
A Tubrial on BuiIHn SeFTest 

BfSTis a design-for-testabilily (Dm tech- 
nique in which testing (test generation 
and test application) is accomplished 
through built-in hardware katures. 

Part 1: Principles 

The simplicity of this definition belies at the chip level, are enormous at the 
the complexities involved in implement- system level. Alternative strategies are 
ing BIST. This article addresses the chipwise and system-foolish. Moreover, 
pertinent issues and describes the ad- BIST offers solutions to several major 
vantages and limitations of BIST. testing problems. 

DURING ITS LIFETIME, a digital 
system is tested and diagnosed on 
numerous occasions. For the sys- 
tem to perform its intended mission 
with high availability, testing and di- 
agnosis must be quick and effec- 
tive. Asensible way to ensure this is 
to specify test as one of the system 
functions-in other words, self-test. 
Digital systems involve a hierarchy 
of parts: chips, boards, cabinets, 
and so on. At the highest level, 
which may include the entire sys- 
tem, the operation is controlled by 
software. Self-test is often imple 
mented in software. While a purely 
software approach to self-test may 
suffice at thesystem level, it hassev- 
era1 disadvantages. Such testing 
may have poor diagnostic resolu- 
tion because it must test parts de- 
signed without specific testability 
considerations. In addition, a good 
software test can be very long, slow, 
and expensive to develop. 

An increasingly attractive alter- 
native is built-in self-test-that is, 
self-test implemented in the hard- 
ware itself: 

VlSHWANl D. AGRAWAL 

AT&T Bell Laboratories 

CHARLES R. KlME 

KWAL K. SALUJA 

Universiiy of Wisconsin, 

In the several years since this 
magazine's publication of a pair of 
tutorial articles on BIST,*z2 both 
BIST research and its application 
have grown rapidly. Although our 
original goal was to write a detailed 
tutorial, we found that adequate 
covemge of the myriad of techniques 
available was not feasible within our 
space limitations. Hence, on some 
aspects of BIST we present limited 
detail, supported by pointers to the 
literature. Aiso, to limit the number 
of sources the interested reader 
needs to consult, we often refer to 
books rather than original papers. 
In no way do we intend to diminish 
the contributions of the original r e  
searchers or developers. 

Motivations for BlST 
When testing is built into the 

hardware, it has the potential of b e  
ing not only fast and efficient but 
also hierarchical. In other words, in 
a welldesigned testing strategy, the 
same hardware can test chips, 
boards, and system. The cost bene  
fits, which may not seem significant 
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Table 1. BISTcosts. 

Design, test Maintenance Diagnosis, Service 
development Fabrication Testing test repair interruption 

Chips +/- 
1 Boards +/- 
1 Systems +/- 

~ + cost increase; - cost reduction (saving); +/- cost increase = saving 

The complexity issue. As the com- 
plexity of VLSl systems increases, we ask 
if the testing problem can be parti- 
tioned. The answer, unfortunately, is no. 
For example, consider two devices con- 
nected in a cascade. There is often no 
simple way to derive tests for the ca.!+ 
cade from the given tests for its individ- 
ual parts. Another possibility is the use of 
a hierarchical approach. The complex 
design automation problems of synthe- 
sis and physical design are often solved 
through hierarchical procedures. The 
testing problem, however, is not easy to 
solve with traditional hierarchical tech- 
niques. For example, no simple method 
exists for deriving a board test from tests 
for chips on the board. 

BET, however, does offer a hierarchi- 
cal solution to the testing problem. Con- 
sider the testing of a chip embedded in 
a board that is a part of a system. The 
topdown hierarchy consists of system, 
boards, and chips. Suppose all levels of 
the hierarchy use BIST. To test the chip, 
the system sends a control signal to the 
board, which in turn activates self-test 
on the chip and passes the result back to 
the system. Thus, BIST provides efficient 
testing of the embedded components 
and interconnections, reducing the bur- 
den on system-level test, which need 
only verify the components’ functional 
synergy. 

The quality issue. A product’s qual- 
ity depends on the tenacity of its tests. 
Test tenacity or ability is most frequent- 
ly measured as coverage of single stuck- 

at faults. Thus, we calibrate tests accord- 
ing to their ability to detect single lines 
that appear as if shorted to ground 
(stuck-at4) or to the power supply 
(stuck-at-1). Since the kind and number 
of faults that occur depends on the type 
of device (chip, board, and so on) and 
the technology (CMOS, bipolar, GaAs), 
evaluating test quality can be a compli- 
cated task.3 In general, quality require- 
ments such as 95% fault coverage for 
complex VISI chips or 100% coverage of 
all interconnect faults on a printed cir- 
cuit board (PCB) are based on practical 
considerations. The test engineer tries to 
achieve a low reject ratio (percentage of 
faulty parts in the number passing the 
test)-for example, 1 in 10,00&while 
controlling the cost of test generation 
and application. For very large systems, 
such requirements are achievable only 
through DIT. Our discussion will show 
that BIST is the preferred form of DIT. 

Test generation problem. As point- 
ed out earlier, the problem of generating 
tests is difficult to solve by using hierar- 
chy. The difficulty lies in carrying the test 
stimulus through many layers of circuit- 
ry to the element under test and then 
conveying the result again through 
many layers of circuity to an observable 
point. BIST simplifies this problem by 
localizing testing. 

Test application problem. For al- 
most a decade, incircuit testing (ICT) 
has dominated the PCB testing scene.4 
In this method, a bedsf-nails fixture cus- 

tomized for the board under test enables 
the tester to access the pins of the chips 
mounted on the board. ICT effectively 
applies chip tests for diagnosis and also 
effectively tests board wiring. The meth- 
od, however, presents several problems. 
First, ICT is effective only after a board is 
removed from the system; therefore, it is 
no help in system-level diagnosis. Sec- 
ond, in surfacemount technology 
(SMT), components are often mounted 
densely on both sides of the board. Bed- 
of-nails fixtures for such boards are ei- 
ther too expensive or impossible to 
build. 

BET offers a superior solution to the 
test application problem. First, built-in 
test circuitry can test chips, boards, and 
the entire system without expensive, ex- 
ternal automatic test equipment. Sec- 
ond, for off-line testing of boards and 
chips and for production testing, we can 
use the same tests and test circuitry that 
we use at the system level. 

Economics of BIST. In deciding 
whether to use BET, system planners 
and designers must weigh costs against 
benefits. At the chip level, BIST offers 
small savings in testing costs. But in 
product lifecycle costs, the savings are 
overwhelmingly in favor of BIST. 

Table 1 shows the impact of BIST on 
testing costs for chips, boards, and sys- 
tems. We find that the additional ex- 
pense of designing BIST hardware is 
somewhat balanced by the savings from 
test generation. Fabrication cost increas 
es at all levels due to the extra hardware 
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BIST requires. Testing cost decreases 
due to moreefficient tests, lessexpensive 
test equipment, and improved trouble 
shooting during assembly and integra- 
tion. Maintenance test is a system-level 
function involving “sanity checks” and 
diagnosis. Thus, BISTs impact on main- 
tenance cost is greatest at the system 
operation level. BIST also reduces diag- 
nosis and repair costs at the board and 
system levels. In alternative strategies, 
lengthy or improper diagnosis is often 
responsible for great loss of revenue due 
to service interruption; BIST decreases 
such interruption. 

The main point of Table 1 is the signif- 
icant benefit that BIST provides at the 
system level. Thus, even with consider- 
ably lower benefits at chip and board 
levels, we believe BlST is still the best 
DFTalternative. On this point the reader 
should consult pertinent works on BIST 
 economic^.^^^ 

BlST concepts 
In considering the concepts underly- 

ing BIST, we must look at the basic BET 
architecture and its hierarchical applica- 
tion. Then we will focus on two specific 
BIST components: pattern generation 
and response analysis. 

BIST architecture. The basic BIST 
architecture requires the addition of 
three hardware blocks to a digital cir- 
cuit: a pattern generator, a response an- 
alyzer, and a test controller. Examples of 
pattern generators are a ROM with 
stored patterns, a counter, and a linear 
feedback shift register (LFSR). A typical 
response analyzer is a comparator with 
stored responses or an LFSR used as a 
signature analyzer. A control block is 
necessary to activate the test and ana- 
lyze the responses. However, in general, 
several test-related functions can be ex- 
ecuted through a test manager (or test 
controller) circuit. 

Consider a hierarchical application of 
the BlST concept. The system consists of 

MARCH 1993 

several circuit boards. Each board may 
contain several VLSI chips. Figure 1 
shows such a system. The test manager 
at the system level can simultaneously 
activate self-test on all boards. The test 
manager on each board, in turn, acti- 
vates self-test on each chip on that 
board. A chip test manager is responsi- 
ble for executing self-test on the chip 
and then transmitting the result (fault- 
free or faulty) to the test manager of the 
board containing the chip. The board 
test manager accumulates test results 
from all its chips and transmits them to 
the system test manager. Using these r e  
sults, the system test manager can isolate 
faulty chips and boards. 

The effectiveness of this diagnosis 
procedure depends on the thorough- 
ness of the self-test implemented on 
chips. Thus, fault coverage is a major is- 
sue in BIST designs. Other important is- 
sues are area overhead and its impact 
on chip yield, additional pins required 
for test, and performance penalty. 

At the chip level, BIST involves the a p  
plication of test patterns to the logic to 
be tested and observation of the corre 
sponding responses. Often, the test engi- 
neer modifies onchip logic, using some 
DFT technique such as scan, so that 
latches and flipflops can be controlled 
independently of the circuit’s combina- 
tional logic. Thus, in most but not all c w  
es, the circuit under test (CUT) consists 
of combinational logic. However, logic 
may intervene between the pattern gen- 
erator and the CUT and between the 
CUT and the response analyzer, as indi- 
cated by the shaded area in Figure 1. 

Pattern generation. We now dis- 
cuss BIST test pattern types, the means 
of obtaining them, and related fault cov- 
erage issues. Distinct BIST methodolo- 
gies are associated with each type of test 
pattern. 

Stored patterns. Stored-pattern BIST 
may use programs or microprograms, 
typically stored in ROM, to perform func- 
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Figure 1. BISThierarchy. 

ional tests of the hardware. Successful 
lpplications of such techniques exist,7 
but they are not our focus here. In alter- 
iative techniques, we use traditional 
iutomatic test pattern generation 
ATF’G) and fault simulation to generate 
he test patterns. We store the patterns 
)n the chip or board, apply them to the 
:UT when BIST is activated, and com- 
)are the CUT responses with the corre 
ponding stored responses. Because of 
he stored data’s magnitude, this meth- 
)d is attractive only in limited cases. 
l e se  include testing structured logic 
ind detecting a small number of faults 
lot handled by other BlST techniques. 
herall, although stored-pattern BIST 
:an provide excellent fault coverage, it 
ias limited applicability due to its high 
rea overhead. 

Exhaustiue or pseudoexhaustive pat- 
Pms. Exhaustivepattern BlST eliminates 
he test generation process and has very 
iigh fault coverage. To test an n-input 
dock of combinational logic, we apply 
ill possible 2”-input patterns to the 
dock. Even with high clock speeds, the 
ime required to apply the patterns may 
nake exhaustivepattern BIST impracti- 
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Table 2. Hardware structures used for BIST. 
-~ 

Pattern generators Response analyzers 

ROM ROM and comparison logic 
LFSR LFSR 

Cellular automoton Cellular automaton 
Binary counter Level counter 

Transition counter 
XOR trees XOR trees 

Multiple-input signature register (MISR) 

Note: Each pattern generator in the left column can be used with any response onalyzer in 

the right column. 

cal for a circuit with n greater than about 
25. Thus, we must partition or segment 
the logic into smaller, possibly overlap 
ping blocks with fewer than n inputs. 
Then we exhaustively test each block. 
This approach is called pseudoexhaus- 
tive-pattern B1ST.8a9, P- 461 

Fault coverage for the exhaustive or 
the pseudoexhaustive method is nearly 
100% and, with proper design, can be 
achieved without fault simulation. Ex- 
haustive testing detects all detectable 
faults that do not induce sequential b e  
havior within each block. Extensive cir- 
cuit partitioning and segmentation may 
require significant effort, and the added 
hardware to achieve such partitioning 
and segmentation can be expensive. The 
added hardware may also adversely af- 
fect performance if avoiding critical tim- 
ing paths becomes impossible. We can 
keep test application time reasonable by 
choosing suitably small values of n for 
blocks that can be tested in parallel. 

Pseudorandom patterns. In contrast 
with other methods, pseudorandom- 
pattern BIST may require a long test time 
and necessitate evaluation of fault cov- 
erage by fault simulation. This pattern 
type, however, has the potential for low- 
er hardware and performance over- 
heads and less design effort than the 
preceding methods. In pseudorandom 
test patterns, each bit has an approxi- 
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mately equal probability of being a 0 or 
a 1 (as well as other statistical properties 
not detailed here1@). The number of pat- 
terns applied is typically of the order of 
lo3 to lo7 and is related to the circuit's 
testability and the fault coverage 
required. 

Among the pattern types discussed so 
far, the exhaustive and the pseudoran- 
dom are the most frequently used. A p  
plying exhaustive patterns for a portion of a 
VLSI circuit is comparatively stmightfor- 
ward, but applying pseudorandom pat- 
terns for a portion or all of the circuit is 
considerably more complex. These are 
the principal related issues: 1) How do 
we determine the number of pseudoran- 
dom test patterns to apply? 2 )  How do 
we evaluate fault coverage? 3) How do 
we deal with residual uncovered faults, 
often referred to as hard-tdetect or run- 
dom-pattem-resistant faults? 

Research has demonstrated that one 
can estimate the number of pseudoran- 
dom patterns required for a circuit from 
information based on the desired fault 
coverage and on either the set of hard- 
to-detect faults" or circuit testability.I2 
The number of patterns can be fairly 
large; 1,000,000 is not uncommon. To 
perform exact fault simulation forsuch a 
large pattern set, a fast fault simulation 
technique is essential. Forcombinational 
circuits, parallel-pattern singlefault propa- 
gation (PPSFP) issuch a techniq~e.'~~p. 'I2 

If the test length is too long to be prac- 
tical (more than a few million vectors), 
one can deal with some of the hard-to- 
detect faults by other means. One a p  
proach is to use deterministic patterns 
generated by ATPG for detection of 
these faults. Another is to modify the com- 
binational logic to improve te~tability.'~J).~~ 

Weighted pseudorandom patterns. A 
hybrid between pseudorandom and 
stored-pattern BIST, weighted pseudc- 
random-pattern BIST is effective for deal- 
ing with hard-tedetect faults. In a 
pseudorandom test, each input bit has a 
probability of 1/2 of being either a 0 or a 
1. In a weighted pseudorandom test, the 
probabilities, or input weights, can dif- 
fer. The essence of weighted pseudoran- 
dom testing is to bias the probabilities of 
the input bitsso that the tests needed for 
hard-to-detect faults are more likely to 
occur. One approach uses software that 
determines a single or multipleweight set 
based on a probabilistic analysis of the 
hard-todetect faults.'3, P. 142 Another a p  
proach uses a heuristic-based initial 
weight set followed by additional weight 
sets produced with the help of an ATPG 
system.l3>P. lj0 The weights are either r e  
alized by logic or stored in onchip ROM. 
With these techniques, researchers ob- 
tained fault coverage over 98% for 10 
designs, which is the same as the cover- 
age of deterministic test ~ectors. '~~P. 159 

BIST test patterns are generated by a 
variety of hardware structures, as shown 
in the left half of Table 2. The most 
prevalent approach for exhaustive, 
pseudoexhaustive, and pseudorandom 
patterns is the use of an LFSR. We dis- 
cuss the theory of LFSRS and their appli- 
cation to both pattern generation and 
response analysis in the box on page 79. 
An alternative pattern generator is the 
cellular automaton,I4 in which each 
cell, consisting of a flipflop and a few 
gates, is connected only to its neighbor- 
ing cells. Advantages claimed for this 
pattern generator are that it has only le 
cal connections between cells and that 
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it produces patterns more like true ran- 
dom patterns than those from an LFSR. 

Researchers are focusing on new 
techniques for producing shorter BIST 
test pattern sequences than are achiev- 
able by the usual pseudorandom tech- 
niques. Their approach is to produce 
specific designs for BlST pattern genera- 
tors using LFSRs or cellular automata. 
These generators produce sequences 
that include a set of deterministically 
generated test patterns for the CUT.’517 

Response analysis. The right half of 
Table 2 shows the hardware structures 
that we can employ to determine the 
validity of a CUT’S outputs. Clearly, 
when we apply test patterns to test the 
CUT, we must know its fault-free 
response(s). For a given set of test vec- 
tors applied in a particular order, we can 
obtain the expected responses and their 
order from a “gold” (knowngood) CUT 
or by simulating the CUT. Similar to 
stored-pattern BIST, we can also store 
responses in onchip ROM, but such a 
scheme can require too much silicon 
area to be of practical value. Alternative 
ly, methods that compress the test pat- 
terns and the corresponding responses 
of a fault-free CUT and regenerate them 
during self-test are also of limited value 
for general VU1 circuits. 

An alternative to response compres 
sion is compaction of responses into a 
relatively short binary sequence(s) 
called a signature(s). Let us explain the 
difference between compression and 
compaction: Compression is lossless in 
the sense that the original sequence can 
be fully regenerated from the com- 
pressed sequence. In the case of com- 
paction, regenerating the original 
sequence from the compacted s e  
quence may not be possible. For the 
more mathematically-minded reader, it 
suffices to say that the compression 
function is invertible, whereas the com- 
paction function is not. In the following 
paragraphs, we explain in abstract terms 
the basic concept of compaction as 
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pattern ,~.---......................... 
generator I CUT 
(counter) ’ f = a . b t b . c  

- 

Figure 2. BlST of a threevariable function. 

used in self-test and then describe pro- 
posed compaction methods and their 
relative strengths and weaknesses. 

After obtaining a response sequence 
R for a given order of test vectors from a 
gold CUT or a simulator, we use a com- 
paction function C to produce a vector 
or a set of vectors C(R). We expect the 
number of bits in C(R) to be far fewer 
than the number in R. We store the com- 
pacted vectors on chip or off chip, and, 
during BIST, we use the compaction 
function C to, compact the C v s  actual 
responses R to provide C(R ). Finally, 
to determine the CUT’S status (fault-frfe 
or faulty), we compare C(R) and C(R ). 
We declare the CUT fault-free if these 
two values are identical. 

For compaction to be of practical val- 
ue, the function Cshould be simple to 
implement on chip, the compacted r e  
sponses should be sufficiently small, 
and, above all, a faulty CUT should not 
be declared fault-free. If a faulty circuit 
and the fault-free circuit provide differ- 
ent response sequences but the com- 
pacted response sequences are identical, 
aliasing has occurred. 

The BlST literature has described 
three compaction functions in detail. To 
explain these methods, we use a simple 
CUT consisting of a threevariable com- 
binational function. Figure 2 shows a r e  
alization of the function. In describing 
these methods, we assume the pattern 
generator is a counter that generates all 

Transition counter 

..................................... 

LFSR x3tx2t1 

I !  

-1 Syndrome counter I 

eight input vectors for testing the CUT. 
One of the first compaction functions 

proposed in the context of testing was 
the transition count.”, P. 94 This function 
counts the total number of 0-to-1 and 1- 
to4 transitions in the response stream. 
For the example function in Figure 2, the 
transition count value for the fault-free 
circuit is three, asshown in Table 3 (next 
page). The table also shows transition 
count values for three different faults in 
the circuit. 

The signature analysis function was 
first used by Hewlett-Packard as a com- 
paction function and was described by 
Frohwerk in 1977.”3P.1m In this method, 
the response sequence is fed to an LFSR. 
The compacted sequence, whose 
length is the same as that of the LFSR, is 
called the signature of the CUT for the 
applied test vector sequence. Table 3 
(next page) summarizes the signatures 
of the example circuit and three faulty 
circuits. A special case of this method, 
parity check compaction, uses an E R  
of length one.111p.97 

The syndrome or IS counting func- 
tion was proposed in 1980.”.P. IO2 This 
compaction function counts the total 
number of 1’s in the response sequence 
(the total may be normalized with re- 
spect to the length of the response s e  
quence). The total is called the 
syndrome of the CUT. Table 3 lists the 
syndromes of the example function and 
the three faulty functions. 
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Table 3. Analysis of circuit in Figure 2. 

I abc Fault-free a stuck-at- 1 f stuck-at- 1 6 stuck-at- 1 ~ 

l 

000 

01 0 
1 001 

1 100 
1 101 , 110 

' 011 

1 1 1  

1 Function 

Transition 

Signature 
count 3 3 0 1 I I 

I analysis 001 101 00 1 01 0 
Syndrome 4 6 8 4 

It is evident from Table 3 that all three count and syndrome testing methods 
compaction functions are prone to alias- I for multipleoutput CUTS.*~ 
ing. Detection of aliasing is a far more ex- We can also use a space compactor, 
pensive process than fault simulation typically a linear circuit, to reduce the 
because it entails computing C(R) for ev- number of outputs to be c~mpacted . '~  
ely fault in the fault list. That typically For the signature method, we integrate 
requires simulating every fault for every ' the linear circuit with the LFSR to obtain 
test vector without fault dropping. Hence, 1 a multiple-input linear feedback shift reg- 
researchers have proposed models to corn- , ister (MISR), which compacts the output 
pute aliasing probability ar~alytically.'~~p 69 sequences from a multipleoutput CUT. 
These models often make assumptions ' An MISR can be viewed as performing 
about the occurrence of emrs in the CUTS 1 space compaction while compacting 
output sequence. No reasonable models, 
however, relate errors to faults in a circuit. Once again aliasing raises its ugly 
Generally spealung, the three compaction 1 head, posing a problem for multipleout- 
methods have identical aliasing probabili- put CUTs. Researchers have attempted to 
ties, which decrease exponentially with an ' analyze the aliasing probability for com- 
increase in the test sequence length or the I pacted multiple-output responses20,21 
number of bits in C(@. l and to reduce that probability. Some of 

Our description of the three methods the methods proposed to reduce aliasing 
seems to imply that compaction is appli- are compaction-testable designs?, P 431 
cable only to singleoutput CUTs. This is multiplesignatures,22 output data modifi- 
not so. We can extend the transition cation?3 and rearranging test vect0rs.2~ 
count and syndrome functions to multi- By far, the most popular compaction 
ple-output CUTs by assigning different function is signature analysis, realized 
weights to the outputs and thus obtain- by means of an LFSR or an MISR. These 
ing a weighted compaction of the out- structures are easy to implement, and 
put sequence. Saxena and Robinson 1 because they are serially scannable, 
present a generalization of the transition they can be read out easily by an exter- 

the output sequences from a CUT. 
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nal tester at the completion of self-test. 
Finally, there has been study of the 

use of the cellular automaton for re- 
sponse analysis as well as for pattern 
generation." This structure's effective- 
ness in BIST environments is yet to be 
fully established. 

WE HAVE INTRODUCED BIST in the con- 
text of its application not only to chips 
but to systems by use of a hierarchical 
BlST architecture. Thisapproach appears 
to be expanding rapidly in commercial 
products. For example, extensive use of 
BlST in workstation products has recent- 
ly been reported. The development of 
hierarchical BlST applications is likely to 
accelerate as the use of surface-mount 
technology further limits conventional 
board testing methods. The BIST solu- 
tion's positive economic impact at the 
system level motivates exploration of 
this hierarchical approach. 

Both conventional and hierarchical 
BIST employ the same fundamental con- 
cepts: pattern generation, response anal- 
ysis, and test management. The pattern 
generation and response analysis tech- 
niques we detailed in Part 1 differ little 
in conventional and hierarchical a p  
proaches. Most contemporaly pattern 
generation and response analysis imple 
mentations are based on LFSRs. Thus, the 
basic understanding of LFSR theoly pre 
sented here is useful to the BET designer. 

In Part 2, we will examine hardware im- 
plementations of BET structures based on 
the concepts introduced here, and we will 
discuss several real-world BIST applica- 
tions. Finally, we will describe CAD tools 
critical to the production of correct, effi- 
cient, and effective BIST designs. 
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LFSR theory 

Linear feedback shift registers are 
widely used in BlST because they are 
simple and fairly regular in structure, 
their shift property integrates easilywith 
serial scan, and they can generate ex- 
haustive and/or pseudorandom pat- 
terns. The typical components of an 
LFSR are D flip-flops and XOR gates. 
Despite their simple appearance, LFSRs 
are based on a rather complex mathe- 
matical theory.' Here we present only 
the aspects of the theory that help ex- 
plain their behavior as pattern genera- 
tors and response analyzers. 

Figure A shows two example LFSRs. 
Both use D flip-flops and linear logic el- 
ements (XOR gates). Their basic differ- 
ence is that the Figure A1 circuit uses 
XORs between flip-flops, whereas the 
Figure A2 circuit does not; instead the 
XORs appear only in the feedback 
path. For this reason we call the Figure 
A1 realization an internal-XOR LFSR 
and the Figure A2 realization an 
external-XOR LFSR. The two types are 
equivalent in the sense that, knowing 
the properties of the first structure, we 
can deduce the properties of the sec- 
ond.2 We will concentrate on the be- 
havior of h e  first type of structures. 

In test pattern generation mode, a 
pattern generated by an LFSR is the 

Figure A. Example LFSRs: infernal-XOR 
(1);external-XOR (2). 

state of all the D flip-flops in the LFSR. Ob- 
viously, we can deduce consecutive pat- 
terns generated by an LFSR by simulating 
it. But by associating polynomials with 
LFSRs and bit streams or vectors, we can 
use polynomial algebra to predict LFSR 
behavior. Throughout this discussion we 
discuss polynomials with binary coeffi- 
cients, but almost all the results can be 
stated in more general terms. 

We can express a binary vector R = 
rmrm-l ... ro as a polynomial r,,,xm + 
r,,+lF' + ... + ro. For example, a vector 
101 1 1 can be written 2 + 2 + x +  1. The 
superscript of the highest nonzero term in 
a polynomial is called the degree OF the 
polynomial. We can perform arithmetic 
on polynomials, just as we can on inte- 
gers. For example, consider two polyno- 
mials, q(x) = x3 + x2 + 1 of degree 3, and 
Ax) = x2 + x + 1 of degree 2. Then: 

dx )  + 4.) = x3 + 2x2 + X +  2 = x3 + x 

since coefficients are added modulo 2. 
Similarly, 

d ~ ) .  4.) =2 + M + 2x3 + 2u2 + X +  

1 =x5+x+1 

We can also express polynomials mod 
a polynomial. That is, two polynomials 
dx) and s(x) are congruent modulo n(x), 
written as dx) = s(x) mod n(x) if there is a 
polynomial 4.) such that dx) = n(x) . q(x) 
+ s(xJ As with integers, we find the least 
positive residue in polynomials by divid- 
ing Ax) by n(x) and taking the remainder. 
Thus, we can perform modulus arithmetic 
on polynomials as we do with integers. 
For example: 

(x2+x+ 1) .  (a+ 1)=(2+#+$+ 
x2+x+ l )mod(#+x)  

Performing the required division, we 

get 

x + l  

x 4 + x  x 5 + x 4 + x 3 + x 2 + x + l  

x5 X2 

1 
x 4 + x 3  + x  
x 4  + X  

x3 +1 

Therefore, (x2 + x +  1) . (2 + 1) = 
+ 1 mod (2 + x). Similar to prime nur 
bers (numbers that cannot be factore 
for integers, we can define polynon 
als that cannot be factored. Such pol 
nomials are called irreducible. Fi 

example, the polynomials dx) = # 
x3+x2+x+ 1 andb(x )=#+d+  
are two irreducible polynomials of d 
gree 4. Irreducible polynomials he 
define an algebraic structure called 
held. Although the general study of 1 
SRs requires an understanding of fielc 
we will forgo the details for lack 
space. Let dx )  be a polynomial of d 
gree n, and let us compute x, x2,x3, , 

mod dx). Clearly all these polynomic 
will be of degree less than that of p(r 

For a special type of polynomial p(; 
while computing increasing powers 
x mod dx), we obtain all possible no 
zero polynomials of degree less thc 
that of p(x)-that is, 2" - 1 distinct no 
zero polynomials. Such a polynomi 
dx) is called primitive. Let us clarify 4 
through an example by computing 
~ 2 ~ x 3 ,  ... mod dx). The sequence \ 
obtain is x, x2, 9, # = x3 + x2 + x + 
2 = 1, x6 = x. We can now concluc 
that the succeeding powers of x w 
generate the same remainders ov 
and over. Thus, in this case, succee 
ing powers of x generate only five d 
tinct polynomials. On the other hand, 
if we repeat the same process for the 
polynomial b(x), we obtain all 15 non- 
zero polynomials of degree less than 4. 

continued on p. 80 
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~ LFSR theory (continued) 

1 Thus, the polynomial b(x) is primitive, 
1 and the polynomial a(x) is not primitive, , although both are irreducible. 

What is the relation between polyno- ' mial algebra and LFSRs? Like a binary 
1 vector, an LFSR can also be expressed ' as a polynomial. Figure 6 is a general 
1 representation of an internal-XOR 
1 LFSR. This LFSR i s  represented by a 
1 polynomial g(x) = X" + g,lx+' + . . . + 
l go. We call g(x) the LFSRs characteris- , tic polynomial. Thus, the characteristic 

polynomial of the LFSR in Figure A1 is 
1 x" + 2 + 1. Furthermore, the contents 

of an LFSR, being a binary vector, can 
~ also be expressed by a polynomial of 
~ degree less than the degree of its char- 

acteristic polynomial. 
l We also know that a left shift of a bi- 
I nary vector in the polynomial represen- 
1 tation of vectors is equivalent to multi- 

plication by x. In the case of LFSRs, a left 
shift of an LFSR is equivalent to multiply- 
ing its contents by x, then computing its ' value mod the characteristic polynomial ' of the LFSR. To explain this through an 

I example, let us assume that the content 
of the LFSR of Figure A1 is 101 0 = x3 + 

' x. Multiplying it byxgivesxd+x2=x3+ 
x2 + 1 mod (2 + x3 + 1 ). The reader can 

1 verify this result by manually simulating 
Figure A1 's LFSR beginning in initial 
state 101 0. 

From the preceding discussion and ex- ' ample, we generalize that if an LFSR of 
I characteristic polynomial p(x) of degree n 
~ is initialized to A n  other words, the ini- 
l tialstateoftheLFSRis 00... O l ~ t h ~  
~ on consecutive shifts the contents of the 
I LFSR will be2 mod Ax), 2 mod dx), . . ., 

and so on. If p(x) is a primitive pdynomi- 
1 al, the vectors generated by the LFSR will 
l be all possible 2"-1 nonzero vectors. 

Hence, such an LFSR can serve as an ex- 
' haustive (almost) test pattern generator for 
I a CUT of n inputs. In fact, we can make a 
1 stronger statement: An LFSR with a char- 

mFP 
Figure B. A general representation of an internal-XOR LFSR. 

U U U U U 

Figure C. An LFSR for dividing a polynomial. 

Figure D. An external-XOR LFSR for dividing a polynomial. 

aderistic polynomial g[xJ of degree n will 
generate all possible 2"-1 nonzero wxtm-s 
if and only ifg(xJ is a primitive pdynomial. 

Yet another characteristic of the vectors 
generated by an LFSR is that they appear 
to be randomly ordered.' In fact, they sat- 
isfy most of the properties of random num- 
bers even though we can predict them 
deterministically from the LFSRs present 
state and its characteristic polynomial. 
Therefore, we call these vectors pseudo- 
random vectors. 

An LFSR modified to accept an external 
input, as shown in Figure C, acts as a poly- 
nomial divider. It divides the input se- 
quence, represented by a polynomial, by 
the characteristic polynomial g(x) of the 
LFSR. As this division proceeds bit by bit, 
the quotient sequence appears at h e  out- 
put of the LFSR and the remainder appears 
in the LFSR with every shift of the input se- 
quence into the LFSR. Notice that the input 

polynomial is shifted with the highest de- 
gree coefficient first (remember, division 
starts from the highest degree end). The 
polynomial divider structure of the LFSR 
often is used as a signature analyzer. 
The reader can verify that for the exam- 
ple in Figure 2 and Table 3, all the sig- 
natures are indeed correct. Error 
correction coding (ECC) applications 
make extensive use of the division prcp- 
erty of LFSRs and the analogy between 
irreducible polynomials and prime num- 
bers.2 

Before concluding our discussion of 
LFSRs, we must comment on the relation 
between internal-XOR and external- 
XOR LFSRs. There is a one-to-one cor- 
respondence between the behaviors of 
the two types. The characteristic poly- 
nomial for the external-XOR LFSR 
shown in Figure D is dx )  = Xn + gwlrr-l 
+ . . . + go. Notice that the coefficients gj 
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in this figure are labeled differently 
from the preceding two figures. An ex- 
ternal-XOR LFSR also acts as a polyno- 
mial divider and produces the correct 
quotient bit sequence. However, the LF- 
S R s  contents is not the remainder as it 
is with the internal-XOR LFSR. Readers 
familiar with the theory and design of 
sequential circuits can draw an analo- 
gy that the two LFSRs are different real- 
izations of the same state table using 
two different state assignments. 

Both internal-XOR and external-XOR 
LFSRs have only one external input. 
They can be modified to obtain three 
different realizations of multiple-input 
LFSRs (or multiple-input signature reg- 
isters, MISRs), as shown in Figure E. For 
theoretical analysis, we can reduce 
each realization to an equivalent sin- 

gle-input LFSR by rearranging the in- 
p u t ~ . ~  We achieve the rearrangement 
by means of the commutative proper- 
ty of the XOR operator and the fact that 
a flip-flop‘s input and output are relat- 
ed by a shift or  delay operator. 
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