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Abstract

In this paper, we found the Darboux vector of the spatial quaternionic
curve according to the Frenet frame. Then, the curvature and torsion of
the spatial quaternionic smarandache curve formed by the unit Darboux
vector with the normal vector was calculated. Finally; these values are
expressed depending upon the spatial quaternionic curve.
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1 Introduction

The quaternion was introduced by Hamilton. His initial attempt to generalis
the complex numbers by introducing a 3-dimensional object failed in the sense
that the algebra he constructed for these 3-dimensional objects did not have
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the desired properties. In 1987, Bharathi and Nagaraj defined the quater-
nionic curves in E3, E4 and studied the differential geometry of space curves
and introduced Frenet frames and formulae by using quaternions, [2]. Follow-
ing, quaternionic inclined curves have been defined and harmonic curvatures
studied by Karadağ and Sivridağ, [7]. In, Tuna and Çöken have studied quater-
nion valued functions and quaternionic inclined curves in the semi-Euclidean
space E4

2, [9]. They have given the Serret-Frenet formulae for the quater-
nionic curve in the semi-Euclidean space.Then they have defined quaternionic
inclined curves and harmonic curvatures for the quaternionic curves in the
semi-Euclidean space. Quaternionic rectifying curves have been studied by
Güngör and Tosun, [5]. In [1], Ali has introduced some special Smarandache
curves in the Euclidean space. He has studied Frenet-Serret invariants of a
special case. In [4], Erişir and Güngör have obtained some characterizations
of semi-real spatial quaternionic rectifying curves in IR3

1. Moreover, by the
aid of these characterizations, they have investigated semi real quaternionic
rectifying curves in semi quaternionic space.

2 Preliminary Notes

In this section, we give the basic elements of the theory of quaternions and
quaternionic curves. A more complete elementary treatment of quaternions
and quaternionic curves can be found in [2] and [6], respectively. A real quater-
nion q is an expression of the form

q = d+ ae1 + be2 + ce3 (2.1)

where a, b, c ∈ IR and ei, 1 ≤ i ≤ 3 are quaternionic units which satisfy the
non-commutative multiplication rules{

e1
2 = e2

2 = e3
2 = e1 × e2 × e3 = −1, e1, e2, e3 ∈ IR3

e1 × e2 = e3, e2 × e3 = e1, e2 × e3 = e1.
(2.2)

The algebra of the quaternions is denoted Q by and its natural basis is given
by {e1, e2, e3}. A real quaternion can be given by the form

q = Sq + Vq (2.3)

where Sq = d is scalar part and Vq = ae1 + be2 + ce3 is vector part of q. The
Hamilton conjugate of q = Sq + Vq is defined by q̄ = Sq − Vq. Summation
of two quaternions q1 = Sq1 + Vq1 and q2 = Sq2 + Vq2 is defined as q1 ⊕ q2 =
(Sq1 + Sq2) + (Vq1 + Vq2). Multiplication of a quaternion q = Sq + Vq with a
scalar λ ∈ R is identified as λ�q = λSq+λVq. These expression the symmetric
real-valued, non-degenerate, bilinear form as follows:
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〈, 〉|Q : Q×Q→ R , 〈q1, q2〉|Q =
1

2
(q1 × q̄2 + q2 × q̄1) (2.4)

which is called the quaternion inner product. Then the norm of q is

N(q) =
√
q × q̄ =

√
a2 + b2 + c2 + d2. (2.5)

If q = 1, then q is called unit quaternion. Let q1 = Sq1 + Vq1 = d1 + a1e1 +
b1e2 + c1e3 and q2 = Sq2 + Vq2 = d2 + a2e1 + b2e2 + c2e3 be two quaternions in,
Q, then the quaternion product of q1 and q2 is given by

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e1
+ (d1b2 + b1d2 + b1a2 − a1b2)e2 + +(d1c2 + c1d2 + a1b2 − b1a2)e3

or

q1 × q2 = Sq1Sq2 − 〈Vq1 , Vq2〉+ Sq1Vq2 + Sq2Vq1 + Vq1 ∧ Vq1 (2.6)

where 〈, 〉 and ∧ denote the inner product and vector product in Euclidean
3-space. q is called a spatial quaternion whenever q + q̄ = 0 and called a
temporal quaternion whenever q− q̄ = 0. A general quaternion q can be given
as q = 1

2
(q+ q̄) + 1

2
(q− q̄). The three-dimensional Euclidean space is identified

with the space of spatial quaternions, [2].
QH = {q ∈ Q | q + q̄ = 0} in an obvious manner. Let I = [0, 1] be an interval
in the real line IR and s ∈ I be the arc-length parameter along the smooth
curve

γ : [0, 1]→ QH , γ(s) =
3∑
i=1

γi(s)ei. (2.7)

The tangent vector γ′(s) = t(s) has unit length ‖t(s)‖ = 1 for all s. It follows

t′ × t̄+ t+ (t̄)′ = 0

which implies t′ is orthogonal to t and t′ × t̄ is a spatial quaternion. Let
γ : [0, 1] → QH be a differentiable spatial quaternions curve with arc-length
parameter s and {t(s), n1(s), n2(s)} be the Frenet frame of γ at the point γ(s),
where 

t(s) = γ′(s)

n1(s) =
γ′′(s)

N(γ′′(s))

n2(s) = t(s)× n1(s),

(2.8)
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and the curve γ(s) is non unit speed curve then we say that


t(s) =

γ′(s)

ν(s)
, ν(s) = N(γ′(s))

n1(s) = n2(s)× t(s)

n2(s) =
γ′(s)× γ′′(s) + ν(s)ν ′(s)

N
(
γ′(s)× γ′′(s) + ν(s)ν ′(s)

) · (2.9)

Let {t(s), n1(s), n2(s)} be the Frenet frame of γ(s). Then Frenet formula,
curvature and the torsion are given by


t′(s) = k(s)n1(s)

n1
′(s) = −k(s)t(s) + r(s)n2(s)

n2
′(s) = −r(s)n1(s),

(2.10)

and 
k(s) =

N
(
γ′(s)× γ′′(s) + ν(s)ν ′(s)

)
ν(s)3

r(s) =
〈γ′(s)× γ′′(s), γ′′′(s)〉|Q[

N
(
γ′(s)× γ′′(s) + ν(s)ν ′(s)

)]2 , (2.11)

where t(s), n1(s), n2(s) are the unit tangent, the unit principal normal andthe
unit binormal vector of a quaternionic curve, respectively ([2], [8]). The func-
tions k, r are called the principal curvature and the torsion, respectively. These
are

t(s)× t(s) = n1(s)× n1(s) = n2(s)× n2(s) = −1

t(s)× n1(s) = −n1(s)× t(s) = n2(s)

n1(s)× n2(s) = −n2(s)× n1(s) = t(s)

n2(s)× t(s) = −t(s)× n2(s) = n1(s).

Let γ : [0, 1] → QH be a unit speed regular curve and {t(s), n1(s), n2(s)} be
its moving Serret-Frenet frame. In this case tn1, n1n2, tn1n2− Quaternionic
Smarandache curves can be defined by
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βtn1 =
1√
2

(t(s) + n1(s))

βn1n2 =
1√
2

(n1(s) + n2(s))

βtn1n2 =
1√
3

(t(s) + n1(s) + n2(s)), (see[1], [3], [8]).

3 An Application According to Spatial Quater-

nionic Smarandache Curve

γ : [0, 1] → QH spatial quaternions curve, {t(s), n1(s), n2(s)} moving frame
moves with a certain angular velocity around each axis s instantly. This axis is
called instantaneous rotation axis of the spatial quaternionic curve. If Darboux
axis vector in the direction indicated by D

D = xt+ yn1 + zn2.

From Darboux equations, t′, n1
′, n2

′ ∈ QH derivative vectors

t′ = D × t = zn1 − yn2

n1
′ = D × n1 = −zt+ xn2

n2
′ = D × n2 = yt− xn1

and from (2.10) z = k, y = 0, x = r. If we write these values

D = rt+ kn2. (3.1)

The norm is

N(D) =
√
D ×D =

√
k2 + r2. (3.2)

Let D is instantaneos pfaff vector of γ curve. If the angle between D and n2

is ϕ, from Fig.1, it is obtained that

cosϕ =
〈D, kn2〉|Q
N(D)N(kn2)

=
D × kn2 + kn2 ×D

2k
√
k2 + r2

,

sinϕ =
〈D, rt〉|Q
N(D)N(rt)

=
D × rt+ rt×D

2r
√
k2 + r2

and
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Figure 1: Quaternionic Darboux V ector

cosϕ =
k√

k2 + r2
, sinϕ =

r√
k2 + r2

(3.3)

If the unit vector of quaternionic darboux vector indicated by w

w =
D

N(D)
= sinϕt+ cosϕn2.

Conclusion 3.1 Let γ : [0, 1]→ QH be a unit speed regular curve and {t(s), n1(s), n2(s)}
be its moving Serret-Frenet frame. For an arbitrary curve γ, with curvature
and torsion, k(s) and r(s) respectively. Darboux vector in the direction of the
axis of the quaternionic curve D

D = rt+ kn2

and cosϕ = k
N(D)

, sinϕ = r
N(D)

including, unit Darboux vector is

w = sinϕt+ cosϕn2.

Let γ : [0, 1] → QH be a unit speed regular curve and {t(s), n1(s), n2(s)}
be its moving Serret-Frenet frame. Quaternionic n1w− Smarandache curves
can be defined by

β(s) =
1√
2

(n1(s) + w(s)). (3.4)

Now, we can investigate Serret-Frenet invariants of quaternionic n1w− Smaran-
dache curves according to γ = γ(s). Differentiating (3.4) with respect to sβ,
we get

β′ = tβ(s)
dsβ
ds

=
1√
2

[
(ϕ′ cosϕ− k)t+ (r − ϕ′ sinϕ)n2

]
(3.5)

where

dsβ
ds

=

√
(ϕ′)2 +N(D)2 − 2ϕ′N(D)√

2
·
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The tangent vector of curve β can be written as follow

tβ(s) =
(ϕ′ cosϕ− k)t+ (r − ϕ′ sinϕ)n2√

(ϕ′)2 +N(D)2 − 2ϕ′N(D)
, (3.6)

differentiating (3.6) with respect to s, we obtain

tβ
′(s) =

√
2(λ1t+ λ2n1 + λ3n2)(

(ϕ′)2 +N(D)2 − 2ϕ′N(D)
)2 , (3.7)

where

λ1 = r2ϕ′′ cosϕ− kϕ′ϕ′′ cos2 ϕ− rϕ′ϕ′′ sinϕ cosϕ− (ϕ′)4 sinϕ− k2(ϕ′)2 sinϕ

−r2(ϕ′)2 sinϕ+ 2k(ϕ′)3 sinϕ cosϕ+ 2r(ϕ′)3 sin2 ϕ− k′(ϕ′)2 − r2k′

−2k′kϕ′ cosϕ− 2k′rϕ′ sinϕ− rr′ϕ′ cosϕ+ k2(ϕ′)2 cos2 ϕ+ r(ϕ′)2 sinϕ cosϕ

+kϕ′ϕ′′ + krr′ − krϕ′′ sinϕ− ϕ′r′k sinϕ

λ2 = k(ϕ′)3 cosϕ+ 3k3ϕ′ cosϕ+ 3r2kϕ′ cosϕ− 2k2(ϕ′)2 cos2 ϕ− 4kr(ϕ′)2 sinϕ cosϕ

−k2(ϕ′)2 − k4 − 2k2r2 + 3k2rϕ′ sinϕ− r2(ϕ′)2 + 3r3ϕ′ sinϕ+ r(ϕ′)3 sinϕ

−2r2ϕ′2 sin2 ϕ

λ3 = r′(ϕ′)2 + k2r′ − 2kr′ϕ′ cosϕ− k2ϕ′′ sinϕ+ kϕ′ϕ′′ sinϕ cosϕ+ rϕ′ϕ′′ sin2 ϕ

−(ϕ′)4 cosϕ− k2(ϕ′)2 cosϕ− k2(ϕ′)2 cosϕ+ 2k(ϕ′)3 cos2 ϕ+ 2r(ϕ′)3 sinϕ cosϕ

−rϕ′ϕ′′ − rkk′ + rkϕ′′ cosϕ+ rk′ϕ′ cosϕ+ kk′ϕ′ sinϕ− k′(ϕ′)2 sinϕ cosϕ

−r′(ϕ′)2 sin2 ϕ

The principal curvature and principal normal vector field of curve β are re-
spectively,

κβ =

√
2(λ21 + λ22 + λ23)(

(ϕ′)2 +N(D)2 − 2ϕ′N(D)
)2 (3.8)
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and

nβ =
λ1t+ λ2n1 + λ3n2√

λ21 + λ22 + λ23
· (3.9)

On the other hand, we express bβ = tβ × nβ. So, the binormal vector of curve

bβ =
λ2(ϕ

′ sinϕ− r)t+
(
λ1(r − ϕ′ sinϕ)− λ3(ϕ′ cosϕ− k)

)
n1√(

(ϕ′)2 +N(D)2 − 2ϕ′N(D)
)
(λ21 + λ22 + λ23)

+
λ2(ϕ

′ cosϕ− k)n2√(
(ϕ′)2 +N(D)2 − 2ϕ′N(D)

)
(λ21 + λ22 + λ23)

(3.10)

We differentiate (3.5) with respect to s in order to calculate the torsion

β′′ =
(ϕ′′ cosϕ− (ϕ′)2 sinϕ− k′)t+ (kϕ′ cosϕ+ rϕ′ sinϕ− k2 − r2)n1√

2

+
(r′ − ϕ′′ sinϕ− (ϕ′)2 cosϕ)n2√

2
(3.11)

and similarly

β′′′ =
ω1t+ ω2n1 + ω3n2√

2

where



ω1 = ϕ′′′ cosϕ− 3ϕ′ϕ′′ sinϕ− (ϕ′)3 cosϕ− k′′ − k2ϕ′ cosϕ− krϕ′ sinϕ+ k3 + kr2

ω2 = 2kϕ′′ cosϕ− 2k(ϕ′)2 sinϕ− 3kk′ + kϕ′′ cosϕ+ r′ϕ′ sinϕ+ 2rϕ′′ sinϕ

+2(ϕ′)2 cosϕ− 3rr′

ω3 = (krϕ′ − 3ϕ′ϕ′′) cosϕ+ (r2ϕ′ − ϕ′′′ + (ϕ′)3) sinϕ− k2r − r3 + r′′

The torsion of curve β is

τβ =

√
2($1ω1 +$2ω2 +$3ω3)

$2
1 +$2

2 +$2
3

(3.12)
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where



$1 = (k(ϕ′)2 sinϕ) cosϕ+ (r(ϕ′)2 sinϕ− k2ϕ′ − 2r2ϕ′) sinϕ+ k2r + r3

$2 = (rϕ′′ − τ ′ϕ′ − k(ϕ′)2) cosϕ+ (k′ϕ′ − r(ϕ′)2 − kϕ′′) sinϕ− rk′ + (ϕ′)3 + kr′

$3 = (k(ϕ′)2 cosϕ+ r(ϕ′)2 sinϕ− 2k2ϕ′ − r2ϕ′) cosϕ− krϕ′ sinϕ+ k3 + kr2.

Example: Let be spatial quaternionic curve

γ(s) =
( 1√

2
cos

s√
5

+
1√
2

sin
s√
5

)
e1−

2s√
5
e2 +

(
− 1√

2
cos

s√
5

+
1√
2

sin
s√
5

)
e3.

In terms of definition, we obtain special n1w− smarandache curve according
to Frenet frame of spatial quaternionic curve, (see Figure 3).

β(s) =
(
− 1

2
cos

s√
5
− 1

2
sin

s√
5

)
e1 −

1√
2
e2 +

(1

2
cos

s√
5
− 1

2
sin

s√
5

)
e3.

Figure 2: γ Spatial Quaternionic Curve Figure 3: β− Smarandache Curve
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