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Abstract 

With advances in technologies in the past decade, the amount of data 

generated and recorded has grown enormously in virtually all fields of 

industry and science. This extraordinary amount of data provides 

unprecedented opportunities for data-driven decision-making and 

knowledge discovery. However, the task of analyzing such large-scale 

dataset poses significant challenges and calls for innovative statistical 

methods specifically designed for faster speed and higher efficiency. In this 

chapter, we review currently available methods for big data, with a focus on 

the subsampling methods using statistical leveraging and divide and 

conquer methods.  
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The rapid development of technologies in the past decade has enabled 

researchers to generate and collect data with unprecedented sizes and 

complexities in all fields of science and engineering, from academia to 

industry. These data pose significant challenges on knowledge discovery. We 

illustrate these challenges with examples from three different areas below. 

 Higgs Boson Data: Discovery of the long awaited Higgs boson was 

announced on July 2012 and was confirmed six months later, leading to 

a Nobel Prize awarded in 2013 (www.nobelprize.org). A Toroidal LHC 

Apparatus (ATLAS), a particle detector experiment constructed at the 

Large Hadron Collider (LHC) in The European Organization for Nuclear 

Research (CERN) is one of the two LHCs that confirmed the existence 

of Higgs boson. The ATLAS generates astronomically large amount of 

raw data about particle collision events, roughly one petabyte of raw 

data per second (Scannicchio, 2010). To put it into more tangible terms, 

one petabyte is enough to store the DNA of the entire population of the 

USA; one petabyte of average MP3-encoded songs (on mobile phones, 

roughly one megabyte per minute) would require 2,000 years to play. 

However, the analysis of the data at the scale of even tens or hundreds 

of petabytes is almost unmanageable using conventional techniques 

since the computation cost becomes intimidating or even not affordable 

at all. 

 Biological Experiments: RNA-Seq experiments have been used 

extensively to study transcriptomes (Mortazavi et al., 2008, 

Nagalakshmi et al., 2008). They serve as one of the best tools so far for 

novel transcripts detection and transcript quantification in ultra-high 

resolution, by obtaining tens of millions of short reads. When mapped to 

the genome and/or to the contigs, RNA-Seq data are summarized by a 

super-large number of short-read counts. These counts provide a digital 

measure of the presence and/or prevalence of transcripts under 

consideration. In any genome-wide analysis, such as the bias correction 

model proposed by (Li et al., 2010), the sample size goes easily to 

millions, which renders the standard statistical computation infeasible.  

 State Farm Distracted Driver Detection Data: Huge datasets are often 

generated by commercial companies nowadays. A dataset has been 

released by State Farm, the insurance company. State Farm is 

interested in testing whether dashboard cameras can automatically 

detect drivers engaging in distracted behaviors. Two-dimensional 

dashboard driver images, each taken in a car with a driver doing 

something in the car (texting, eating, talking on the phone, applying 

makeups, reaching behind, etc.) are provided. The goal of statistical 

1 Introduction 
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analysis is to predict the likelihood of what the driver is doing in picture, 

i.e. whether computer vision can spot each driver’s distracted behavior, 

such as if they are not driving attentively, not wearing their seatbelt, or 

taking a selfie with their friends in the backseat. In this case, the 

complexity of big data, i.e. the raw data being in the form of images, 

poses the first problem before performing any statistical analysis: 

converting imaging data into the matrix form is needed. In this example, 

the testing data itself consists of 22,424 images of 26 drivers in 10 

scenarios, each with 60 to 90 images, and totaling the size of about 5 

GB. The explosion of data generated can be imagined as the time 

recorded and the number of drivers increases. 

The implication of big data goes well beyond the above. Facebook and Twitter 

generate millions of posts every second; Walmart stores and Amazon are 

recording thousands of millions of transactions 24 hours 7 day, etc. Super 

large and complicated datasets provide us with unprecedented opportunities 

for data-driven decision-making and knowledge discoveries. However, the task 

of analyzing such data calls for innovative statistical methods for addressing 

the new challenges emerging everyday due to the explosion of data.  

 

Without loss of generality, in the rest of this chapter we will assume that the 

datasets are already converted to numerical forms. Different statistical 

techniques will be discussed for analyzing large datasets. These datasets are 

so large that standard statistical analysis cannot be performed on a typical 

personal computer (PC). From a statistical point of view, the large data could 

arise in the following cases, either huge numbers of predictors, huge numbers 

of sample size, or both. In what follows, we will focus on the second scenario. 

Next we present the engineering solutions to this problem, point out the 

advantages and disadvantages, and then introduce the statistical solutions. 

 

1.1. Engineering Solutions 

For computer engineers, a straightforward way to reduce computing time is to 

resort to more powerful computing facilities. Great efforts have been made to 

solve the problem of big data by designing supercomputers. Many 

supercomputers have been built rapidly in the past decade, such as Tianhe-2, 

Bluewater and Blue Gene (www.top500.org). The speed and storage of 

supercomputers can be hundreds or even thousands of times faster and larger 

compared to that of a general-purpose PC. However, the main problem with 

supercomputers is that they consume enormous energy and are not 

accessible to ordinary users. Thus, although supercomputers can easily deal 

with large amounts of data very efficiently, they are still not a panacea. Instead, 

cloud computing can partially address this problem and make computing 

facilities accessible to ordinary users. Nonetheless, the major bottleneck 

encountered by cloud computing is the inefficiency of transferring data due to 
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the precious low-bandwidth internet uplinks, not to mention the problems of 

privacy and security concerns during the transfer process (Gai and Li, 2012). 

Another relatively new computational facility proposed is the graphic 

processing unit (GPU), which is powerful on parallel computing. However, a 

recently conducted comparison found that even high-end GPUs are 

sometimes outperformed by general-purpose multi-core processors, mainly 

due to the huge data transferring time (Pratas et al., 2012). In brief, none of the 

supercomputer, the cloud computing, GPUs solves the big data problem 

efficiently at this point (Chen and Zhang, 2014). Efficient statistical solutions 

are required, which makes big data problem manageable on general-purpose 

PCs.  

 

1.2. Statistical Solutions 

The statistical solutions are relatively novel compared to the engineering 

solutions. New methodologies are still under development. The methods 

available now can broadly be categorized into three groups: (1) divide and 

conquer method; (2) fine to coarse method; (3) sampling method. To be 

specific, we set our context as a dataset of 𝑛  identically distributed 

observations and one response variable with 𝑝 explanatory variables. Our 

statistical goal will be set as model estimation for now.  

 

1.2.1 Divide and Conquer Method  

The divide and conquer method solves big data problems in the following 

manner. First, the original big dataset is divided into 𝐾 small blocks that are 

manageable to the current computing facility unit. Then, the intended statistical 

analysis is performed on each small block. Finally, an appropriate strategy will 

be used to combine the results from these 𝐾  blocks. As a result, the 

computation for the divide and conquer method can easily be done in parallel. 

However, challenge lies in providing strategies for combining the results from 

smaller blocks. This is trivial for some models, like linear models or 

generalized linear models, for which the estimation procedures are linear by 

construction. More specifically, the estimating equations for the full data 

themselves can be written as a summation of all smaller blocks. The readers 

are referred to (Li et al., 2013) for more detailed discussion and theoretical 

properties for resulting estimators for a single parameter case. For other 

models, including but not limited to nonlinear parametric models (Lin and Xi, 

2011), nonparametric models based on kernel regression (Xu et al., 2015), 

and penalized generalized linear regression models (Chen and Xie, 2014), the 

divide and conquer method in general still lacks a universal combining strategy 

which can handle all these cases. 
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1.2.2 Fine to coarse method 

Another surprising yet proved to be effective idea proposed much recently is 

the fine to coarse method. In order to make intended algorithms for the big 

dataset scalable, statisticians introduced a simple solution: rounding 

parameters. Hence the continuous real numbers of data are simply rounded 

from higher decimal places to lower decimal places. A substantial number of 

observations are degenerated to be identical. This idea was successfully 

applied to the functional data analysis using smoothing spline ANOVA models. 

See (Helwig and Ma, 2016) for more details.  

 

1.2.3 Sampling Method 

Another more effective and more general solution for the big data problem is 

the sampling method. This means that we take a subsample from the original 

dataset with respect to a carefully designed probability distribution, and use 

this sample as a surrogate for the original dataset to do model estimation, 

prediction as well as statistical inference. The most important component for 

this method is the design of probability distribution for taking the sample. 

 

One naïve choice for the probability distribution is the simple uniform 

distribution. If we further set the subsample size as 𝑛, then it reduces to the 

procedure of bootstrap (Efron, 1979, Wu, 1986, Shao and Tu, 2012). On the 

other hand, a great deal of efforts has been spent on developing algorithms for 

matrix-based machine learning methods and data analyses that construct the 

random sample in a non-uniform data-dependent fashion (Mahoney, 2011). In 

particular, a large body of literature specifically pointed out that the 

subsampling probability distribution using the statistical leverage scores 

outperforms uniform sampling for different purposes, especially in matrix 

approximation related problems (Drineas et al., 2006, Mahoney and Drineas, 

2009, Drineas et al., 2011). Furthermore, efforts were put on studying the 

performance of leveraging based estimators from a statistical point of view (Ma 

et al., 2015, Ma and Sun, 2015).  

 

Overall, the main advantage of the sampling method is its general application 

to various model settings. Moreover, it will automatically give rise to a random 

sketch of the full data as a byproduct, which is useful for the purpose of data 

visualization. However, the nontrivial part of using sampling method is 

construction of sampling probability distribution, which plays a crucial role in 

sampling methods. The rest of this chapter is dedicated to elaborate on the 

different designs of sampling probability distributions. 
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In this section, we first introduce some general background of linear model, 

then discuss the general sampling method which deal with the linear model 

problem in big data. 

 

2.1 Classical Linear Regression Model 

Throughout the chapter, we define 𝑦  as the response vector, 𝑋  as the 

predictor matrix, 𝑛 as the number of data points and 𝑝 as the dimension of 

the predictors.  

We start with the classical linear regression model: 

𝑦 = 𝑋𝛽 + 𝜖, 

where 𝑦 is a 𝑛 × 1 vector, 𝑋 is an 𝑛 × 𝑝 matrix consisting of one intercept 

and 𝑝 − 1 explanatory variables and 𝛽 is the 𝑝 × 1 coefficient vector, 𝜖 is 

the noise term which is assumed to follow a multivariate normal distribution 

𝑁(0, 𝛿2𝐼). 

In linear models, the coefficient vector 𝛽 can be estimated by calculating the 

ordinary least square (OLS), that is: 

�̂�𝑂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝑦 − 𝑋𝛽‖2, 

where ‖·‖ represents the Euclidean norm on the n-dimensional Euclidean 

space 𝑅𝑛. When 𝑋 is full column rank, it can be shown that: 

�̂�𝑂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝑦 − 𝑋𝛽‖2 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦. 

Otherwise, when 𝑋 is singular, (𝑋𝑇𝑋)−1 should be replaced by a generalized 

inverse of 𝑋𝑇𝑋 . Consequently, the predicted response vector �̂�  can be 

represented as: 

�̂� = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦. 

The projection matrix, 𝑋(𝑋𝑇𝑋)−1𝑋𝑇, is often referred to as the hat matrix 𝐻 

since it looks like a hat on response vector 𝑦 to get �̂�. The hat matrix 𝐻 

plays a crucial role in subsequent analysis in Section 3.  

In order to get predicted response �̂� , it suffices to calculate 𝐻 , i.e.  

𝑋(𝑋𝑇𝑋)−1𝑋𝑇. For robustness concern, people usually carry out the required 

computations by using the singular value decomposition (SVD) instead of 

calculating the matrix inverse directly (Golub and Van Loan, 2012). 

 

Singular Value Decomposition 

Given any 𝑛 × 𝑝 matrix 𝑋, we can always decompose it to the form 

𝑋𝑛×𝑝 = 𝑈𝑛×𝑛Λ𝑛×𝑝𝑉𝑝×𝑝
𝑇 , 

where 𝑈 and 𝑉 are both orthonormal matrices and Λ is a diagonal matrix 

with all the singular values of 𝑋 on the diagonal. 

 

2 Statistical Formulation of Big Data Problem 
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Through some calculations, it can be shown that 𝐻 = 𝑈𝑈𝑇 , �̂�𝑂𝐿𝑆 =
(𝑋𝑇𝑋)−1𝑋𝑇𝑦 = 𝑉Λ−1𝑈𝑇𝑦.  

 

2.2 General Sampling Method 

As mentioned before, in the sampling approach we first choose a small subset 

of the full data, which we term as “subsampling step”, then use this sample to 

estimate the model parameters, which we term as “model-fitting step”. In the 

linear model setup, this approach can be utilized by sampling a small portion of 

rows from the input matrix 𝑋 and then by carrying out linear regression on the 

sample data. Putting this idea in the framework of linear model, we come up 

with the following algorithm.  

 

Algorithm 1: General Sampling Method in Linear Model 

Step 1 (Subsampling): Take a random sample of size 𝑟 > 𝑝 from the full data 

based on a sampling probability distribution {𝜋𝑖}𝑖=1
𝑛  such that ∑ 𝜋𝑖

𝑛
𝑖=1 = 1, 0 <

𝜋𝑖 < 1 . Record the chosen data as {𝑦𝑖
∗, 𝑋𝑖

∗}𝑖=1
𝑟 , along with the sampling 

probabilities for the chosen data {𝜋𝑖
∗}𝑖=1

𝑟 . 

 

Step 2 (Model-fitting): Use the subsample to fit a weighted least square with 

weight {1/𝜋𝑖
∗}𝑖=1

𝑟  and obtain the estimator 𝛽 as follows: 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽(𝑦∗ − 𝑋∗𝛽)𝑇𝑊(𝑦∗ − 𝑋∗𝛽), 

where 𝑊 = 𝐷𝑖𝑎𝑔({1/𝜋𝑖
∗}𝑖=1

𝑟 ) 

 

Remark 1: One may wonder why the weighted least square (WLS) 

instead of ordinary least square (OLS) is used in the second step. This is 

because the estimator resulting from Algorithm 1 is a conditional 

asymptotically unbiased estimator for �̂�𝑂𝐿𝑆, i.e., 𝐸(𝛽|𝑑𝑎𝑡𝑎) ≈ �̂�𝑂𝐿𝑆 and it is 

also an unbiased estimator for the true parameter, i.e. 𝐸(𝛽) = 𝛽 (Ma et al., 

2014, Ma et al., 2015). If OLS instead of WLS is used in the second step, 

the conditional asymptotically unbiasedness property will be lost. 

However, in that process of pertaining the unbiasedness, one can 

potentially end up with an estimator with a higher variance. More insights 

into the gains and losses for estimators result from weighted and 

unweighted least square estimation for subsample data will be given in 

Section 4.   

 

Remark 2: Although not explicitly described, asymptotic evaluation of 𝛽 

shows that the sampling probability distribution {𝜋𝑖}𝑖=1
𝑛  plays an essential 

role in the property of the resulting 𝛽, especially in the variance of 𝛽. The 

main goal of the rest of the chapter is to propose a computationally 

efficient design of {𝜋𝑖}𝑖=1
𝑛  for better estimation accuracy.  
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In this section, we introduce two examples of the general sampling methods, 

the Uniform Sampling Method and Basic Leverage Sampling Method, and give 

illustrations on the advantages as well as disadvantages of both algorithms.  

 

3.1 Uniform Sampling Method 

The most naïve version of the sampling method is to apply the algorithm with 

uniform probabilities, i.e. 𝜋𝑖 =
1

𝑛
 , for 𝑖 = 1,2, … , 𝑛. In this particular situation, 

the WLS in step 2 reduces to the OLS.  

 

Algorithm 2: Uniform Sampling Method in Linear Model 

Step 1 (Subsampling): Take a random sample of size 𝑟 > 𝑝 from the full data 

using a uniform sampling distribution and denote the subsample as 

{𝑦𝑖
∗, 𝑋𝑖

∗}𝑖=1
𝑟 . 

 

Step 2 (Model-fitting): Using the subsample to fit the least square, obtain the 

estimator 𝛽𝑈𝑁𝐼𝐹 as follows: 𝛽𝑈𝑁𝐼𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝑦∗ − 𝑋∗𝛽‖2 

 

This algorithm is easy to understand. Instead of using full data to calculate the 

least square estimator, we just take a simple random sample from it and 

calculate the estimator 𝛽𝑈𝑁𝐼𝐹 using the subsample. One obvious advantage of 

this algorithm is the short computing time, which is only 𝑂(𝑟𝑝2). Another 

advantage, as we mentioned in Remark 1 of Algorithm 1, is the unbiasedness 

of 𝛽𝑈𝑁𝐼𝐹. However, as implied in Remark 2 of Algorithm 1, large variance of 

the estimator is the main drawback of this method. When the sampling size 𝑟 

is small, there is a good chance that the estimator �̂�𝑈𝑁𝐼𝐹  can be totally 

different from �̂�𝑂𝐿𝑆. This situation can be illustrated by the following example. 

 

3 Leverage-Based Sampling Method 
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Fig. 1 Example of the failure of the Uniform Sampling Method. For 𝑖 =

1, … ,2000, 𝑦𝑖 = −0.5 + 𝑥𝑖 + 𝜀𝑖, where 𝑥𝑖 is generated from t-distribution with 

df =6 and 𝜀𝑖~𝑁(0,1). The small dots are the original data points; big dots are 

the subsample points. The solid line represents the fitted regression line of the 

full data, and the dashed line represents the fitted regression line of the 

subsamples. 

 

In Figure 1, the data points sampled from uniform probabilities did not identify 

the main linear pattern of the full data, which caused a big difference between 

𝛽𝑈𝑁𝐼𝐹  and �̂�𝑂𝐿𝑆. This significant difference is due to the fact that Uniform 

Sampling Method ignores the different contribution of different data points for 

estimating �̂�𝑂𝐿𝑆. A good sampling strategy should take these differences into 

account. For example, if the subsampled points are spread out, that is, points 

in the upper right and lower left corners are included, then the fitted line will be 

much closer to the “truth”. Since those points in the upper and lower corner of 

the Fig 1 are high leverage points, it is easy to understand the motivation of the 

leverage-based sampling method discussed below. 

 

3.2 Leverage Score and Basic Leverage Sampling Method 

In the previous subsection, we mentioned that we needed to find the data 

points that are influential for fitting the regression line. In the statistical 

literature for model diagnostics, there exists the concept of leverage score to 

achieve a similar goal (Weisberg, 2005). For the 𝑖𝑡ℎ data point (𝑦𝑖, 𝑋𝑖), we 

define the leverage score as 
𝜕�̂�𝑖

𝜕𝑦𝑖
. Intuitively, if the leverage score is large, it 

means that a small disturbance in 𝑦𝑖 can result in a big change in �̂�𝑖, thus 

playing a crucial role for model diagnostics. 

There is also an elegant explanation for this definition. In Section 2.1, we 

mentioned about the “hat matrix” 𝐻 which follows the relationship �̂� = 𝐻𝑦, i.e. 
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(

�̂�1

�̂�2…
�̂�𝑛

) = (

ℎ11

ℎ21
⋯

ℎ𝑛1

ℎ2𝑛

⋮ ⋱ ⋮
ℎ𝑛1 ⋯ ℎ𝑛𝑛

) (

𝑦1

𝑦2…
𝑦𝑛

). 

 

Using this relationship, the leverage score can be written as: 

 

𝜕�̂�𝑖

𝜕𝑦𝑖
=

𝜕(∑ ℎ𝑖𝑗𝑦𝑗
𝑛
𝑗=1 )

𝜕𝑦𝑖
= ℎ𝑖𝑖. 

Hence, the leverage score for the 𝑖𝑡ℎ  data point is just the 𝑖𝑡ℎ  diagonal 

element of hat matrix 𝐻. 

Also, it is easy to show that 𝑉𝑎𝑟(𝑒𝑖) = 𝑉𝑎𝑟(�̂�𝑖 − 𝑦𝑖) = (1 − ℎ𝑖𝑖)𝜎2 , which 

means the high leverage points have small variances of residuals and that in 

general 0 < ℎ𝑖𝑖 < 1. This result shows that the regression line tends to pass 

close to these data points with high leverage scores, indicating their large 

impact on the regression line. For example, in the univariate linear model, 

where the design matrix 𝑋 can be written as  

𝑋 = [

1
1

𝑥1

𝑥2
…
1

…
𝑥𝑛

] 

ℎ𝑖𝑖 =
1

𝑛
+

(𝑥𝑖−�̅�)2

∑ (𝑥𝑗−�̅�)2𝑛
𝑗=1

, where �̅� =
∑𝑗=1

𝑛 𝑥𝑗

𝑛
. In this particular case, the data points 

with large leverage scores are the data points far away from the mean of the 

full data, like the points in the upper right corner and lower left corner of Fig 1, 

confirming our previous guess. This result also meets the general 

understanding of a high influential point.  

 
Fig. 2 Illustration of the leverage scores of the data points from the example in 

Figure 1. In a univariate linear model, the further away from the mean the data 

point is, the larger the leverage score. 
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When the model matrix 𝑋 is full column rank, the sum of all the leverage 

scores of the full data is just the dimension 𝑝. Hence, 0 < 𝜋𝑖
𝐵𝐿𝐸𝑉 =

ℎ𝑖𝑖

𝑝
< 1  

with ∑𝑖=1
𝑛 𝜋𝑖

𝐵𝐿𝐸𝑉 = 1, since   

∑𝑖=1
𝑛 ℎ𝑖𝑖 = 𝑡𝑟(𝐻) = 𝑡𝑟(𝑋(𝑋𝑇𝑋)−1𝑋𝑇) = 𝑡𝑟((𝑋𝑇𝑋)−1𝑋𝑇𝑋) = 𝑡𝑟(𝐼𝑝) = 𝑝. 

 

These facts motivate the Basic Leverage Sampling Method (BLEV) discussed 

next.  

 

Algorithm 3: Basic Leverage Sampling Method in Linear Model 

Step 1 (Subsampling): Take a random sample of size 𝑟 >  𝑝 from the full 

data using the probability distribution {𝜋𝑖
𝐵𝐿𝐸𝑉}𝑖=1

𝑛 = {
ℎ𝑖𝑖

𝑝
}

𝑖=1

𝑛

 and denote it as 

{𝑦𝑖
∗, 𝑋𝑖

∗}𝑖=1
𝑟 . Record the corresponding sampling probability as {𝜋𝑖

∗}𝑖=1
𝑟 . 

Step 2 (Model-fitting): Use the subsample to fit a weighted least square with 

weight {1/𝜋𝑖
∗}𝑖=1

𝑟  and obtain the estimator 𝛽𝐵𝐿𝐸𝑉. 

 

This Basic Leverage Sampling Method is another application of the General 

Sampling Method, in which the sampling probability are substituted by the 

probability distribution constructed from leverage scores. The computational 

complexity for BLEV is 𝑂(𝑛𝑝2). Same as 𝛽𝑈𝑁𝐼𝐹, 𝛽𝐵𝐿𝐸𝑉 is also a conditional 

asymptotically unbiased estimator of 𝛽𝑂𝐿𝑆 (Ma et al., 2014, Ma et al., 2015). 

An example of the BLEV is shown in Figure 3.  

 

Fig. 3 Example of the Basic Leverage Sampling Method. The data are the 

same that in Figure 1. The small dots are the original data; the big dots are the 

sample. The solid line represents the fitted regression line of the full data, and 

the dashed line represents the fitted regression line of the subsamples.  

 

Compared to Fig 1, the advantage of BLEV is obvious, since the fitted 

regression line of the leverage sub-samples is very close to the fitted 
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regression line of the full data. The probability that this scenario occurs equals 

to the multiplication of the leverage sampling probabilities for the sub-samples, 

which is 2 ∗ 10−30 in this case. This sub-sample is relatively unlikely to be 

sampled from uniform probability distribution, since (1/2000)10 = 1 ∗ 10−33. In 

contrast, the sub-sample in Fig 1 is relatively unlikely to be sampled from 

leverage probability distribution, since the multiplication of the leverage 

sampling probabilities for the sub-samples in Fig 1 equals to 3.7 ∗ 10−37, 

which is much smaller than (1/2000)10. 

 

From the example in Fig 1 and Fig 3, the Basic Leverage Sampling Method 

can be utilized to solve linear model problems in big data intuitively. 

 

3.3 Disadvantages of Basic Leverage Sampling Method 

From the observation in the last subsection, one may assume that BLEV 

should always have better performance than UNIF. This seems to be true in 

algorithmic point of view. Prior work has adopted an algorithmic perspective 

that focuses on providing worst-case run-time bounds for different inputs. It 

has been shown that leverage-based sampling provides worst-case algorithm 

results that are uniformly superior to the uniform sampling method (Drineas et 

al., 2006). However, in a statistical point of view, neither BLEV nor UNIF 

dominates the other (Ma et al., 2014, Ma et al., 2015). Actually, it has been 

shown that the variance of estimator 𝛽𝐵𝐿𝐸𝑉 may be inflated by extremely small 

leverage scores. This could happen when the data distribution has a heavy 

tail, e.g. a Student-t distribution with small degree of freedom or Cauchy 

distribution. In such cases, the data points on the tail tend to have enormous 

leverage scores which dominate the others. For example, consider the case 

when the dataset has different distribution in each dimension, the Basic 

Leverage Sampling Method may fail to capture all the high influential points. 

Such a case can be illustrated by the example in Figure 4. 
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Fig. 4 Illustration of the leverage scores of the 1000 data points from a 

two-dimensional dataset, which the first dimension comes from a Student-t 

distribution with degree of freedom 4 and the second dimension comes from a 

standard normal distribution. 

 

As shown in Figure 4, the high-leverage-score points are only the high 

influential points for the first dimension, but not for the second dimension. 

Hence, the subsamples chosen by BLEV are inadequate to predict the second 

dimension of �̂�𝑂𝐿𝑆, leading to a bad estimator 𝛽𝐵𝐿𝐸𝑉. This indicates that simply 

using the leverage score as a sampling probability seems too aggressive. 

Furthermore, it poses the interesting question of if we could try different 

subsampling probabilities and propose even better sampling method than 

BLEV. These will be discussed in the next section. 

 

 

 

In this section, we will introduce two novel Leverage-Based Sampling Methods 

which aims at overcome the drawback of BLEV.  

 

4.1 Shrinkage Leveraging Method 

Recall that we want to give large sampling probabilities to the points with large 

leverage scores, since these points are more influential to the fitted regression 

line. Using the leverage score as the sampling probability is a simple way to 

accomplish this goal, which generates the Basic Leverage Sampling Method.  

 

In fact, as long as we preserve the ranking of the leverage score, we can still 

take the benefit of the influential points. We can achieve this goal by 

comparison between applying the following relatively conservative probability 

distribution SLEV (shrinkage leveraging) and applying the basic leverage 

score distribution. Let 𝜋𝑖
𝐵𝐿𝐸𝑉  denote a distribution defined by the basic 

leverage scores (i.e., 𝜋𝑖
𝐵𝐿𝐸𝑉 =

ℎ𝑖𝑖

𝑝
) and let 𝜋𝑖

𝑈𝑁𝐼𝐹 =
1

𝑛
 denote the uniform 

distribution; then the sampling probabilities for the shrinkage leveraging can be 

written as: 

 

𝜋𝑖
𝑆𝐿𝐸𝑉 = 𝛼𝜋𝑖

𝐵𝐿𝐸𝑉 + (1 − 𝛼)𝜋𝑖
𝑈𝑁𝐼𝐹, 𝛼 ∈ (0,1), 

for , 𝑖 = 1,2, … , 𝑛.  

 

Applying this sampling probabilities leads us to the Shrinkage Leverage 

Sampling Method (SLEV). 

 

4 Novel Leveraging-Based Sampling Method 
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Algorithm 4: Shrinkage Leverage Sampling Method in Linear Model 

Step 1 (Subsampling): Take a random sample of size 𝑟 >  𝑝 from the full 

data using the probability distribution {𝜋𝑖
𝑆𝐿𝐸𝑉}

𝑖=1

𝑛
 and denote it as {𝑦𝑖

∗, 𝑋𝑖
∗}𝑖=1

𝑟 . 

Record the corresponding sampling probability as {𝜋𝑖
∗}𝑖=1

𝑟 . 

Step 2 (Model-fitting): Use the subsample to fit a weighted least square with 

weight {1/𝜋𝑖
∗}𝑖=1

𝑟  and obtain the estimator 𝛽𝑆𝐿𝐸𝑉. 

 

The computational complexity for SLEV is 𝑂(𝑛𝑝2). The performance of the 

Shrinkage Leverage Sampling Method depends on how we choose the 

shrinkage index 𝛼. If we choose 𝛼 very close to 0 or 1, it will just degenerate 

into the uniform sampling method or basic leverage sampling method. 

However, if we choose the 𝛼 more wisely, the SLEV method can overcome 

the large variance problem. The recommended value of 𝛼 is falling in the 

interval [0.8, 0.9] (Ma et al., 2014, Ma et al., 2015). Under this situation, the 

SLEV can preserve the ranking of the leverage score without containing 

extremely large or extremely small sampling probabilities, compared to Basic 

Leverage Sampling probabilities. Furthermore, all these observations also hold 

if we use the approximate leverage score instead of using the exact leverage 

score in the method. For these reasons, the SLEV procedure with approximate 

leverage score is the most recommended method for linear models in big data. 

 

4.2 Unweighted Leverage Sampling Method 

Before introducing the Unweighted Leverage Sampling Method, we need to 

discuss the criteria for judging whether a particular sampling method is good or 

not. From a statistical point of view, we need a comprehensive criterion to 

consider both bias and variance simultaneously, the mean squared error 

(MSE) is a reasonable choice. The formula for MSE for 𝛽  is given below. 

𝑀𝑆𝐸(𝛽|𝑦) = 𝐸‖𝛽 − �̂�𝑂𝐿𝑆‖
2
. 

Some decomposition analysis will give that  

𝑀𝑆𝐸(�̃�) = ‖𝐵𝑖𝑎𝑠(𝛽)‖
2

 + 𝑡𝑟(𝑉𝑎𝑟(𝛽)) 

where we denote 𝐵𝑖𝑎𝑠(𝛽) = 𝐸(𝛽) − �̂�𝑂𝐿𝑆. This decomposition is sometimes 

termed bias-variance decomposition in the statistics literature. 

We know that the estimator generated by UNIF, BLEV and SLEV are all 

unbiased estimators. This is a very appealing property and we only need to 

focus on minimizing the variance of estimator. However, if our goal is to 

minimize MSE, it is not necessary to let the estimator be asymptotically 

unbiased. In other words, an estimator with bias can still be a good estimator if 

it has a relatively small bias but significantly smaller variance. This is also the 

main motivation of Unweighted Leverage Sampling Method discussed below. 
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Algorithm 5: Unweighted Leverage Sampling Method in Linear Model 

Step 1 (Subsampling): Take a random sample of size 𝑟 >  𝑝 from the full 

data, probability distribution {𝜋𝑖
𝐿𝐸𝑉𝑈𝑁𝑊}𝑖=1

𝑛 = {
ℎ𝑖𝑖

𝑝
}

𝑖=1

𝑛

 and denote it as 

{𝑦𝑖
∗, 𝑋𝑖

∗}𝑖=1
𝑟 . 

Step 2 (Model-fitting): Use the subsample to fit an ordinary least square and 

obtain the estimator 𝛽𝐿𝐸𝑉𝑈𝑁𝑊. 

 

It could be theoretically shown that the unweighted leverage estimator is an 

unbiased estimator to 𝛽 as well as a conditionally unbiased estimator to the 

weighted least square estimator �̂�𝑊𝐿𝑆 conditional on given data (Ma et al., 

2014, Ma et al., 2015). Thus, it is a conditionally biased estimator to �̂�𝑂𝐿𝑆. This 

biased problem is rarely a concern from an algorithmic perspective. However, 

from a statistician’s point of view, the disadvantage brought by biasedness can 

be mitigated by the advantage by significant decrease in variance if our main 

goal is to minimize MSE. This is exactly the main advantage of an unweighted 

leverage estimator compared to the Basic Leverage Sampling Method, i.e. it 

overcomes the inflated variance problem.  

 

The key step of our BLEV, SLEV, LEVUNW method is the calculation of 

leverage scores a design matrix, i.e. applying SVD on it. Almost all the popular 

statistical software packages are available for this task such as command svd 

in R base, command svd in MATLAB, subroutine SVD from SAS. The underlying 

source code for these procedures are all from LAPACK routines or equivalent.  

For illustration, we provide an R code. 

 

################################################################## 

# First, we construct a univariate linear model and set the true # 

# beta vector as (10,5).                                         # 

################################################################## 

setseed=100 

set.seed(setseed) 

n = 10000 

xx = rnorm(n) 

y = 10+5*xx+rnorm(n) 

################################################################## 

# Second, we construct the predictor matrix 𝑋.                   # 
################################################################## 

X = cbind(1,xx) 

################################################################## 

# Third, we perform SVD for matrix 𝑋. Then, we extract the U     # 

5  Software Implementation 
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# matrix of X. Using U, we extract the leverage scores of all    # 

#observations and put in vector hii.                             #                              

################################################################## 

svdx = svd(X) 

U = svdx$u 

hii = apply(U,1,crossprod) 

################################################################## 

# We construct subsampling probability distribution for BLEV and # 

# SLEV.                                                          # 

################################################################## 

blev.prob = hii/2 

slev.prob = hii/2*0.9+1/n*0.1 

################################################################## 

# We set the subsample size r.                                   # 

################################################################## 

r = 100 

 

 

################################################################## 

# Next, perform subsampling using hii as subsampling probability # 

# distribution and record the subsampling probabilities of the   #                                       

# subsampled data                                                # 

################################################################## 

blev.ind = sample.int(n=n,size=r,replace=TRUE,prob=blev.prob) 

slev.ind = sample.int(n=n,size=r,replace=TRUE,prob=slev.prob) 

y.blev = y[blev.ind] 

y.slev = y[slev.ind] 

xx.blev = X[blev.ind,] 

xx.slev = X[slev.ind,] 

wgt.blev = 1/blev.prob[blev.ind] 

wgt.slev = 1/slev.prob[slev.ind] 

################################################################## 

# Now perform WLS on the subsampled data for BLEV and SLEV,      # 

# perform OLS on the subsampled data for LEVUNW                  #                                              

################################################################## 

lm.blev = lm(y.blev~xx.blev-1, weights = wgt.blev) 

lm.slev = lm(y.slev~xx.slev-1, weights = wgt.slev) 

lm.levunw = lm(y.blev~xx.blev-1) 

bt.blev = lm.blev$coefficients 

bt.slev = lm.slev$coefficients 

bt.levunw = lm.levunw$coefficients 

################################################################## 

# In order to evaluate the performance of these sampling methods,# 

# we run the OLS for full data                                   #                                                      
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################################################################## 

lm.full = lm(y~X-1) 

summary(lm.full) 

bt = lm.full$coefficients 

################################################################## 

# Finally, we calculate the SE of estimator from this subsampled # 

# data.                                                          #                                                      

################################################################## 

SE_blev = crossprod(bt-bt.blev) 

SE_slev = crossprod(bt-bt.slev) 

SE_levunw = crossprod(bt-bt.levunw) 

 

Remark 3: When 𝑛 gets large enough, calculating SVD poses challenge 

in computer memory. In practice, QR decomposition is recommended 

instead of SVD in this case.  

 

The order of computational cost of all the subsampling methods introduced in 

this chapter so far are dominated by the SVD of original data matrix 𝑋, which 

will be 𝑂(𝑛𝑝2) using one of the earliest algorithms (Golub and Van Loan, 

2012) and this is the same magnitude of the time order for solving the original 

linear problem with full data. Fortunately, there already exists fast 

approximation algorithms for leverage scores that can be used to achieve this 

goal, which decreases the running time from 𝑂(𝑛𝑝2)  to 𝑜(𝑛𝑝2) (Drineas et 

al., 2012). In specific, given an arbitrary 𝑛 × 𝑝 matrix 𝑋 such that 𝑛 ≫ 𝑝, and 

an error parameter 𝜖 ∈ (0,1), the main algorithm of (Drineas et al., 2012) is 

based on random projection and it computes 𝑙�̃� as an approximation of the ℎ𝑖𝑖 

in the sense that | 𝑙�̃� − ℎ𝑖𝑖| ≤ 𝜖ℎ𝑖𝑖 for all 𝑖 = 1, … , 𝑛. This algorithm runs in 

roughly 𝑂(𝑛𝑝𝑙𝑜𝑔(𝑝)/𝜖) time, which will be 𝑜(𝑛𝑝2)  under appropriate 

settings. See Blendenpik (Avron et al., 2010), LSRN (Meng et al., 2014) as well as 

(Gittens and Mahoney, 2013) for further upgrading of aforementioned random 

projection algorithms. It is documented in these studies that if the dimension of 

input matrix is at least as small as several thousand by several hundred, the 

run time of the leveraging-based methods can be competitive compared to 

solving the original linear problem by QR decomposition or SVD with e.g. 

LAPACK. 

 

 

 

In order to illustrate the performance of the sampling methods on real data, two 

datasets are considered: an Illumina HiSeq dataset downloaded from TCGA 

6 Demonstration: Two Case Studies 
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(http://cancergenome.nih.gov) and the “YearPredictionMSD” dataset, a subset 

of the Million Song Dataset (http://labrosa.ee.columbia.edu/millionsong/). The 

former has a strong linear pattern while the latter does not. This property of the 

dataset will influence the behavior of these methods.  

 

Coefficient estimates were obtained using four subsampling algorithms (UNIF, 

BLEV, SLEV(0.9) and LEVUNW) for five different subsampling size: 

2𝑝, 4𝑝, 6𝑝, 8𝑝, 10𝑝. The subsampling size is chosen based on the 𝑛 = 10𝑝 

rule, which proposed by (Loeppky et al., 2009). For each subsample size, we 

take 200 hundred subsamples and calculate estimates based on each of the 

subsampling algorithm. We then calculate the empirical conditional biases and 

variances with respect to the full sample least square estimate. 

 

6.1 Illumina HiSeq Dataset 

Considering an Illumina HiSeq dataset downloaded from TCGA for 59 cancer 

patients which contains 𝑛 =  20,529 genes. Here, one patient’s data are 

randomly chosen as the response 𝑦 and use the remaining patients’ data as 

the predictors through a linear model. Thus, the number of predictors in this 

setup is 𝑝 =  58. We first adopt a commonly used transformation for the 

counts data, i.e. 𝑙𝑜𝑔(𝑋 + 1). After transforming the original data, we fit a linear 

model for the entire data. The adjusted-𝑅2 is 0.9879, which represents an 

almost perfect fit. Next, the dataset is fit to a linear model using subsampling 

methods with five different subsampling sizes. Fig 5 shows the summary of our 

results.  

 

 

Fig 5: Empirical results for the Illumina HiSeq dataset. Left panel is the 

empirical conditional squared biases of the UNIF, BLEV, SLEV, LEVUNW; 

middle panel is the empirical conditional variance; right panel is the empirical 

conditional MSE. Solid lines for UNIF; dash lines for BLEV; thick dotted line for 

LEVUNW; thin dotted line for SLEV with  = 0.9. 

 

In the left panel of Fig 5, we plot the empirical conditional squared biases of the 

four methods. Observe that BLEV and SLEV both have smaller squared 

biases than UNIF and LUVUNW, which indicates that both BLEV and SLEV 

capture the main linear pattern of the whole dataset more efficiently than UNIF. 
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Also, as mentioned above, LUVUNW is a conditionally biased estimator to 

�̂�𝑂𝐿𝑆. Thus, as the sample size becomes larger, the squared bias of LUVUNW 

does not decrease. Since the conditional variance, the dominant part of MSE, 

of LUVUNW is much smaller than that of UNIF, it still outperforms UNIF when 

MSE is our final consideration. In this example, BLEV and SLEV have almost 

the same performance and are consistently better than UNIF and LUVUNW. 

This is due to the strong linear pattern of the dataset. The phenomenon of 

weak linear pattern of the dataset will be strongly influenced by the behavior of 

these sampling methods could be seen in the next example.  

 

 

6.2 “YearPredictionMSD” Dataset 

In this section, we consider the “YearPredictionMSD” dataset, which is a 

subset of the Million Song Dataset. This dataset includes 515,345 songs, with 

12 features of “timbre.” We take these 12 features as well as 78 timbre 

covariances as predictors, i.e., 90 predictors in total. We take the year of 

release as the response and fit a linear model to this dataset. We tried all four 

sampling methods on the dataset, and the summary of our results is shown in 

Fig 6. 

 

Fig 6: Empirical results for the “YearPredictionMSD” dataset; the notation is 

the same as that of Fig 5. 

 

The performance of the conditional square biases of these four methods in this 

dataset has almost the same pattern as the performance in the Illumina 

dataset. Interestingly, in the middle panel, the graph shows that the conditional 

variance of LUVUNW is much better than all the other three methods, which 

also makes the MSE of LUVUNW decrease much faster than the other 

methods as the sample size increases. However, because of the large bias of 

LUVUNW, its best performance on MSE only shows up when the sample size 

is not too big compared to the entire dataset. The performance of BLEV and 

SLEV are still quite similar in this example, which is due to the lack of an 

extremely large leverage score in this dataset. As previously mentioned, if 

more influential points exist with leverage scores dominating the other data 

points, SLEV will be more robust than BLEV.  
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Sampling method, as an effective and general solution for big data problem, 

becomes more and more attractive. In this chapter, we focus on algorithm 

leveraging methods for solving large least-squares regression problems. It is a 

recently proposed popular sampling method, shown to be efficient in sampling 

influential data points. We compared the performance between Uniform 

Sampling and Basic Leverage Sampling, then discussed two newly-proposed 

leverage-based algorithms, Shrinkage Leverage Sampling Method (SLEV) and 

Leverage Unweighted Sampling Method (LEVUNW), aiming at minimizing 

MSE. Moreover, our case study provided a detailed evaluation for these 

algorithms on the real dataset. Based on the empirical results, we have shown 

that these two new algorithms, SLEV and LEVUNW, providing improved 

performance. However, there is no universal solution here. Based on the 

primary goal, careful consideration is needed before applying appropriate 

method. If the goal is to approximate �̂�𝑂𝐿𝑆, we suggest trying SLEV with either 

exact or approximate leverage scores. The reason is that SLEV results in 

much better conditional biases and variance compared to other existing 

methods according to empirical evidences. On the other hand, if our primary 

goal is to infer the true 𝛽 and most of data does not have a relatively good 

linear pattern, or the sample size 𝑟 is much smaller than the entire data size 

𝑛, LEVUNW is recommended mainly due to its advantage in giving smaller 

variances. Finally, although not covered in this chapter, the leverage-based 

sampling method can also by applied on generalized linear models, time series 

models, variable selections, etc. Further refinement on the current methods 

and even brand new algorithms are under intensive development. 
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