Thus the mental experiment shows a weakness of the community paradigm. Does the Beth 
experiment confirm the formula (1.6)? 

 
2. The Beth experiment 

 
The classical Beth’s experiment [3] was made 70 years ago. A beam of circularly polarized light 

exerts a torque on a doubly refracting plate, which changes 
the state of polarization of the light beam. The apparatus 
used involves a torsional pendulum with about a ten m
period consisting of a round quartz half-wave plate one 
inch in diameter (M at Fig. 3 from [3]) suspended with its 
plane horizontal from a quartz fiber about 25 cen
long. A circularly polarized light beam (power P  = 80 

W, 

inute 

timeters 

m =λ 1.2 µm s-1) pass

e 

, 6.1 ⋅=ω es through the half-
wave plate from below upwards. Because the plate reverses 
the handedness of the circular polarization of the beam, 
according to (1.6) and (1.12), the torque acting on the plat
must be 

1510

ω=τ P/2                                       (2.1) 
However, and this is the main point, in order to 

redouble the torque, the beam is reflected and passes 
through the plate the second time on the way back. For 
this, about 4 millimeters above the plate is mounted a fixed 
quartz quarter-wave plate T (Fig. 3). The top side of the 
upper plate was coated by evaporation with a reflecting 
layer of aluminum The rotation of the pendulum is 
observed by a telescope using the small mirror m at Fig.3. 
As a result, the torque exerting on the half-wave plate is 20 
dyne cm. This result is in accordance with the formula  

ω=τ P/4                                        (2.2) 
 

3. The Beth's result is a puzzle 
 

It is evident that the reflected beam cancels the 
energy flux in the Beth’s apparatus. I.e. the Poynting 
vector 0=×HE  in the experiment. Thus, according to 
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eqn. (1.6), no angular momentum is contained in the double beam. So, no torque must act on the Beth plate 
according to eqn. (1.6). Why then the plate experiences the torque (2.2)? 

We verify our claim 0=×HE  here. Let us start from the Jackson beam (1.7) with  for 
simplicity, 

1=ω

01 )]()[exp( Eiiitiz yx ∂−∂++−= zyxE ,    01 )]()[exp( Eiiitiz yx ∂+∂++−−= zyxH .       (3.1) 
Changing the sign of z we get the reflected beam. But the quarter-wave plate T changes the handedness of 
the circularly polarization of the beam. Thus, the sign of y must be change as well. So, the reflected beam is 

02 )]()[exp( Eiiitiz yx ∂−∂−+−−−= zyxE ,   02 )]()[exp( Eiiitiz yx ∂+−∂+−−−−= zyxH .    (3.2) 
Adding up the expressions (3.1) and (3.2) we get the total field 

tzEEitizitizEx coscos2)]exp()[exp( 00 =−−+−ℜ= ,                                        (3.3) 
tzEEitiziitiziEy cossin2)]exp()exp([ 00 −=−−−−ℜ= ,                                      (3.4) 

tEzzEiitiziitizE yxyxyxz cos)cos(sin2)])(exp())([exp( 00 ∂+∂−=∂−∂−−−+∂−∂−ℜ= ,        (3.5) 
tzEEitiziitiziH x sincos2)]exp()exp([ 00 −=−−−−−ℜ= ,                                 (3.6) 

tzEEitizitizH y sinsin2)]exp()[exp( 00 =−−−−ℜ= ,                                    (3.7) 
tEzzEiitiziitizH yxyxyxz sin)cos(sin2)])(exp())([exp( 00 ∂+∂=∂+−∂−−+∂+∂−ℜ= ,          (3.8) 

As a result we get 
tEzzzz yx cos)]cos(sin)sincos[(2 0∂+∂−−= zyxE                                  (3.9) 
tEzzzz yx sin)]cos(sin)sincos[(2 0∂+∂−−−= zyxH                                (3.10) 

The E and H fields are parallel to each other everywhere. So, the Poynting vector is zero.  
 

4. An explanation of the Beth result 
 

The formula (1.6) predicts the zero result of the Beth experiment because this formula is incorrect. 
As Ohanian wrote, the existence of angular momentum (1.6) is caused by circulating energy flow in the 
wave. In other words, eqn. (1.6) represents an orbital angular momentum of electromagnetic field. It is in 
accordance with the fact that Maxwell electrodynamics does not know spin. Spin is considered as a pure 
quantum phenomenon. Maxwell electrodynamics knows the energy-momentum tensor λµT  (Maxwell-
Minkowski tensor), but it does not know a spin tensor, or rather, spin tensor of the modern classical 
electrodynamics is zero. We introduce classical spin into the electrodynamics. We introduce a spin tensor 

 [10, 11], i.e. we add a spin term to eqn. (1.6): λµνΥ

∫ ∫Υ+=
V V

ijjiij dVdVTrJ 00][2 .                                      (4.1) 

Energy flux density, i.e. the Poynting vector 00 jj TT = , is zero, , in the Beth experiment. So, the 
first term on the right of eqn. (4.1), i.e. the orbital term, is zero. But spin flows from the beam into the Beth 
plate, and a torque acts on the plate due to the second term.  

00 =jT

The sense of the spin tensor  is as follows. The component λµνΥ 0ijΥ  is a volume density of spin. 
This means that  

dVdS ijij 0Υ=                                                                          (4.2) 
is spin of electromagnetic field inside the spatial element dV . The component ijkΥ  is a flux density of spin 
flowing in the direction of the  axis. For example,  kx

z
xyzxyxy

z daddtdSdtdS Υ=τ== //                                                    (4.3) 
is z-component of spin flux passing through the surface element  per unit time, i.e. the torque acting on 
the element.  

zda

The explicit expression for the spin tensor is [10, 11] (see also Supplement) 
][][ µνλµνλλµν Π∂Π+∂=Υ AA ,                                         (4.4) 

where  and  are magnetic and electric vector potentials which satisfy λA λΠ
αβ

µναβνµµννµ −=Π∂=∂ FeFA ][][ 2,2                                  (4.5) 
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where ,  is the field strength tensor of a free electromagnetic field.  βααβ −= FF νβµα
αβ

µν ggFF =
A relation between Π  and  can be readily obtained in the vector form as follows.  F

If , then . If also  then  0=Ediv Π= curlE HE curl=∂∂ t/ ,
H=∂Π∂ t/ .                                                                     (4.6) 

This reasoning is analogous to the common one: 
If , then . If also 0=Hdiv AH curl= EH curl−=∂∂ t/ , then  

EA −=∂∂ t/ .                                                                     (4.7) 
Now use the spin tensor (4.4) for calculating of the spin flux into Beth plate. Since the orbital term is 

zero, wall terms, , in eqns. (3.9), (3.10) may be neglected, and we have for the fields yx ∂∂ ,
tEzz cos)sincos(2 0yxE −= ,                                  (4.8) 
tEzz sin)sincos(2 0yxH −−= ,                                (4.9) 

∫ −−=−= tEzzdt sin)sincos(2 0yxEA ,                                                        (4.10) 

∫ −==Π tEzzdt cos)sincos(2 0yxH .                                                        (4.11) 
When calculating the spin tensor (4.4) a signature of metric tensor must be taken into account. Because 

, . Thus, the spin flux density onto the low side of the Beth plate is 1−=ijg i
i −∂=∂

2
0

222
0 2)cos(sin22/)(2/)( EttEAAAA xzyyzxxzyyzxxyz =+=Π∂Π−Π∂Π+∂−∂=Υ .        (4.12) 

The same calculation for the domain above the plate gives . This means that -component of 
the spin moves opposite the z-direction, i.e. towards the plate also. In result, the plate receives the spin flux 
density, or torque density, of  with the absence of energy flux! Thus, the torque is  

2
02Exyz −=Υ xyS

2
04E

∫=τ daE 2
04 ,                                                                  (4.13) 

and recalling (1.10), we get ( 1=ω ) 
P4=τ                                                                     (4.14) 

as the Beth experiment shows. 
It is remarkable that volume density of spin equals zero, i.e. . The use of (4.10), (4.11) 

shows this. This is naturally because the beams of the same handedness, which propagate in the opposite 
direction, are summed up. So, the Beth’s double beam contains spin flux and energy without spin and energy 
flux. 

00 =Υ xy

Another applications of the spin tensor (4.4) are presented in [12, 13] and at web sites 
www.mai.ru/projects/mai_works/, www.sciprint.org. Absorption and reflection of a circularly polarized 
beam is calculated there, a radiation of a rotating electrical dipole and other topics are considered in these 
works. 
 

5. Supplement. Electrodynamics’ spin tensor 
 
The standard classical electrodynamics starts from the free field canonical Lagrangian [14] 

c
L 4/µν

µν−= FF ,   ][2 νµµν ∂= AF ,                                                    (5.1) 

Using this Lagrangian, by the Lagrange formalism physicists obtain the canonical energy-momentum tensor 

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ
α

λλµ +−∂=−
∂∂

∂
∂= FFgFAg

A
AT

c c

c L
L

,                          (5.2) 

and the canonical total angular momentum tensor 
λµννµλλµν

ccc
TxJ Υ+= ][2                                                                                  (5.3) 

where 

νµλ

αν

µ
α

λλµν δ ][][ 2
)(

2 FA
A

A
c

−=
∂∂

∂
−=Υ c

L
,                                                (5.4) 
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is the canonical spin tensor.  
Unfortunately, the canonical tensors are not electrodynamics tensors. True electrodynamics tensors 

must be in accordance with experimental facts. In particular, it should be  
µν

νλµ
µ

λµλµ
µ ∂=−=∂ FFjFT .                                              (5.5) 

But  has a wrong divergence,  λµ

c
T

µν
νµλ

µ
µλλµ

µ ∂∂=−∂=∂ FAjAT
c

,                                            (5.6) 

and is asymmetric. Physicists undertook an attempt to modify these tensors. They “put in by hand” specific 
addends [15, 16] to the canonical tensors and arrive to the standard energy-momentum tensor , the 
standard total angular momentum tensor , and the standard spin tensor , which is zero, 

λµΘ
λµν

st
J λµνΥ

st

)(4/2/~ µνλ
ν

αβ
αβ

λµµν
ν

λλµν
ν

λµλµ ∂++−∂=Υ∂−=Θ FAFFgFAT
cc

, 

µνλνλµµνλλµνλµν −=Υ+Υ−Υ=Υ FA
ccc

def

c
2~ ,                         (5.7) 

)~( ][ νκµλ
κ

λµνλµν Υ∂−=
ccst

xJJ ,                                                                                         (5.8) 
νµλλµνλµν Θ−=Υ ][2xJ

stst
0~ ][ =Υ−Υ= νλµλµν

cc
.                                                                  (5.9) 

But the standard tensors are not true electrodynamics tensors as well: 
1.  obviously contradicts experiments. It is asymmetric and has wrong divergence as well λµΘ

µν
νµλλµ

µ
λµ

µ ∂∂=∂=Θ∂ FAT
c

.                                                    (5.10) 

Tensor  is never used. The Maxwell tensor (2.6) is used in the electrodynamics instead of . Θ λµΘ
2. The main defect is the absence of spin, . In contrast to the canonical pair, , the 

standard pair, , is defective. Standard energy-momentum tensor is not accompanied by a spin 

tensor. 

0=Υ λµν

st

λµνλµ Υ
cc

T ,

0, =ΥΘ λµνλµ

st

Thus the Belinfante-Rosenfeld procedure [15, 16] is not fit for obtaining true electrodynamics 
tensors. This procedure, (5.7) – (5.9), is 

,λµλµλµ +=Θ
stc
tT  )(2/~ µνλ

ν
λµν

ν
λµ ∂=Υ−∂= FAt

cst
,                                       (5.11) 

0=+Υ=Υ λµνλµνλµν

stcst
s ,     νµλνλµλµν =Υ−= ][][ 2~ FAs

cst
.                                        (5.12) 

Another way of using the canonical pair  is presented in [11 – 13]. Note that the Maxwell 

tensor can be gained by adding a term 

λµνλµ Υ
cc

T ,

µνλ
ν

λµλµλµ ∂=−= FATTt
c

                                                            (5.13) 

to the canonical energy-momentum tensor . Here a question arises, what term , instead of , 

must be added to the canonical spin tensor  for changing it from the canonical spin tensor 

to an unknown electrodynamics spin tensor ? Our answer is [11 – 13]: the addends , 

 must satisfy a relationship 

λµ

c
T λµνs λµν

st
s

νµλλµν −=Υ ][2 FA
c

λµνλµνλµν s
c

+Υ=Υ λµt
λµνs

02 ][ =−∂ λµλµν
ν ts ,  i.e.  .                                    (5.14) 02 ][ =∂−∂ αµλ

α
λµν

ν FAs
A simple expression 

νµλλµν AAs ][2 ∂=                                                                 (5.15) 
satisfies Eq. (5.14). So, the suggested electrodynamics spin tensor is 

]||[][][ 2222 µνλνµλνµλλµνλµνλµν ∂=∂+−=+Υ=Υ AAAAFAs
ce

.                      (5.16) 
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The expression (5.16) was obtained heuristically. It is not final one. Spin tensor (5.16) is obvious not 
symmetric in the sense of electric - magnetic symmetry. It represents only the electric field, dt∫−= EAE, . 

A true spin tensor of electromagnetic waves must depend symmetrically on the magnetic vector potential  
and on an electric vector potential  (4.5). So the spin tensor of electromagnetic waves has the form (4.4).  

αA

αΠ
 
I am deeply grateful to Professor Robert H. Romer for publishing my question [8] and to Professor 

Timo Nieminen for valuable discussions (Newsgroups: sci.physics.electromag).  
 

References 
 
1. A. Sadowsky, Acta et Commentationes Imp. Universitatis Jurievensis 7, No. 1-3 (1899); 8, No. 1-2 
(1900). 
2. P. S. Epstein, Ann. D. Physik 44, 593 (1914). 
3. R. A. Beth, Phys. Rev. 50, 115 (1936). 
4. R. P. Feynman et al., The Feynman Lectures on Physics (Addison–Wesley, London, 1965) Vol. 3, p. 17–
10. 
5. W. Heitler, The Quantum Theory of Radiation, (Clarendon, Oxford, 1954), p. 401. 
6. H. C. Ohanian, Amer. J. Phys. 54, 500 (1986). 
7. J. W. Simmonds and M. J. Gutman, States, Waves and Photons (Addison - Wesiey, Reading, MA, 1970).  
8. R. I. Khrapko, Amer. J. Phys. 69, 405 (2001) 
9. L. Allen and M. J. Padgett, Amer. J. Phys. 70, 567 (2002). 
10. R. I. Khrapko physics/0102084, physics/0105031
11. R. I. Khrapko. Measurement Techniques 46, No. 4, 317 (2003). 
12. R. I. Khrapko mp_arc@mail.ma.utexas.edu NUMBERs 03-307, 03-311, 03-315 
13. R. I. Khrapko Gravitation & Cosmology 10, 91 (2004) 
14. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, (Row, Peterson and Co, N. Y. 
1961), Sect. 7g. 
15. F. J. Belinfante, Physica 6, 887 (1939). 
16. L. Rosenfeld, Memoires de l'Academie Royale des Sciences de Belgiques 8 No 6 (1940). 
 

 
8

http://arxiv.org/abs/physics/0105031
mailto:mp_arc@mail.ma.utexas.edu

	Moscow aviation institute, 125993, Moscow, Russia
	References


