9 ANNUAL

g MIT SLOAN
gl SPORTS ANALYTICS CONFERENCE

FEBRUARY 27 - 28, 2015 BOSTON CONVENTION AND EXHIBITION CENTER

Graphical Model for Baskeball Match Simulation

Min-hwan Oh, Suraj Keshri, Garud Iyengar
Columbia University
New York, NY, USA, 10027
mo2499@columbia.edu, skk2142@columbia.edu
gaurd@ieor.columbia.edu

Abstract

Conventional approaches to simulate matches have ignored that in basketball the dynamics of ball
movement is very sensitive to the lineups on the court and unique identities of players on both
offense and defense sides. In this paper, we propose the simulation infrastructure that can bridge the
gap between player identity and team level network. We model the progression of a basketball match
using a probabilistic graphical model. We model every touch and event in a game as a sequence of
transitions between discrete states. We treat the progression of a match as a graph, where each node
is a network structure of players on the court, their actions, events, etc., and edges denote possible
moves in the game flow. Our results show that either changes in the team lineup or changes in the
opponent team lineup significantly affects the dynamics of a match progression. Evaluation on the
match data for the 2013-14 NBA season suggests that the graphical model approach is appropriate
for modeling a basketball match.

1 Introduction

Predicting the outcomes of professional sports events is one of the most popular practices in the sports media,
fan communities and, of course, sport betting related industries. Predictions range from human prediction to
statistical analysis of historical data. In recent years, basketball, specifically the NBA, has received much atten-
tion as a domain of analytics with the advent of player tracking data. Many new metrics have been introduced
to evaluate players and teams. However, there have not been studies that fully take advantage of the rich player
tracking data to simulate the outcomes of basketball matches. Most of the previous simulation approaches in
basketball have focused on win-loss predictions, ignoring the progression of matches. In efforts to obtain de-
tailed "microsimulation” of a basketball game, Shirley [1] and Strumbelj and Vracar [2] used a possession-based
Markov model to model the progression of a basketball match. However, they treat each team as merely a single
entity rather than collective union of individual players. These previous studies ignore that in basketball the
dynamics of ball movement is very sensitive to the lineups on the court and unique identities of players on both
offense and defense sides.

One can ask, "Is Miami Heat the same team without LeBron James? Or, can Oklahoma City Thunder be an
elite team without Kevin Durant and Russell Westbrook?" Taking individual players into account in a simula-
tion process is not just about addressing the issues with trades or changes in the roster in the preseason but also
changes in lineups of teams during a season, which appear almost on a day-to-day basis, either in a starting lineup
or bench lineup — whether it is due to injuries or strategic reasons. These changes do have an impact on final
game results.

Fewell et al.[3] used network analysis in which they analyzed ball movement of teams, mapping game progres-
sion pass by pass. They assessed differences in team’s offensive strategy by their network properties. While
their objective was not to simulate matches, they still did not address the unique identities of players, which is
prevalent especially in basketball. Questions such as "With Tim Duncan and Tony Parker out tonight, will the
Spurs win against the Rockets?" still remain unanswered.

In this paper, we propose the simulation infrastructure that can bridge the gap between player identity and team
level network. We model the progression of a basketball match using a probabilistic graphical model. The model
shows the ball movement of every play and subsequent game events based on player level pass interaction, shot
frequency given teammates and defenders, shot accuracy against the defense, rebound etc. We follow the natural
and intuitive flow of a basketball match as shown in Figure 1.
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Figure 1: Graphical Model for sequence of events in each possession

2 Method

Our model is calibrated using the player tracking data and play-by-play game log data from the matches for the
2013-2014 season. Both these data sets are available on NBA.com. We also used the lineup data available on
Basketball-Reference.com. We model every touch and event in a game as a sequence of transitions between dis-
crete states. We treat the progression of a match as a graph, where each node is a network structure of players on
the court, their actions, events, etc., and edges denote possible moves in the game flow. We learn the conditional
probability of the edges from the data. We simulate ball movements between players, how likely a player is to
take a shot, and how defense and teammates affect the dynamics.

Table 1: Summary of Notation

Notation Meaning Section
L, Offensive team lineup 2.2,2.4,2.6
L, Defensive team lineup 22,26
e Player 2’s propensity to take a shot 2.2

¥ Player i’s propensity to take a shot given the defensive lineup 2.2

Bi Player ’s ability to deter shot attempt 2.2

a;; Tendency of player i to pass to player j 2.4

0., Shooting ability of player i at basis d 23

bia Defensive ability of player i to reduce shot accuracy at basisd 2.3

bia Player 7’s ability to draw a shooting foul at basis d 25

Cu Player ;’s foul proneness at basis d 25

¢ Defensive rebound grabbing ability of player : 2.6

e? Offensive rebound grabbing ability of player : 2.6

T, Average possession time of team a4 2.7

2.1 Start of Possession

We model the start of a possession by a team as a multinomial distribution between players on the court. If
the possession starts with an inbound pass, we sample the starting player according to distribution of historical
backcourt touch data. On the other hand, if the possession starts with a defensive rebound or a steal, then it
is trivial since the player who starts the possession has been already decided. Methods to compute rebound
probabilities and to sample a steal event are discussed in later sections.
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2.2 Shot Frequency

We model the probability of a field goal attempt for a given touch as a Bernoulli distribution with probability

pomtttur o525 5)
keL, k#i
where ¥, =y, — Z wi]ﬂj
JELy
with o(x) = exp(x)/(14+exp(x)). S, is an indicator for whether player i attempts a shot given atouch. L, and L,
represent the lineups of the offensive team and defensive team respectively. y; is a parameter which determines
how likely a player is to take a shot and [3; is the defensive ability of player ; to reduce shot frequency. The
weight w, ; determines how much player i is affected by the defense of player ; which is proportional to the time
that player i is guarded by player j!. Franks et al.[4] models shot frequency without taking the teammates in
account. However, in our model, we also have an offset term <% — e L, ki 7&:) which is negative (or positive)

if the propensity of player j to take a shot is less (or more) than average teammates’ propensity. The reasoning
behind this model is that an event of a player taking a shot depends not only on his propensity to shoot and his
defender but also on the propensity of his teammates. We can take Kevin Durant and Russell Westbrook of the
Oklahoma City Thunder for an example: when Kevin Durant is not on the court, Russell Westbrook tends to
shoot more.

2.3 Shot Efficiency

To model shot efficiency of a player, our approach is similar to Franks et al.[4] Given that a player attempts a
field goal, we model shot efficiency (the probability that the player makes a shot) as a function of the offensive
player’s skill, the defender at the time of the shot, and the location of the shot on the court.

P(Y:1|d»9s¢):‘7<‘9id_¢jd>

Here, Y is an indicator for whether the shot was made, d represents the basis from which the shot was taken,
0, is the shooting ability of player i at basis d, and ¢, is the defensive ability of the closest defensive player ;
to reduce shot accuracy at basis d. Note that our model is slightly different from Franks et al.[4] In particular,
we do not take into account the distance between the offensive and defensive player. The justification is that
the ability of the defender is also characterized by how closely he defends the player. Thus, the parameter ¢,
takes into account how closely is player ; able to defend basis d. This assumption is important in our simulation
model because we are not modeling the distance between the defender and the shooter while the shooter attempts
a shot. To each offensive player, we a priori assign the weighted average of defense depending on his position
and the position of the defenders on the court. Thus, while simulating the game, once a player decides to take a
shot, we sample the shot location using the basis loadings. Then, the success probability of the shot is given by
the shot efficiency model.

2.4 Pass Network

We model the passes between players as a network with edge weight parameterized by ;; (i # ). The proba-
bility that player i passes to player j if player i chooses to pass is given by

pli—=jlal,)=c———
D ktikel, Lik

where we only take into account a’s for players on the court. Note that the probability that player 7 passes to
player j depends not only on players i and j but also other teammates on the court. To learn the @ matrix, we
use EM algorithm on the data of total number of passes between each player and the total number of possession
each lineup had in every game. Figure 2 shows an example of the @ matrix we learned for the San Antonio Spurs,
with @;; as the 7, j entry of the matrix.

For simulation purposes, we set the weight w; j according to similarity of positions of player i and defensive player ;. For example, if
player i is a point guard, we give more weight to the point guard and shooting guard on the defensive team than to the opponent center
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Figure 2: Rows are passers and columns are receivers. Note that the diagonal entries are set to
zero. The a matrix for the San Antonio Spurs 2013-14 roster (left) shows that Tony Parker and
Patty Mills are more likely to receive passes from most of the other players. This was expected due
to their position and role as primary ball handler. We create a pass probability matrix for different
lineups (right) by extracting a corresponding entry of the @ matrix and normalized by each row.
We observe that replacing two players in the lineup results in a different pass probability matrix.
This allows us to obtain the passing distribution of any arbitrary lineup in a team.

2.5 Shooting Foul & Free Throw

We model shooting fouls as a function of the shooter’s ability to draw a foul, defender’s foul proneness, and the
location (basis) of the shot on the court. The approach is similar to the model for shot efficiency.

p(SF(i,j)=11d,¢,0) =0 ($ia+ )

SF(i,j)is an indicator for whether the player i was fouled by player ; while shooting. ¢, , is player i’s ability
to draw a shooting foul at basis d, and j, represents the defender’s foul proneness at basis d. Therefore, if a

defender is more foul prone, then there is a higher chance of shooting foul. As for free throws, we use free throw
percentage for each player to sample a free throw success event. This is a reasonable approach since a free throw
does not depend on opponents or teammates.

2.6 Rebound

We model rebound as a competition between the players on court. Since there is a clear difference in effort
required to grab a defensive and an offensive rebound, we assume that each player 7 has a defensive and an
offensive rebound ability represented by o and p? respectively. Given the current lineup of offensive and
defensive team on the court, the probability of player i grabbing an defensive or an offensive rebound is given

by
exp(p?)

ZjeLd exp(,o;.") + ZkeLa exp(p/‘;)
exp(e})

ZjeLd exp(p?) + Z/eeLa eXp(pZ)

p(DR;=1]L4L,)=

P(OR; =1]LyL,)=

DR; and OR,; are indicators for player i grabbing a defensive rebound and an offensive rebound respectively.
In this model , the rebound grabbing ability of a team depends on the players of both the teams on court. This
model allows us to estimate rebound grabbing probability for arbitrary lineups.
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2.7 Number of Possessions

In our model, we assume that a possession starts with an inbound pass, a defensive rebound, or a steal. To model
number of possessions, we assume that team 7 on an average takes time 7; to end a possession. Thus, total

T
number of possessions for each team in a game between team 4 and team & should be close to —— = , where T is

duration of the game i. We have the data for total number of possessions in a game, 7. To learn T, we minimize
the sum of square of error of each game:

2
T.
minS” <Zz,ﬂ.fk _ _l>
TR Ni
where 7 is duration of game 7, 7, is the number of possessions in game 7, and I,; = 1 if team k plays in game 7.

2.8 Turnover

In our model, we assume that there are two types of turnover. One type is stolen balls and the other type
includes all the other turnovers that results in an inbound pass (offensive foul, out-of-bounds, etc.). We calculate
average probability of turnover per touch for each player from the historical data and use that independent of
current lineup. We also sample a stolen ball event from turnover event. Given a stolen ball, we assign a steal
to a defensive player with probability proportional to his average steal rate compared to average steal rate of his
teammates on court. Given a non-stolen ball turnover, we start from an inbound pass.

2.9 Simulation

For simulation purposes, lineup is an input parameter to our model. One can try different lineups against
an opponent team, modifying the number of possessions given to particular lineups. For fitting and testing our
model, we use the actual lineups used in each game. After we learn all the required parameters mentioned above,
we compute conditional probability for each edge in the graph of possession illustrated in Figure 1. We draw a
sample of events using the graphical model for each possession. We repeat this sampling process until we reach
the estimated number of possessions. This gives us one sample of single match statistics. We simulate a match
multiple times to estimate expected statistics for both players and teams. We then assign a win to a team with
more number of wins.

3 Result

We used our model to simulate the 2013-14 season record for each of the 30 NBA teams. We used 70% of
1230 matches in the regular season as the training set and the remaining 30% as the test set. Figure 3 shows
that the model provides a good estimate of the teams’ actual win percentages with the within-sample R-squared
0.92, and the out-of-sample R-squared 0.87. Our model’s performance in predicting average winning percentage

Predicted Win Percent

Predicted Win Percent

0.2~

) ) )
0.2 0.4 0.6 0.25 0.50 0.75
True Win Percent True Win Percent

(2) Within-sample result (b) Out-of-sample results

Figure 3: True vs. predicted win percentages for the 2013-14 season
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is comparable to Shirley [1] and Strumbelj and Vratar [2]. The predicted per-game season average personal
statistics such as points per game shows correlation with the actual data (R-square of 0.74 for training data and
0.63 for test data). For player level statistics, we have higher variance and bias in our prediction, especially for
players who score fewer points.

R%=0.74

w
S
|

Predicted Average Point
Predicted Average Point

10 2‘0 30 10 20 30
True Average Point True Average Point
(a) Within-sample result (b) Out-of-sample result

Figure 4: True vs. predicted average point for players for the 2013-14 season

We used our model on the 2014 NBA Finals matchup between the San Antonio Spurs and the Miami Heat.
We computed the conditional probabilities for the pass network and player actions of the Spurs’ starting lineup
against the defense of the Heat’s starting lineup, and the graph for the matchup is shown in Figure 5a. While
fixing the defense, player substitutions — Boris Diaw for Tim Duncan and Manu Ginobili for Danny Green —
result in a graph with different conditional probabilities of all events (Figure 5b). We observe that Ginobili at-

Inbound Leonard Turnover
> 4
Parker
Lo
Green
’4.
Shoot
v
Def reb Duncan 24
o” Splitter
OFF Duncan Parker Leonard Green Splitter
DEF Lewis Chalmers  James Wade Bosh

(2) The San Antonio Spurs starting lineup’s offense against
the Miami Heat’s starting lineup
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Figure 5: Graphs of offense with changes in the team lineup or in the opponent lineup/team
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tracts the ball from other players more than Green does. Also with Duncan out, we expect more ball movement
between backcourt players, and team shooting also shifts significantly towards guards and small forward. Note
that Ginobili and Diaw have the same positions as Green and Duncan respectively. However, the graphs are
quite different for the two lineups within the same team. This suggests that defining the possession network of a
team only in terms of player positions is not sufficient. For another comparison, we also computed the network
of the Spurs’ starting lineup against the Portland Trail Blazers’ starting lineup, i.e. fixing the team lineup but
changing the opponent lineup or team (Figure 5¢). We observe a clear drop in Duncan’s shot attempt probabil-
ity, compared to the base case against the Heat in Figure 5a. This is due to the effect of his defender, Lamarcus
Aldridge, who has a higher defensive ability to reduce shot frequency. Subsequently, we observe an increase in
expected shot frequency for Parker. These comparisons suggest that either changes in the team lineup or in the
opponent team lineup significantly affects the dynamics of a match progression.

Lineup Weight
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Figure 6: Simulation results on the 2014 NBA Finals

Having established that the ball dynamics is significantly influenced by different sets of players on the court, our
model can be used to evaluate the effect of different lineups on game results. For demonstration, we simulated
the 2014 NBA Finals with two distinct sets of lineups of the Spurs while keeping the lineups of the Heat fixed (we
used the Heat’s lineups used in Game 5 of the Finals for both case 1 and case 2). We assigned different weights
to each lineup as shown in Figure 6 in order to allocate different number of possessions given to lineups in a
given game. 101 simulations were performed to determine a single win as described in section 2.9. We applied
conventional best-of-seven playoff format to determine the winner of the Finals. The results show that changes
in lineups and weights affect the outcome of the series.

4 Conclusion

The simulation model we propose helps answer not only the team level questions, e.g. which team will win a
match, or which teams will advance to the playoffs, but also player level questions, such as how well a specific
player will perform in a given match or the entire season. The model offers the infrastructure for match simula-
tion that will allow the front office or the coaching staff of the team to evaluate the performance of hypothetical
lineups against specific opponents. It also gives insight on minute allocation between players. One of the lim-
itations of our current simulation model is not being able to estimate pass network for hypothetical lineup of
players from different teams since we do not have the pass data for players from different teams (also because
there are distinct pass structures for different teams as argued by Fewell et al.[3]). Also, we do not take assist
and block into account in the simulation. Our future endeavor would be to modify our model to overcome
these limitations. This will help the teams evaluate the value of future acquisitions in the context of the existing
roster. Moreover, the simulation model could also be used to predict performance of Fantasy Basketball teams.
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