
ar
X

iv
:1

31
1.

02
77

v1
 [

qu
an

t-
ph

]
 1

 N
ov

 2
01

3

An Introduction to Topological Quantum Codes

Héctor Bomb́ın

Perimeter Institute for Theoretical Physics

31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada

This is the chapter Topological Codes of the book Quantum Error

Correction, edited by Daniel A. Lidar and Todd A. Brun, Cambridge
University Press, New York, 2013.

http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-
quantum-information-and-quantum-computation/quantum-error-correction

c©Cambridge University Press
This publication is in copyright. Subject to statutory exception and to
the provisions of relevant collective licensing agreements, no reproduction
of any part may take place without the written permission of Cambridge
University Press.

1

http://arxiv.org/abs/1311.0277v1
http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-

Contents

1 Introduction 3

2 Local Codes 3

3 Surface Homology 5

3.1 Topology of Closed Surfaces . 5
3.2 Homology of Curves . 6

4 Surface Codes 9

4.1 Definition . 9
4.2 Stabilizer Group . 10
4.3 Dual lattice . 12
4.4 Logical operators . 13
4.5 Boundaries . 14
4.6 Error Correction . 17
4.7 Error Threshold: Random Bond Ising Model 19

4.7.1 Random Bond Ising Model 19
4.7.2 Mapping and Error Threshold 21

5 Color Codes 22

5.1 Lattice and Stabilizer Group . 22
5.2 Shrunk Lattices . 23
5.3 String Operators . 24
5.4 String-Nets . 27
5.5 Boundaries . 27
5.6 Transversal Clifford Group . 28
5.7 Homology . 29
5.8 Error Threshold: Random 3-Body Ising Model 30

5.8.1 Random 3-Body Ising Model 31
5.8.2 Mapping and Error Threshold 31

6 Conclusions 31

7 History and Further Reading 32

2

a

b

Figure 1: Closed curves in a torus can be the boundary of a region, like curve
a. However, curve b is not the boundary of a region. The difference cannot be
detected by looking only at a local region such as the one marked with a dotted
line.

1 Introduction

What a good code is depends on the particular constraints of the problem at
hand. In this chapter we address a constraint that is relevant to many physical
settings: locality. In particular, we are interested in situations where geometrical
locality is relevant. This typically means that the physical qubits composing the
code are placed in some lattice and only interactions between nearby qubits are
possible. In this case, it is desirable that syndrome extraction also be local, so
that fault tolerance can possibly be achieved. Topological codes offer a natural
solution to locality constraints, as they have stabilizer generators with local
support.

In topological codes information is stored in global degrees of freedom, so
larger lattices provide larger code distances. The nature of these global degrees
of freedom is illustrated in Fig. 1, where several closed curves in a torus are
compared. Consider curves a and b. They look the same if examined locally, as
in the region marked with dotted lines. However, curve a is the boundary of a
region, whereas curve b is not. In order to decide whether a curve is a boundary
or not we need global information about it. This is, as we will see, a core idea
in topological codes.

This chapter only attempts to provide an introduction to the subject. In
particular, we will only deal with two-dimensional codes and leave out the
condensed-matter perspective.

2 Local Codes

Since the emphasis of this chapter is on locality, we start by giving a formal
definition of what it means for a code to be local. Intuitively, a local stabilizer
code is one in which all stabilizer generators act only on a few nearby qubits.
To formalize this idea, we could talk about n-local codes, those in which the

3

Figure 2: In 2D local codes qubits are arranged in a 2D array. The support of
any stabilizer generators must be contained in a box of a fixed size, here a 3× 3
box. Circles represent qubits and darker ones form the support of a generator.

support of each stabilizer generator is limited to n qubits. This is a notion that
can be applied to individual codes. But if we want to talk about local codes,
without further adjectives, we have to consider instead sets or families of codes.

A family of stabilizer codes is local if we can choose the stabilizer generators
so that:

1. the family contains codes of arbitrary large distance,

2. the number of qubits in the support of the stabilizer generators is bounded,
and

3. the number of stabilizers with support containing any given qubit is bounded.

This notion of locality can be put in terms of graph connectivity, without any
further structure. But in practice we are often interested in locality from a
geometrical point of view. A family of codes is local in D dimensions when

1. qubits are placed in a D-dimensional array and

2. the support of any stabilizer generator is contained in a hypercube of
bounded size.

This is illustrated in Fig. 2. Notice that a code that is local in a geometric sense
is also local in the more general sense above.

Locality does not come without a price. For example, in any family of 2D
local codes the distance is d = O(

√
n), with n the total number of qubits. We

do not prove this here, but see [1]. This behavior of the code distance might
appear undesirable, but indeed it is not harmful because the code distance alone
does not dictate the error correcting capability of a family of topological codes.
The key for fault tolerance is statistics: an error that cannot be corrected but
is unlikely to occur is not important. As we will see, topological codes can
correct most errors of weight O(n), which is reflected in the existence of an
error threshold. For noise below the threshold, error correction can be achieved
with asymptotically perfect accuracy in the limit of large lattices.

4

Figure 3: From the topological perspective, orientable closed surfaces are classi-
fied by the genus g or number of handles. These are the three with lower genus:
the sphere, the sphere with a handle or torus, and the sphere with two handles
or 2-torus.

3 Surface Homology

In order to understand topological codes, it is convenient to have some back-
ground in algebraic topology. This section provides an elementary introduction
to the topic, which will be sufficient for our purpose. For further reading, see
for example [2].

3.1 Topology of Closed Surfaces

Topology deals with spatial properties that are preserved under continuous de-
formations. It is sometimes called “rubber sheet geometry”, because we are
allowed to stretch or compress our objects of study, but not to tear them or
glue their parts. The coffee mug and the donut are well known examples that
look the same to a topologist since, up to deformations, they are both nothing
but a solid sphere with a hole.

In the topological codes that we shall study qubits are placed on two-
dimensional lattices. Such lattices will be embedded in surfaces, and it turns
out that the topology of the surfaces is what matters to us. Since we only have
a finite number of qubits at hand, there is no point in considering open surfaces,
like the plane. Thus, we restrict ourselves to closed surfaces, like the sphere.
For simplicity, we will focus on orientable closed surfaces here. These are the
closed surfaces that have an inside and an outside, that is, those that are the
boundaries of everyday solid objects. Moreover, we only consider connected
surfaces, those in which we can move from any point to another without jumps.

From a topological perspective, the classification of connected orientable
closed surfaces is pretty simple. First, we have the sphere. If we add a handle
to a sphere, we obtain the torus (the surface of a donut). We can then add a
second handle (2-torus), or a third (3-torus), and so on, see Fig. 3. This infinite
process allows us to build all orientable closed surfaces, which are thus classified
by the number of handles, known as their genus. A sphere has genus 0 and
a g-torus has genus g. As we will see, the genus of a surface will dictate the
number of encoded qubits in a topological code.

5

ab
c

d

AB

Figure 4: Several closed curves in a torus. Curve a is the boundary of region
A, so it is homologically trivial. Curves b and c form the boundary of region B,
and thus are homologically equivalent. Curve d is homologically nontrivial and
not equivalent to c.

There is an interesting relationship between the number of elements of a
lattice embedded in a surface and its genus. We will denote the number of
vertices, edges and faces of the lattice as V , E and F , respectively. The Euler
characteristic is then defined as the quantity

χ := V − E + F. (1)

This is an important quantity because it only depends on the topology of the
surface, not on the particular lattice. In particular, for closed orientable surfaces
we have

χ = 2(1− g). (2)

3.2 Homology of Curves

Suppose that you are given two objects and asked whether they are topologically
equivalent. If you can find a way to continuously transform one into the other,
you will have shown that they are equivalent. But, if they are not equivalent,
how can we show it? Topological invariants offer an aswer to this question. A
topological invariant is a number or other kind of mathematical structure that is
constructed from the objects of interest and depends only on their topology. If
two objects return different values for any topological invariant, they cannot be
topologically equivalent. Notice that we have already encountered an example
of topological invariant, namely, the Euler characteristic.

The topological invariant that is involved in the construction of the most
basic topological codes is the first homology group of a surface. Actually, the
elements of this group label a basis for the encoded states, as we will see. So,
what is homology about?

Consider the closed curves on a torus of Fig. 4. Curve a is the boundary of
region A, whereas curves b, c, d are not the boundaries of any region (individu-
ally). We say that a is homologically trivial, and b, c, d homologically nontrivial.

6

Moreover, b and c together enclose the region B, so they are said to be homolog-
ically equivalent. On the other hand, c and d together do not form the boundary
of any region and are thereof not equivalent. We have thus a classification of
the closed curves on a surface into different homology classes. We can further
give to these classes the structure of an abelian group, with the identity element
corresponding to the trivial homology class of curves. This requires adopting a
more formal approach.

We will work now with a particular lattice embedded in the surface. As it
is customary, we rename vertices as 0-cells, edges as 1-cells and faces as 2-cells.
First, we want to form an abelian group Ci out of the set of i-cells, for i = 0, 1, 2.
Consider for example 1-cells. If we label the edges as {ei}E1 we can represent
any set of edges E′ as a formal sum

c =
∑

i

ci ei, ci =

{
0 ei 6∈ E′

1 ei ∈ E′ . (3)

Such formal sums are called 1-chains. They can be added together to obtain
another 1-chain taking into account the rule ei + ei = 0. This gives rise to an
abelian group structure on the 1-chains C1, with the zero element corresponding
to the empty set. We can represent 1-chains as binary vectors of length E, and
indeed C1 ≃ ZE

2 , where Z2 is F2 considered just as an additive group. A nice
aspect of the notation (3) is that any edge e automatically denotes the 1-chain
corresponding to the set {e}. Similarly, we can form the group of 0-chains
C0 ≃ ZV

2 and the group of 2-chains C2 ≃ ZF
2 .

Our next step is to introduce a family of group homomorphisms ∂, called
boundary operators. There are actually two that are relevant to our discussion,

∂2 : C2 −→ C1, ∂1 : C1 −→ C0, (4)

but they are commonly referred as ∂. As its name suggests, ∂ takes objects to
their boundaries, as illustrated in Fig. 5. Namely, if a face f has as boundary
the set of edges {e′1, . . . , e′k}, then ∂2f = e′1 + · · ·+ e′k. What happens when we
apply ∂2 to a region, that is, to a set of faces F ′ = {f ′

1, . . . , f
′
l}? As a 2-chain,

the region has the expression r = f ′
1+ · · ·+ f ′

l , so ∂2r = ∂f ′
1+ · · ·+ ∂f ′

l because
∂ respects the abelian group structure. Since ei + ei = 0, the edges that are
shared by neighboring faces in F ′ cancel and we have ∂2r = e′′1 + · · · + e′′m,
where {e′′1 , . . . , e′′m} is the set of edges that form the boundary of the region.
The definition of ∂1 is analogous: if the edge e has as endpoints the vertices
v′1, v

′
2, then ∂1e = v′1 + v′2. For sets of edges the boundary is composed of those

vertices at which an odd number of these edges meet.
Now we define two subgroups of 1-chains Z1, B1 ⊂ C1. Z1 is the subgroup

of 1-chains z that have no boundary, that is, ∂1z = 0, the kernel of ∂1. The
elements of Z1, called cycles, are collections of closed curves. B1 is the image of
∂2, that is, the subgroup of 1-chains b that are a boundary of a 2-chain, b = ∂2c
for some c ∈ C2. The crucial observation is that all boundaries are also cycles,
namely B1 ⊂ Z1. In other words,

∂2 := ∂1 ◦ ∂2 = 0. (5)

7

∂1

∂1

∂2

∂2

Figure 5: The action of boundary operators. ∂2 maps a set of faces to the set
of edges that form its boundary. ∂1 maps a set of edges to to the set of vertices
where an odd number of these edges meet.

We can then define the first homology group H1 as the quotient

H1 := Z1/B1. (6)

Let us recall the quotient group construction for abelian groups. The elements
of H1 are cosets of the form z := { z+ b | b ∈ B1 } for some z ∈ Z1, the addition
is that inherited from Z1, namely z + z′ = z + z′, and the zero element is the
coset 0 = B1. Technically, (6) defines H1(S;Z2), the first homology group of
the surface S over Z2.

Algebraic topology teaches us that the group H1 only depends, up to iso-
morphisms, on the topology of the surface. Indeed:

H1 ≃ Z
2g
2 . (7)

For a sphere, g = 0 and thus the first homology group is trivial: all cycles
are boundaries, B1 = Z1. Notice how taking the quotient has erased all the
information about the particular lattice used: this is the magic of topological
invariants.

As an example, consider the square lattice embedded in a torus in Fig. 6.
Here we are representing the torus in a convenient and conventional way, as a
square where opposite edges are identified. The connected 1-chains in the figure
are subject to the same homological equivalences as in Fig. 4. In the notation
we have just developed, we have a = 0, b = c and b 6= d 6= 0. For a torus
H1 ≃ Z2 × Z2, so the homology group has two generators. Here we can take,
for example, b and d as the generators, and the the elements of H1 are 0, b, d
and b+ d.

The notion of equivalence up to homology is also useful for 1-chains that are
not cycles. That is, we can consider the quotient C1/B1, and use the notation
c := { c+ b | b ∈ B1 }, where c ∈ C1, to denote its elements. The open 1-chains
e and f in Fig. 6 are homologous: they enclose the region C.

8

a

b

c

d

e

f

AB

C

Figure 6: Several 1-chains in a periodic 8 × 8 square lattice. a = 0 because
a = ∂A. b = c because b + c = ∂B. c 6= d 6= 0 because neither c + d = ∂D,
c = ∂D nor c = ∂D for any region D. e = f because e+ f = ∂C.

We have already encountered a quotient construction before, when studying
stabilizer codes in Chapter 2, where logical operators are recovered from the
quotient N(S)/S. As we will see in the next section, this quotient construction
and the one in (6) can be fruitfully related.

4 Surface Codes

Surface codes are the most basic examples of topological codes. In this section
we will motivate their construction and study their main features.

4.1 Definition

The idea behind surface codes is to encode information in “homological degrees
of freedom”. To this end, our first step is to fix a lattice embedded in a given
closed surface. We attach a qubit to each edge, so each element of the com-
putational basis can be interpreted as a 1-chain c ∈ C1 in the most obvious
manner:

|c〉 :=
⊗

i

|ci〉, c ∈ C1. (8)

Here i runs over the physical qubits or, equivalently, the edges of the lattice
{ei}. We will find it convenient to label products of X and Z Pauli operators

9

with 1-chains, too:

Xc :=
⊗

i

Xci
i , Zc :=

⊗

i

Zci
i , c ∈ C1. (9)

Notice that these labelings are indeed group homomorphisms from C1 to Gn,
because

XcXc′ = Xc+c′ , ZcZc′ = Zc+c′ . (10)

The definition of the surface code is quite natural. It has a basis with elements
(here and anywhere else we ignore normalization)

|z〉 :=
∑

b∈B1

|z + b〉, z ∈ H1, (11)

which are sums of all the cycles that form a given homology class. Clearly
〈z|z′〉 = 0 for z 6= z′. Then from (7) we have |H1| = 22g and the number of
encoded qubits is k = 2g.

To get a first flavor of the power of surface codes, we will study the effect of
bit-flip errors. Notice thatXc|b〉 = |b+c〉 and thusXc|z〉 = |z+c〉. Let z, z′ ∈ Z1.
If ∂c 6= 0 then ∂(z+c) 6= 0 and z+c 6= z′. This implies 〈z′|Xc|z〉 = 0, so Xc can
map the code to itself only if c is a cycle. But errors Xb with b a boundary do
nothing, as Xb|z〉 = |z+ b〉 = |z〉. Therefore, only bit-flip errors Xz with z ∈ Z1

are undetectable. It follows that the distance of a surface code for bit-flip errors
is the length of the shortest nontrivial cycle. A similar analysis can be done for
Z errors, but we will postpone the discussion until we can use the language of
stabilizer operators. We anticipate that the distance for Z errors is given by the
shortest nontrivial cycle in the dual lattice.

4.2 Stabilizer Group

Given a vertex v and a face f , consider the face (“plaquette”) and vertex (“star”)
Pauli operators

Xf :=
∏

e∈∂2f

Xe, Zv :=
∏

e|v∈∂1e

Ze, (12)

where ∂f and ∂e are understood as sets. These operators are depicted in Fig. 7,
where we can see that a vertex operator has support on the links that meet at a
vertex and a face operator has support on the edges that enclose the face. Using
the notation (9), we could have written Xf := X∂f in (12), but we wanted to
remark on the symmetry between vertex and face operators.

Vertex and face operators commute with each other. We claim that they gen-
erate the stabilizer of surface codes, as defined in (11). To check this explicitly,
consider the states

|c̃〉 :=
∏

f

1 +Xf

2

∏

v

1 + Zv

2
|c〉, c ∈ C1. (13)

10

v

fZv

Xf

Figure 7: The support of vertex and face stabilizer generators.

These states span the code defined by the stabilizers (12), because |c̃〉 is the
projection of |c〉 onto the code subspace. Notice that Zv|c〉 = −|c〉 if v ∈ ∂c,
and Zv|c〉 = |c〉 otherwise. Therefore, |c̃〉 = 0 if ∂c 6= 0. We next notice that the
first product in (13) can be expanded as a sum over subsets of faces {fi}:

∏

f

(1 +Xf) =
∑

{fi}

∏

i

X∂2fi =
∑

{fi}

X∂2(
∑

i fi)
=

∑

c2∈C2

X∂2c2 , (14)

where we have used (10). Since ∂2 is a group homomorphism, we can replace
the sum over 2-chains by a sum over 1-chains in the image of ∂2, up to a factor.
Therefore, for z ∈ Z1 we have

|z̃〉 :=
∏

f

(1 +Xf)

2
|z〉 ∝

∑

b∈B1

Xb |z〉 = |z〉. (15)

We get the same code subspace from the stabilizers (12) and the span of the
basis (11).

Notice the different role played by vertex and face operators. Face operators
are related to ∂2, and they stabilize the subspace with basis |c〉 := ∑

b∈B1
|c+

b〉, c ∈ C1. That is, face operators enforce that states should be a uniform
superposition of states on the same homology class. Vertex operators are related
to ∂1, and they stabilize the subspace with basis |z〉, z ∈ Z1. That is, vertex
operators enforce that states should have no boundary.

The stabilizer generators (12) are not all independent. As one can easily
check, they are subject to the following two conditions, and no more:

∏

f

Xf = 1,
∏

v

Zv = 1. (16)

Therefore, there are V + F − 2 independent generators. It follows from the
theory of stabilizer codes that the number of encoded qubits is

k = E − (V + F − 2) = 2− χ = 2g, (17)

which of course agrees with the value given after (11).

11

Figure 8: A lattice and its dual. Under duality, vertex and faces are inter-
changed, and so are vertex and face operators.

4.3 Dual lattice

Given a lattice embedded in a surface, we can construct its dual lattice. This is
illustrated in Fig. 8. The idea is that the faces of the original lattice get mapped
to vertices in the dual lattice, edges to dual edges, and vertices to dual faces.
We will use a hat ∗ to denote dual vertices f∗, dual edges e∗ and dual faces v∗,
in terms of their related faces f , edges e and vertices v of the original lattice,
respectively. Similarly, we have dual boundary operators

∂∗
1 : C∗

0 −→ C∗
1 , ∂∗

2 : C∗
1 −→ C∗

2 (18)

acting on dual chains c∗. To simplify notation, for generic 1-chains we will
consider c∗ and c to be unrelated objects. But, for single edges, e∗ denotes the
dual of e, so e∗ and e refer to the same physical qubit. The boundary operators
∂∗ produce the groups of dual cycles Z∗

1 and dual boundaries B∗
1 , and thus a

homology group

H∗
1 =

Z∗
1

B∗
1

≃ H1. (19)

Comparing the action of ∂ and ∂∗ on their respective lattices, we observe
that

e∗ ∈ ∂∗
1v

∗ ⇐⇒ v ∈ ∂1e, f∗ ∈ ∂∗
2e

∗ ⇐⇒ e ∈ ∂2f. (20)

Now, consider the effect of applying a transversal Hadamard gate W⊗E across
all qubits in a surface code. The code is mapped to a new subspace, described
by the stabilizers:

W⊗EXfW
⊗E =

∏

e∈∂2f

Ze =
∏

e∗|f∗∈∂∗

2 e
∗

Ze =: Zf∗

W⊗EZvW
⊗E =

∏

e|v∈∂1e

Xe =
∏

e∗∈∂∗

1v
∗

Xe =: Xv∗ . (21)

This is nothing but the surface code defined on the dual lattice! The moral is
that we can deal with phase-flip errors as we already did with X errors, but

12

working in the dual lattice. As a result, we have that the distance of a surface
code is the length of the shortest nontrivial cycle in the original or the dual
lattice.

As an example, consider periodic square lattices of size d× d embedded in a
torus, like the one in Fig. 9. These lattices produce what was the first example
of surface codes, the family of “toric codes”. The dual of the d×d square lattice
is again a d × d square lattice, and thus the distance is d because nontrivial
cycles have to wind around the torus, as shown in the figure. It follows that
these [[2d2, 2, d]] codes form a family of 2D local codes.

4.4 Logical operators

In the previous section we have learned that while it is useful to relate bit-flip
errors Xc to 1-chains c, phase-flip errors should be related to 1-chains c∗ in the
dual lattice. Thus, we will use the notation Zc∗ :=

∏
i Zei , where c∗ =

∑
i e

∗
i

for some edge subset {ei}. Any Pauli operator A can be written as

A = iαXcZc∗ , (c, c∗) ∈ C1 × C∗
1 , α ∈ Z4. (22)

Therefore, any Pauli operator can be visualized as a pair of chains (c, c∗) or,
to give it a physical flavor, as a collection of strings. These strings are of two
kinds, as they can live in the direct lattice (the X part) or the dual lattice (the
Z part). Strings can be open, if they have endpoints, or closed, if they form
a loop. An important property of closed string operators is that a direct and
a dual string anticommute if and only if they cross an odd number of times.
Notice that the oddness of the number of crossings is preserved up to homology.
This has to be the case because, for (b, b∗) ∈ B1 ×B∗

1 and (z, z∗) ∈ Z1×Z∗
1 , Xz

and Zz∗ commute if and only if Xz+b and Zz∗+b∗ commute.
The relationship between N(S)/S and Z1/B1 will now become clear. First,

it is easy to check that

[Xc, Zv] = 0 ⇐⇒ v 6∈ ∂1c, [Zc∗ , Xf∗] = 0 ⇐⇒ f∗ 6∈ ∂∗
2c

∗, (23)

as illustrated in Fig. 9. Consider any Pauli operator A as in (22). It follows
from (23) that A ∈ N(S) if and only if (c, c∗) ∈ Z1 × Z∗

1 . What about the
elements of the stabilizer S? An arbitrary stabilizer element will have the form
B =

∏
iXfi

∏
j Zvj for some subset of faces {fi} and some subset of vertices

{vj}. We can apply the same trick as in (14), obtaining B = X∂2c2Z∂∗

1 c
∗

0
, where

c2 =
∑

i fi and c∗0 =
∑

i v
∗
i . Therefore, we see that A belongs to S if and only

if α = 0 and (c, c∗) ∈ B1 ×B∗
1 .

In summary, we have just seen that the elements of the normalizer N(S) are
labeled, up to a phase, by a cycle and a dual cycle, whereas the elements of the
stabilizer are labeled by a boundary and a dual boundary. The parallelism is
now apparent: we can label the elements of N(S)/S, up to a phase, with an
element of H1 ×H∗

1 . The cosets indeed take the form

{ iαXz+bZz∗+b∗ | (b, b∗) ∈ B1 ×B∗
1 , α ∈ Z4 }, (z, z∗) ∈ H1 ×H∗

1 . (24)

13

Z1

X1

Z2

X2

Figure 9: String operators in a toric code. X-type (Z-type) string operators
belong to the direct (dual) lattice and are displayed in a darker (softer) tone.
The two open string operators anticommute with the vertex or face operators at
their endpoints, marked with stars. Logical operators take the form of nontrivial
closed string operators. The labeling agrees with the fact that crossing string
operators of different types anticommute. This is a [[128, 2, 8]] code.

Setting S′ := 〈i1〉S, so that S′ is the center of N(S), we have

N(S)

S′
≃ H1 ×H∗

1 ≃ H2
1 . (25)

Recall from the theory of stabilizer codes thatN(S)/S describes logical Pauli
operators. In surface codes, we may therefore choose as generators of logical
Pauli operators a set of closed string operators, as in the toric code of Fig. 9.
Notice how the crossings and the required commutation relations match.

4.5 Boundaries

From a practical perspective, the 2D locality of surface codes can be very useful.
However, the fact that we need nontrivial topologies complicates things from a
geometrical perspective: it might be difficult to place qubits in a toroidal ge-
ometry. Fortunately, this obstacle can be overcome by introducing boundaries,
as we will see. Boundaries can create nontrivial topologies even in a plane,
which makes it possible to construct planar families of surface codes. Since a
homological description of boundaries requires discussing the concept of relative
homology, we will take an alternative route based on string operators.

In order to motivate the construction, we start with the following simple
example. Suppose that, in a surface code, we remove the stabilizer generators

14

Z

X

f f ′

Figure 10: When we remove two face stabilizer generators, a new encoded qubit
appears. A logical operator takes the form of an open dual string connecting
the missing faces and a direct closed string enclosing one of the holes.

corresponding to two separate faces f and f ′. We know that this must increase
the number of encoded qubits by one because, taking (16) into account, there
is one generator less. Which are the string operators for this encoded qubit?
The answer can be found in Fig. 10: a dual string operator with endpoints in
the faces belongs now to N(S). And a direct string that encloses f no longer
belongs to S, since it is the product of either all the face operators “inside”
it, which include Xf , or all the face operators “outside” it, which include Xf ′ .
These two strings cross once and thus provide the X and Z operators for the
new encoded qubit.

What is the distance of the new code? As we separate the two faces, the
distance for phase-flip errors will grow accordingly. However, bit-flips do not
behave like that, because a string that encloses f can be very small. Indeed,
the smallest possible such string operator is Xf itself. Thus, we have failed at
introducing an entirely global degree of freedom. Fortunately, the solution is at
hand. If the perimeter of the faces f and f ′ is large, the distance for phase-flip
errors will be large too.

The lesson is that we can introduce a nontrivial topology in the lattice by
“erasing big faces”. If we start with a sphere and remove h + 1 faces we will
end up with a disc with h holes. The resulting surface code encodes h qubits.
Naturally, we can do the same constructions in the dual lattice: removing r+1
vertices will introduce r new encoded qubits. Because of their appearance,
boundaries in the dual lattice are sometimes called “rough”, whereas boundaries
in the direct lattice are called “soft”. Fig. 11 shows an example of a geometry
with dual boundaries.

It is possible to describe boundaries in term of how they modify the notion
of closed and boundary strings. For example, direct (soft) boundaries give rise
to the following properties:

1. Dual string operators that have their two endpoints on a direct boundary
belong to N(S).

15

X1

X2

Z1

Figure 11: A piece of a surface code with two dual or “rough” boundaries,
one of them in the form of a hole. The direct string operator X1 belongs to
N(S) because its endpoints lie on the dual boundaries, but does not belong to
S as it does not enclose any region. The dual string operator Z1 is closed, so
Z1 ∈ N(S). It encloses a region, but this contains a piece of dual boundary and
thus Z1 6∈ S. Indeed, {X1, Z1} = 0 because the strings cross. As for the direct
string operator X2, it encloses a region that only contains dual boundaries, so
X2 ∈ S.

16

X

Z

Figure 12: A planar toric code. The top and bottom boundaries are direct, the
left and right dual. Nontrivial direct (dual) strings connect left and right (top
and bottom) boundaries, so that this is a [[85, 1, 7]] code.

2. Dual string operators that enclose a region that only contains direct bound-
aries belong to S.

The second property implies that two dual string operators that together en-
close such a region are equivalent up to stabilizers. Exchanging “direct” and
“dual” we recover the defining properties of dual (rough) boundaries. All this
is illustrated in Fig. 11.

In Fig. 12 we consider a somewhat more complicated geometry: four bound-
aries are combined to produce a planar toric code encoding a single qubit. Al-
though this lattice can be obtained by removing two faces and a vertex in a
sphere, there is no need to think this way: we only have to apply the rules
above to understand the code in terms of string operators. Planar toric codes
form a family of local [[2d(d− 1) + 1, 1, d]] codes.

4.6 Error Correction

Our next goal is the analysis of the correction of Pauli errors E in a surface code.
A Pauli error E can be written, up to unimportant phases, as E = XcZc∗ .
The first step in error correction is the measurement of stabilizer generators,
in this case vertex and face operators. The resulting syndrome is dictated by
(23): Vertex and face operators with eigenvalue −1 form the boundaries of
c and c∗, respectively. According to the syndrome, any error E′ = XdZd∗

with (∂d, ∂∗d∗) = (∂c, ∂∗c∗) may have happened. After choosing an applying
such an E′, error correction will be successful if and only if E′E ∈ S. Since

17

E′E ∝ Xc′+d′Zc∗+d∗ , it follows that error correction succeeds if and only if
(c′ + d′, c∗ + d∗) ∈ B1 ×B∗

1 . That is, when errors and corrections belong to the
same homology class, (c, c∗) = (d, d∗). It is in this sense that in surface codes
error correction must be done only up to homology, an advantage that has its
origin in the fact that these are highly degenerate codes.

What is the best strategy to choose E′? Assume an error model in which
Pauli errors E = XcZc∗ follow a probability distribution {pc,c∗}. Rather than
individual error probabilities, we are interested in the probability for the whole
set of errors with the same effect in the code, namely

Pr(c, c∗) :=
∑

b∈B1

∑

b∗∈B∗

1

pc+b,c∗+b∗ . (26)

The probability to obtain a given syndrome (∂c, ∂∗c∗) is

Pr(∂c, ∂∗c∗) :=
∑

z∗∈H1

∑

z∗∈H∗

1

Pr(c+ z, c∗ + z∗). (27)

Given a particular syndrome (∂c, ∂∗c∗), the optimal strategy is to choose an E′

from the class of errors (d, d∗) with highest conditional probability among those
with (∂d, ∂∗d∗) = (∂c, ∂∗c∗). The success probability is then

pmax(∂c, ∂
∗c∗) := max

(z,z∗)∈H1×H∗

1

Pr(c+ z, c∗ + z∗)

Pr(∂c, ∂∗c∗)
. (28)

The overall success probability for this optimal strategy is recovered by weight-
ing each syndrome with its probability, obtaining

psucc :=
∑

∂c,∂∗c∗

Pr(∂c, ∂∗c∗)pmax(∂c, ∂
∗c∗) =

=
∑

∂c,∂∗c∗

max
(z,z∗)∈H1×H∗

1

Pr(c+ z, c∗ + z∗). (29)

A very remarkable property of surface codes is that, in the limit of large lattices,
psucc → 1 when the noise is below a critical threshold. This will be the subject
of next section.

In practice, computing which class has the maximal probability for a given
syndrome might be costly, but there is an alternative approach. Notice that we
can treat X and Z errors separately, ignoring any possible correlations. Then
the problem reduces to choosing a 1-chain among those with a given boundary.
When errors on physical qubits are independent, a good guess is to choose
the chain c with minimal weight, a problem that can be solved on polynomial
time in the size of the lattice with the so-called perfect matching algorithm [3].
Since it is only an approximation, this technique provides a suboptimal critical
threshold.

18

4.7 Error Threshold: Random Bond Ising Model

There exists a useful connection between the error correction threshold of surface
codes and a phase transition in a 2D random bond Ising model. This connection
appears when we separate, as above, the correction of bit-flip and phase-flip
errors, ignoring any correlations. To fix ideas, we will study bit-flip erros, but
phase flip errors have an analogous treatment. We also fix the geometry to that
of toric codes, of variable size. We assume an error model where bit-flip errors
occur independently at each qubit with probability p. Since bit-flip errors are
represented by 1-chains c as above, we have a probability distribution {pc} with

pc := (1 − p)E−|c|p|c|. (30)

Here |c| denotes the number of edges of c and E the total number of edges.

4.7.1 Random Bond Ising Model

Our first step is to define a family of classical Hamiltonian spin models. Classical
spins are si = ±1 variables, with i a label, and we attach one of them to each
face. Alternatively, spins live at the vertices of the dual lattice, so that they are
connected by edges of the dual lattice. As it is customary, we denote neighboring
pairs of spins as 〈ij〉. We are interested in the family of classical Hamiltonians
of the form

Hτ (s) := −
∑

〈ij〉

τij sisj , (31)

where the τij = ±1 are parameters of the Hamiltonian that define the ferro-
magnetic (τij = 1) or antiferromagnetic (τij = −1) nature of the interactions.
We have thus a family of Ising models with arbitrary interaction signs. These
models exhibit a Z2 global symmetry, since flipping all spins at once does not
change the energy. The equilibrium statistics of the system are described by the
partition functions, which are

Z(β, τ) =
∑

s

e−βHτ (s). (32)

Here β = 1/T is the inverse temperature.
Notice that the τ = {τij} are 1-chains in disguise: since edges are labeled

by pairs 〈ij〉, we can label the coefficients of 1-forms with such pairs, c = {cij}
and then set (τc)ij = (−1)cij . Similarly, we can attach to each b ∈ B1 a spin
configuration sb by choosing a 2-chain d with ∂d = b and setting (sb)i := (−1)di .
Notice that here we are labeling 2-chain coefficients with spin labels, which is
fine because spins live at faces of the direct lattice. Also, let as define a product
on spin configurations: s′′ = s′ · s stands for s′′i = s′isi. We can now express in
a simple way a crucial property of the model, illustrated in Fig. 13:

Hτc+b
(s) = Hτc(s · sb). (33)

Thus, homologically equivalent interaction configurations give equivalent sys-
tems, up to a transformation on the spin variables. On the other hand, if we

19

Figure 13: The Ising model for a toric code. Classical±1 spins live at plaquettes.
Neighboring spins can interact ferro- or antiferromagnetically. If we switch all
spins in the shaded region and at the same time also switch the sign of the
interactions along its boundary, the energy is unchanged. But if we switch the
sign along a nontrivial cycle like the one depicted by the bold line, this cannot
be absorbed through spin switching.

change the sign of the interactions along a nontrivial loop, as the one of Fig. 13,
this cannot be absorbed by a change of variables. For example, in a ferromag-
netic system changing interactions along such a loop creates frustration: the
new ground states gain an energy proportional to the length of the minimal
loop with the same homology. This suggests introducing the notion of domain
wall free energy for a given z ∈ H1, z 6= 0:

∆z(βp, τc) := F (βp, τc+z)− F (βp, τc), (34)

where F (β, τ) = −T logZ(β, τ) is the free energy of a given interaction config-
uration τ .

Rather than individual systems with Hamiltonian Hτ , we are interested
in the random bond Ising model, a statistical model obtained by making the
parameter τ a quenched random variable. That is, τ is random but not subject
to thermal fluctuations. We choose a probability distribution {pτ} such that
each τij has an independent probability p of being antiferromagnetic. This will
allow us later to connect with error correction, since pτc = pc.

In thermal equilibrium the model has two parameters, the temperature T
and the probability p. For p = 0, where we recover the standard Ising model,
the system exhibits an order-disorder phase transition at a critical temperature
Tcrit. For low temperatures the system is ordered, as it spontaneously breaks
the global Z2 symmetry, and for high temperatures it is disordered. Order can
also be destroyed at T = 0 by increasing the disorder till we reach a critical
value p = p0. More generally, we can distinguish two regions in the pT plane,
an ordered one at low T and p, and a disordered one, as sketched in Fig. 14. For
the connection with error correction we will only be interested in the Nishimori

20

p

T pcrit

Tcrit

p0

Figure 14: Phase diagram of the random bond Ising model. p is the probability
of antiferromagnetic bonds and T the temperature. The curve separates the low
p, low T ordered phase from the disordered phase. The Nishimori line is shown
as a dotted line. The critical probability pcrit along the Nishimori line gives the
error threshold for error correction.

line [4], defined by

e−2β =
p

1− p
. (35)

As we will see, the critical probability for error correction to be possible is given
by the critical probability pcrit along the Nishimori line, see Fig. 14. A witness
of the ordering is the domain wall free energy

[∆z(β, τ)]p :=
∑

τ

pτ ∆z(β, τ), (36)

suitably averaged over quenched variables. This quantity diverges with the
system size in the ordered phase and attains some finite limit in the disordered
one.

4.7.2 Mapping and Error Threshold

In order to express the homology class probabilities Pr(c) in terms of the parti-
tion function (32), we first observe that

pc = (2 coshβp)
−Ee−βpHτc (s0), (37)

with βp := log((1 − p)/p)/2 the inverse temperature in the Nishimori line (35)
for a given p. Using (33) we get the desired result:

Pr(c) = 2−1(2 coshβp)
−E Z(βp, τc), (38)

where the extra factor of 2 comes from the constraint (16) or, equivalently, the
global symmetry of the Ising model under spin inversion. We have then

Pr(c+ z)

Pr(c)
= e−β∆z(βp,p), (39)

21

which shows that the homology class c is much more probable than the other
candidates when the domain wall energy is big. For the average success probabil-
ity psucc in (29) to be close to one, those syndromes that are most probable must
be such that one class dominates, which implies a big average domain wall en-
ergy (36). Indeed, it can be shown that if psucc → 1 then [∆z(β, τ)]p diverges [5],
which establishes the connection between the error correcting threshold and the
critical probability along the Nishimori line, which is

pcrit ≃ 0.11. (40)

5 Color Codes

Surface codes are not very rich in terms of the gates that they allow to imple-
ment trough transversal operations. Since they are CSS codes, they allow the
transversal implementation of CNot gates. And, of course, we can implement
X and Z operators transversally. But that is all there is to it.

To go beyond these gates we need to consider a different class of topological
codes: color codes. As we will see, this class of codes includes a family of planar
codes that allow the transversal implementation of the whole Clifford group of
gates.

5.1 Lattice and Stabilizer Group

Surface codes can be built out of any lattice embedded in a closed manifold. In
the case of color codes, we need to consider a particular kind of lattices: those
that are 3-valent and have 3-colorable faces. That is, the lattice must be such
that

1. three edges meet at each vertex and

2. it is possible to assign one of three labels to each face in such a way that
neighboring faces have different labels.

It is customary to choose as labels the colors red, green and blue: r,g,b. The
most basic example of such a lattice is the honeycomb lattice, which can be
embedded in a torus, see Fig. 15. Notice that in a color code lattice we can also
attach a color to edges: red edges are those that do not form part of red faces,
and similarly for green and blue edges.

In order to construct a color code from such a lattice the first step is to
attach a qubit to each vertex. Next we need the stabilizer generators, of which
there are two per face f :

Xf :=
∏

v∈f

Xv, Zf :=
∏

v∈f

Zv, (41)

where Xv, Zv are the X,Z Pauli operators on the qubit at the vertex v and
v ∈ f is a symbolic notation to denote that v is part of the face f . Notice

22

r

g

b

f

Figure 15: Color codes are defined on 3-valent lattices with 3-colorable faces,
like the honeycomb. We label faces as red, green and blue (r,g,b), as it is
customary, and distinguish them with 3 tones of grey. Qubits are places on
vertices. There are two generators of the stabilizer per face, Xf and Zf , with
the support shown.

that, as surface codes, color codes are CSS codes with local generators. The
“plaquette” operators (41) are shown in Fig. 15.

As in (16), the stabilizer generators (41) are not independent. They are
subject to four constraints. In order to write them, let us denote by Fr, Fg and
Fb the sets of red, green and blue faces, respectively. It is not difficult to check
that the constraints are

∏

f∈Fr

Xf =
∏

f∈Fg

Xf=
∏

f∈Fb

Xf ,

∏

f∈Fr

Zf =
∏

f∈Fg

Zf =
∏

f∈Fb

Zf . (42)

Thus, the number of independent stabilizer generators is

g = 2(|Fr|+ |Fg|+ |Fb|)− 4. (43)

This allows us to immediately compute the number of encoded qubits. Namely,
since there are 2E physical qubits

k = n− g = 2(E − |Fr| − |Fg| − |Fb|+ 2). (44)

However, to express k in terms of topological invariants we need a geometrical
construction, which is our next topic.

5.2 Shrunk Lattices

Out of a color code lattice we want to build three other “shrunk” lattices,
labeled by the color of the faces that are actually shrunk. Let us focus on the
red shrunk lattice; the green and blue are analogous. The vertex of the new

23

Figure 16: Any shrunk lattice of a honeycomb lattice is triangular. Here we
show the green shrunk lattice and a string γ. The qubits in the support of Xg

γ

and Zg
γ are marked with circles along the string. They come in pairs, with each

pair related to an edge of the green shrunk lattice.

lattice correspond to red faces, which are in this sense shrunk to points. Edges
come from those edges that connect red faces, that is, red edges. As for faces,
there is one for each green and blue face of the original lattice. The construction
is demonstrated in Fig. 16.

Now, let V r, Er, F r denote the number of vertices, edges and faces of the red
shrunk lattice. We get using (1, 2, 44) that the number of encoded qubits is

k = 2(Er − V r − F r + 2) = 2(2− χ) = 4g. (45)

That is, encoded qubits have a topological origin! Notice that the number of
encoded qubits doubles that of surface codes. The origin of this doubling will
become clear when we explore string operators.

5.3 String Operators

Given a loop or closed string γ in a color code lattice, we can construct out of
it six different string operators: Xc

γ and Zc
γ ,with c = r, g, b a color. They take

the form
Xc

γ :=
∏

v∈V γ
c

Xv, Zc
γ :=

∏

v∈V γ
c

Zv, (46)

where the set V c
γ contains those vertices that belong to a c-colored edge of γ.

Indeed, the support of a string operator is best understood in terms of the
shrunk lattice, as explained in Fig. 17.

We next list several properties of string operators that are easy to check.
String operators obtained from closed strings belong to the normalizer N(S).
For a given closed string γ there are only four independent string operators
because

Xr
γX

g
γX

b
γ = 1, Zr

γZ
g
γZ

b
γ = 1. (47)

In this sense, there are only two independent colors, so that it suffices to consider,
say, red and green strings. If two strings γ and γ′ cross an even number of

24

a

b

c

d e

Figure 17: A honeycomb color code in a torus, with five closed strings on
display. For each string the support of the string operators for a given color are
shown: blue for a, b, d, red for c and green for e. Those qubits at which two
string operators share support are marked with big circles. Strings a and b are
homologous and thus, for σ = X,Z, we have σb

a = Aσb
b with A ∈ S the product

of the face operators σf marked between a and b. String c is homologically
trivial and thus σr

c ∈ S: it is obtained as the product of face operators σf

marked in the region enclosed by c. Strings d and e are homologous, but due to
the different colors σb

dσ
g
e 6∈ S. Strings a and d cross, but because the color is the

same we get [Xb
a , Z

b
d] = 0, and similarly for b and d. Strings a and e cross, and

due to the different coloring we have {Xb
a , Z

g
e} = 0, and similarly for strings b

and e.

25

X1, Z2

X3, Z4

X2, Z1X4, Z3

Figure 18: A [[96,4,8]] color code in a torus. Logical operators Xi, Zi take the
form of four blue string operators and four green string operators. The marked
qubits form the support of a local operator. If such an operator belongs to
N(S), then it belongs to S because it clearly commutes with logical operators.

times their operators commute. If they cross an odd number of times, we have
[Xc

γ , Z
c
γ] = 0 and {Xc

γ , Z
c′

γ } = 0 for c 6= c′, see Fig. 17.
A question without such an immediate answer is: when does a string operator

belong to the stabilizer and when are two string operators equivalent as logical
operators in N(S)/S? As in surface codes, the answer lies in homology: the
trick is to think in terms of the shrunk lattice. For example, considerX-type red
string operators. We can regard any γ as a loop in the red shrunk lattice. If γ
and γ′ are homologically equivalent, they enclose a region in the shrunk lattice.
This region corresponds to a set of green and blue faces in the original lattice.
As one can easily check, we have then Xr

γ = sXr
γ′ with s ∈ S the product of the

corresponding X-type face operators. It follows that boundary strings produce
elements of S and that homologically equivalent strings produce, for each type of
operator, equivalent operators up to stabilizers. All this is illustrated in Fig. 17.

We are now ready to choose logical operators for a given surface. Indeed,
the task is almost the same as in surface codes, but now we have to take color
into account. In particular, strings of two colors are needed, which is at the
origin of the doubling of encoded qubits with respect to surface codes. As an
example, we show a choice of logical operators for a torus in Fig.18. We adopt
the convention that Xi and Zi logical operators are obtained respectively from
X-type and Z-type string operators.

26

Figure 19: A string-net operator. It can be transformed into a green string
operator by taking the product with the face operators from the marked faces.

The fact that logical operators can be chosen to be string operators has an
important consequence that is not specific of color codes but common to 2D
topological codes. If a region R is such that we can choose a set of logical
operators with support out of it, any operator with support in R that belongs
to N(S) must belong to S. Since strings can be deformed, this is in particular
true for any “local” region, such as the one in Fig. 18. In the case of regular
lattices and due to the locality of stabilizer generators, this implies that the code
distance will grow with the lattice. Thus, color codes are indeed local codes.

5.4 String-Nets

We could be tempted to believe that the distance in a color code is given by the
smallest weight among string operators of nontrivial homology. This holds in
all the examples that we shall present, but in general it is not true. The reason
is that we can combine strings to form nets, resulting in smaller weights.

In order to understand what these string-nets are, take any green string and
consider deforming part of it not by taking the product with the blue and red
face operators in an adjacent region, as we should, but with the red and green
face operators, as if it were a blue string. The result, as Fig. 19 shows, is not a
string any more, but a net of three strings. The deformation has created a piece
of blue string, leaving a red string where the piece of green string to be deformed
was. The moral is that strings can have branching points and form string-nets.
At each branching point three strings, one of each color, must meet. Although
string-nets are not necessary to construct logical operators in closed surfaces,
we will see how they can become essential in the presence of boundaries.

5.5 Boundaries

As in surface codes, in color codes we can obtain boundaries by erasing “big”
faces from the lattice. There are thus three kinds of boundaries, one per color.
To make the idea clear, we consider blue boundaries. These are obtained by
erasing a blue face, so that blue strings can have endpoints at the boundaries,
but not green or red ones. The properties of boundaries in color codes are

27

analogous to those in section 4.5:

1. Blue string operators that have their two endpoints on a blue boundary
belong to N(S).

2. Blue string operators that enclose a region that only contains blue bound-
aries belong to S.

It is worth noting that these three kinds of boundaries are not exhaustive. For
example, it is possible to have boundaries where only X-type string operators
can have endpoints. But we will not need this more general cases.

From the constraints (42) we can infer the number of encoded qubits in
geometries with boundaries: For each new face that we erase, we add two qubits,
unless we have only erased a single face of a different color previously. In this
latter case we add no qubits. For example, if in a sphere we remove one face of
each color the resulting color code encodes two qubits. We will next discuss a
closely related geometry that encodes a single qubit.

5.6 Transversal Clifford Group

We can finally introduce the family of color codes that allows the transversal
implementation of the whole Clifford group of gates: triangular codes. From a
topological perspective, these are planar codes with the geometry of a triangle
in which each side is a boundary of a different color, as depicted in Fig.(20).
How many qubits are encoded with such a topology? A bit of experimentation
can convince one that there is only one nontrivial class of string-nets, shown in
the figure. There is something very special about this string-net. Denote it by
µ. Then we have {Xµ, Zµ} = 0, so that the encoded Pauli operators X = Xµ

and Z = Zµ can be chosen to have the same geometry!
Notice that any color code is invariant under the action of a transversal

Hadamard gate Ŵ := W⊗V , where V is the number of vertices/qubits, because

ŴXfŴ = Zf and ŴZfŴ = Xf . For the triangular geometry we have in

addition ŴXŴ = Z and ŴZŴ = X , simply because geometrically X and Z
are the same.

Since CNot gates are automatically transversal in a CSS code, all we need is
to find a way to implement the phase gate P transversally. The obvious guess is
to use P̂ := P⊗V but, does it leave the code invariant? In general no, because
P̂Zf P̂ = Zf but P̂Xf P̂ = (−1)t/2XfZf , with t the number of vertices of the
face f . All we have to do then is to find lattices where all faces have a number of
edges that is a multiple of four. This is indeed possible using the so-called 4-8-8
lattice, as in Fig. 20. As for the effect of P̂ , it gives either an encoded P or −P ,
because X always has support on an odd number of qubits (otherwise, it could
not have the same support as Z). As a result, we have obtained a family of 2D
local codes that allow the transversal implementation of any Clifford gate.

28

X Z

Figure 20: A [[73, 1, 9]] triangular color code, based on a 4-8-8 lattice. The
bottom boundary is red, the right one green and the left one blue. There is only
one class of nontrivial string-nets, call it µ. That Xµ and Zµ anticommute can
be understood topologically by considering the string-net and a deformation of
it, as in this figure, and noting that they cross once at a point where they have
different colors.

5.7 Homology

In the case of surface codes, we started by giving a homological definition and
from that we obtained a description in terms of a stabilizer group. For color
codes the definition has been in terms of the stabilizer, but we can now obtain
from it a homological description by undoing our steps for surface codes.

Before we do this, it is useful to change our picture of color codes by switching
to the dual lattice. The dual of a color code lattice has triangular faces and
three colorable vertices. For example, the honeycomb lattice has as its dual the
triangular lattice of Fig. 21. Notice that in the dual picture qubits are attached
to triangles and stabilizer generators to vertices.

In our search for the “color homology”, we start observing that, since qubits
are attached to triangles, 1-chains should be composed of triangles. We have
thus a group C△

1 with elements that are formal sums of triangles. As for 0-chains
and 2-chains, they must be composed of the geometrical objects attached to Z
and X stabilizer generators, respectively. For color codes they are the same: we
take the elements of C△

0 = C△
2 to be formal sums of vertices.

The next step is to build the boundary morphisms ∂. This is dictated by
the geometry of stabilizer generators. The morphisms ∂△

2 : C△
2 −→ C△

1 and

∂△
1 : C△

1 −→ C△
0 are dual to each other:

∂△
2 v =

∑

f |v∈f

f, ∂△
1 f =

∑

v∈f

v. (48)

where v stands for a vertex and f for a triangular face. The action of the

29

∂1

∂1

∂2

∂2

Figure 21: The action of “color” boundary operators. ∂2 maps a set of vertices
to the set of triangles to which an odd number of vertices belong. ∂1 maps a
set of triangles to to the set of vertices where an odd number of these triangles
meet.

boundary operators is illustrated in Fig. 21. Boundary morphisms give rise to a
group of cycles Z△

1 and a group of boundaries B△
1 , with B△

1 ⊂ Z△
1 . In a closed

surface the resulting homology group must be

H△
1 :=

Z△
1

B△
1

≃ H1 ×H1, (49)

because we know that there are two independent “homology structures”, one
per independent color.

Once we have a homological language for color codes, we can immediately
apply all the results on error correction of section 4.6. Color codes also attain in
the limit of large lattices psucc → 1 when the noise is below a critical threshold.
The main difference with error correction in surface codes is algorithmic, at
least under the simplifying approach that led to length minimization. Here this
approach leds to the problem of finding a triangle chain of minimum weight for
a given boundary, which cannot be solved using the perfect matching algorithm.

5.8 Error Threshold: Random 3-Body Ising Model

As in the case of surface codes, the error correction threshold of color codes
is connected to a phase transition in a 2D statistical model: a random 3-body
Ising model. Given the similarities of the mappings, we will only discuss those
aspects that are different with respect to surface codes, and the assumptions
are the same. We consider two geometries, the honeycomb lattice and the 4-8-8
lattice that allows the transversal implementation of P . Or rather, the duals of
these lattices, the triangular lattice and the so-called Union Jack lattice, shown
in Fig. 22.

A question that comes to mind immediately is: do the transversality proper-
ties have a cost in terms of the error threshold? Surprisingly, the answer turns
out to be negative.

30

Figure 22: Triangular lattice (left) and Union Jack lattice (right). These are
dual of the honeycomb and 4-8-8 lattices, respectively.

5.8.1 Random 3-Body Ising Model

This time classical spins are attached to the vertices of the dual lattice, so that
we can talk of red, green and blue spins. Each triangular face can be given as
a triad of vertices 〈ijk〉. The Hamiltonians take the form

Hτ (s) := −
∑

〈ijk〉

τijk sisjsk, (50)

where the τijk = ±1 are again parameters of the Hamiltonian that determine
the sign of the 3-body interactions. Instead of the Z2 symmetry of the 2-body
Ising models, these models exhibit a Z2 ×Z2 global symmetry: for any color of
choice, flipping all the spins of the two other colors leaves the energy unchanged.
Equation (33) still holds, with the obvious definitions for τc and sb, c ∈ C△

1 ,

b ∈ B△
1 . The rest of details of the model are analogous to those for toric codes,

including the phase diagram.

5.8.2 Mapping and Error Threshold

The mapping works essentially as in toric codes. There is only a slight difference,
that the factor due to global symmetry is now 4:

Pr(c) = 4−1(2 coshβp)
−F Z(βp, τc), (51)

where F is the number of triangles. As for the critical probability, for both
lattices we have

pcrit ≃ 0.11, (52)

the same as for toric codes!

6 Conclusions

Topological codes are naturally local, which makes them appealing for practical
implementations with locality constraints. We have described two classes of
topological codes, surface codes and color codes. The main difference between
them is that color codes allow the transversal implementation of more gates,

31

even of all the gates in the Clifford group. Although topological codes were
initially described in closed surfaces, it is possible to construct planar versions
by introducing carefully designed boundaries.

We have emphasized the role of homology in topological codes, which of-
fers a unified picture of surface and color codes. The first homology group is
obtained as a quotient Z1/B1, and the very essence of topological codes is the
identification of this quotient with N(S)/S, the quotient that gives logical op-
erators in stabilizer codes. That is, stabilizer elements correspond to boundary
loops, normalizer elements to closed loops and logical operators to elements of
the homology group.

From the point of view of error correction, topological codes exhibit two
remarkable facts. One is that error correction must be done only up to homology,
due to the high degeneracy of the codes. The other is the existence of an error
threshold: for noise levels below this threshold, in the limit of large systems error
correction is asymptotically perfect. For error models with uncorrelated bit-flip
and phase flip errors, those for which the critical threshold is well understood,
the critical error probability is pcrit ≃ 0.11.

7 History and Further Reading

Topological codes started their history with the introduction by Kitaev of the
toric code [6, 7]. It was soon realized that boundaries allow one to build planar
codes [8, 9]. The basic reference on surface codes is [3]. This work introduced,
among other things, the concept of topological quantum memory: in the limit
of large surface codes, there exists an error threshold below which quantum
information can be preserved arbitrarily well. It also discusses higher dimen-
sional toric codes and shows the connection between accuracy thresholds in
error correction and phase transitions in statistical models, a subject developed
in [10–12] and other works. Another concept introduced in [3] is that of code
deformation: the lattice defining the code can be progressively transformed lo-
cally, for example to encode information by “growing” the lattice as a crystal.
It was later realized that this can be used to initialize, measure and perform
gates on encoded qubits [13, 14], something closely related to the fault-tolerant
one-way quantum computing scheme of [15]. Recent examples of how research
on toric codes continues more than a decade after their introduction are a study
on loss errors [16] and a new algorithm for error correction based on renormal-
ization [17].

2D color codes were introduced in [18] and soon a generalization to 3D
followed [19]. The advantage of 3D color codes is that they allow the transversal
implementation of the CNot gate, the π/8 phase gate and X , Z measurements:
a universal set of operations for quantum computing. The statistical models
related to error correction in 2D color codes have been recently studied in [20,21].

Surface codes and color codes are not the end of the story. Other interesting
topological codes might still be awaiting their discovery. Among recent develop-
ments we find topological subsystem codes [5] and Majorana fermion codes [22].

32

New ways to exploit already known codes are also valuable. Twists, recently in-
troduced in [23], exemplify this, as they offer a new tool for constructing planar
topological codes with enhanced code deformation capabilities.

Topological codes give rise naturally to condensed matter systems in which
the ground state corresponds to the encoded subspace [7]. These topologically
ordered systems are stable against perturbations at T = 0: local modifications
of the Hamiltonian, if not too big, do not affect the physics [24]. The effect of
thermal noise depends on the spatial dimension of the system: in two dimen-
sions topological order is destroyed [25], but in four dimensions it can be resilient
to noise [26], giving rise to a self-correcting quantum memory. In six dimen-
sions it is even possible to put together such self-correcting capabilities and the
nice transversality properties of 3D color codes [27] to obtain a self-correcting
quantum computer.

The excitations exhibited by 2D topologically ordered systems are gapped
and localized. This quasiparticles, called anyons, have unusual statistics, neither
bosonic nor fermionic. Indeed, they give rise to non-local, topological degrees of
freedom that can be manipulated by moving the anyons around. This offers a
new way to perform quantum computations: topological quantum computation
[7,28]. A good introduction to this topic is [29]. In higher dimensions excitations
take the form of extended objects called branyons in [30].

References

[1] S. Bravyi and B. Terhal, “A no-go theorem for a two-dimensional self-
correcting quantum memory based on stabilizer codes,” New J. Phys.,
vol. 11, p. 043029, 2009.

[2] A. Hatcher, Algebraic topology. Cambridge University Press, 2002.

[3] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” J. Math. Phys., vol. 43, p. 4452, 2002.

[4] H. Nishimori, “Internal energy, specific heat and correlation function of the
bond-random Ising model,” Prog. Theor. Phys., vol. 66, no. 4, pp. 1169–
1181, 1981.

[5] H. Bombin, “Topological Subsystem Codes,” Phys. Rev. A, vol. 81,
p. 032301, 2010.

[6] A. Kitaev. Quantum error correction with imperfect gates, in Quantum
Communication, Computing and Measurement,(eds.) Hirota, Holevo and
Caves, 181–188 (Plenum Press, New York, 1997).

[7] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann. Phys.,
vol. 303, no. 1, pp. 2–30, 2003.

[8] S. Bravyi and A. Kitaev, “Quantum codes on a lattice with boundary..”
eprint arXiv.org:quant-ph/9811052.

33

[9] M. Freedman and D. Meyer, “Projective plane and planar quantum codes,”
Found. Comp. Math., vol. 1, no. 3, pp. 325–332, 2001.

[10] C. Wang, J. Harrington, and J. Preskill, “Confinement-Higgs transition in a
disordered gauge theory and the accuracy threshold for quantum memory,”
Ann. Phys., vol. 303, no. 1, pp. 31–58, 2003.

[11] T. Ohno, G. Arakawa, I. Ichinose, and T. Matsui, “Phase structure of the
random-plaquette Z2 gauge model: accuracy threshold for a toric quantum
memory,” Nuc. Phys. B, vol. 697, no. 3, pp. 462–480, 2004.

[12] K. Takeda and H. Nishimori, “Self-dual random-plaquette gauge model and
the quantum toric code,” Nuc. Phys. B, vol. 686, no. 3, pp. 377–396, 2004.

[13] R. Raussendorf, J. Harrington, and K. Goyal, “Topological fault-tolerance
in cluster state quantum computation,” New J. Phys., vol. 9, p. 199, 2007.

[14] H. Bombin and M. Martin-Delgado, “Quantum measurements and gates
by code deformation,” J. Phys. A: Math. and Theor., vol. 42, p. 095302,
2009.

[15] R. Raussendorf, H. J., and G. K., “A fault-tolerant one-way quantum com-
puter,” Ann. Phys., vol. 321, no. 9, pp. 2242–2270, 2006.

[16] T. Stace, S. Barrett, and A. Doherty, “Thresholds for topological codes in
the presence of loss,” Phys. Rev. Lett., vol. 102, no. 20, p. 200501, 2009.

[17] G. Duclos-Cianci and D. Poulin, “Fast decoders for topological quantum
codes,” Phys. Rev. Lett., vol. 104, no. 5, p. 50504, 2010.

[18] H. Bombin and M. Martin-Delgado, “Topological quantum distillation,”
Phys. Rev. Lett., vol. 97, no. 18, p. 180501, 2006.

[19] H. Bombin and M. Martin-Delgado, “Topological computation without
braiding,” Phys. Rev. Lett., vol. 98, no. 16, p. 160502, 2007.

[20] H. Katzgraber, H. Bombin, and M. Martin-Delgado, “Error Threshold for
Color Codes and Random 3-Body Ising Models,” Phys. Rev. Lett., vol. 103,
p. 090501, 2009.

[21] H. Katzgraber, H. Bombin, R. Andrist, and M. Martin-Delgado, “Topo-
logical color codes on Union Jack lattices: A stable implementation of the
whole Clifford group,” Phys. Rev. A (2010), vol. 81, p. 012319, 2010.

[22] S. Bravyi, B. Terhal, and B. Leemhuis, “Majorana fermion codes,” New J.
Phys., vol. 12, p. 083039, 2010.

[23] H. Bombin, “Topological order with a twist: Ising anyons from an abelian
model,” Phys. Rev. Lett., vol. 105, no. 3, p. 30403, 2010.

34

[24] S. Bravyi, M. Hastings, and S. Michalakis, “Topological quantum order:
stability under local perturbations.” eprint arXiv:quant-ph/1001.0344.

[25] R. Alicki, M. Fannes, and M. Horodecki, “On thermalization in Kitaevs 2D
model,” J. Phys. A: Math. and Theor., vol. 42, p. 065303, 2009.

[26] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki, “On thermal
stability of topological qubit in Kitaev’s 4D model.” eprint arXiv:quant-
ph/0811.0033.

[27] H. Bombin, R. Chhajlany, M. Horodecki, and M. Martin-Delgado, “Self-
correcting Quantum Computer.” eprint arXiv:quant-ph/0907.5228.

[28] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, “Topological quantum
computation,” B. Am. Math. Soc., vol. 40, no. 1, pp. 31–38, 2003.

[29] J. Preskill. Lecture notes on Topological Quantum Computation,
http://www.theory.caltech.edu/ preskill/ph219/topological.pdf.

[30] H. Bombin and M. Martin-Delgado, “Exact topological quantum order in
D= 3 and beyond: Branyons and brane-net condensates,” Phys. Rev. B,
vol. 75, no. 7, p. 75103, 2007.

35

	1 Introduction
	2 Local Codes
	3 Surface Homology
	3.1 Topology of Closed Surfaces
	3.2 Homology of Curves

	4 Surface Codes
	4.1 Definition
	4.2 Stabilizer Group
	4.3 Dual lattice
	4.4 Logical operators
	4.5 Boundaries
	4.6 Error Correction
	4.7 Error Threshold: Random Bond Ising Model
	4.7.1 Random Bond Ising Model
	4.7.2 Mapping and Error Threshold

	5 Color Codes
	5.1 Lattice and Stabilizer Group
	5.2 Shrunk Lattices
	5.3 String Operators
	5.4 String-Nets
	5.5 Boundaries
	5.6 Transversal Clifford Group
	5.7 Homology
	5.8 Error Threshold: Random 3-Body Ising Model
	5.8.1 Random 3-Body Ising Model
	5.8.2 Mapping and Error Threshold

	6 Conclusions
	7 History and Further Reading

