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2.1 Solution Curves Without a Solution
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38 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) The isoclines have the form x? + y?> = ¢, which are circles

centered at the origin.

16. (a) When z =0 or y =4, dy/dx = —2 so the lineal elements have slope —2. When y = 3 or
y =05, dy/dr = x — 2, so the lineal elements at (z,3) and (z,5) have slopes = — 2.

(b) At (0,yo) the solution curve is headed down. If y — oo as z increases, the graph must
eventually turn around and head up, but while heading up it can never cross y = 4
where a tangent line to a solution curve must have slope —2. Thus, y cannot approach

oo as x approaches oco.

<

17. When y < %x2, y' = 2% — 2y is positive and the portions of
solution curves “outside” the nullcline parabola are increasing.

When y > %x2, y' = x? — 2y is negative and the portions of the

Y oo —

solution curves “inside” the nullcline parabola are decreasing.

————— =~~~
—— =~~~

18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the
nullclines are 22 — y?> = 0 or y = +z. In Problem 3 the nullclines are 1 — zy = 0 or
y = 1/z. In Problem 4 the nullclines are (sinz)cosy =0 or x = nw and y = 7/2 + n,
where n is an integer. The graphs on the next page show the nullclines for the equations

in Problems 1, 3, and 4 superimposed on the corresponding direction field.
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2.1 Solution Curves Without a Solution 39

(b) An autonomous first-order differential equation has the form y’ = f(y). Nullclines have
the form y = ¢ where f(c¢) = 0. These are the graphs of the equilibrium solutions of the
differential equation.

19. Writing the differential equation in the form dy/dx = y(1 — y)(1 + y) we see that
critical points are y = —1, y = 0, and y = 1. The phase portrait is shown at the

right.
1
(a) v (b) v
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20. Writing the differential equation in the form dy/dzr = y?(1 — y)(1 + y) we see that
critical points are y = —1, y = 0, and y = 1. The phase portrait is shown at the
right.
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40 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

21. Solving y? — 3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the

phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable
(repeller).

22. Solving y>—1° = y2(1 —1vy) = 0 we obtain the critical points 0 and 1. From the phase
portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

Y

N

23. Solving (y — 2)* = 0 we obtain the critical point 2. From the phase portrait we see
that 2 is semi-stable.




2.1 Solution Curves Without a Solution

24. Solving 10 4+ 3y — y> = (5 — y)(2 + y) = 0 we obtain the critical points —2 and 5.

From the phase portrait we see that 5 is
unstable (repeller).

asymptotically stable (attractor) and —2 is

—

25. Solving y%(4 — y?) = 4*(2 — y)(2 + y) = 0 we obtain the critical points —2, 0, and

2. From the phase portrait we see that

2 is asymptotically stable (attractor), 0 is

semi-stable, and —2 is unstable (repeller).

26. Solving y(2—y)(4—y) = 0 we obtain the critical points 0, 2, and 4. From the phase

portrait we see that 2 is asymptotically
(repellers).

stable (attractor) and 0 and 4 are unstable

Y

41



42 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Solving y In(y+2) = 0 we obtain the critical points —1 and 0. From the phase portrait
we see that —1 is asymptotically stable (attractor) and 0 is unstable (repeller). A

28. Solving ye¥ — 9y = y(e¥ — 9) = 0 (since e is always positive) we obtain the
critical points 0 and In 9. From the phase portrait we see that 0 is asymptotically In9
stable (attractor) and In9 is unstable (repeller).

y

J

4 22 2 4

210

29. The critical points are 0 and ¢ because the graph of f(y) is 0 at these points. Since f(y) > 0
for y < 0 and y > ¢, the graph of the solution is increasing on the y-intervals (—oo,0) and

(c,00). Since f(y) < 0 for 0 < y < ¢, the graph of the solution is decreasing on the y-interval
(0,¢).




2.1 Solution Curves Without a Solution

30. The critical points are approximately at —2,2, 0.5, and 1.7. Since f(y) > 0 for y < —2.2

31.

32.

33.

and 0.5 < y < 1.7, the graph of the solution is increasing on the y-intervals (—oo, —2.2) and
(0.5,1.7). Since f(y) < 0 for —2.2 < y < 0.5 and y > 1.7, the graph is decreasing on the
y-interval (—2.2,0.5) and (1.7, 00).

17y NE

051

) k
224 =2

From the graphs of z = 7/2 and z = siny we see that |
(2/m)y—siny = 0 has only three solutions. By inspection

we see that the critical points are —7/2, 0, and 7/2. - -7 3 g
-1
From the graph at the right we see that
2 ) <0 for y<-—m/2
—Yy—smy z |
™ >0 for y>mn/2 2
O —+
2 ) >0 for —-7/2<y<0
—y—siny x
@ <0 for O0<y<m/2 57T

This enables us to construct the phase portrait shown at the right. From this portrait we see

that 7/2 and —7/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

For dy/dx = 0 every real number is a critical point, and hence all critical points are noniso-
lated.

Recall that for dy/dx = f(y) we are assuming that f and f’ are continuous functions of y
on some interval I. Now suppose that the graph of a nonconstant solution of the differential
equation crosses the line y = c¢. If the point of intersection is taken as an initial condition

we have two distinct solutions of the initial-value problem. This violates uniqueness, so the

43
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34.

35.

36.

37.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

graph of any nonconstant solution must lie entirely on one side of any equilibrium solution.
Since f is continuous it can only change signs at a point where it is 0. But this is a critical
point. Thus, f(y) is completely positive or completely negative in each region R;. If y(x) is
oscillatory or has a relative extremum, then it must have a horizontal tangent line at some
point (zg, yo). In this case yg would be a critical point of the differential equation, but we saw
above that the graph of a nonconstant solution cannot intersect the graph of the equilibrium

solution y = yg.

By Problem 33, a solution y(x) of dy/dz = f(y) cannot have relative extrema and hence must
be monotone. Since y/(z) = f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded
above by cg, lim;_0o y(z) = L, where L < co. We want to show that L = ¢y. Since L is a
horizontal asymptote of y(z), lim, o 3/(z) = 0. Using the fact that f(y) is continuous we

have

F(L) = f (Jim y(@)) = Tim f(y(x)) = Tim ¢/(z) = 0.

T—r00 T—r00 T—00

But then L is a critical point of f. Since ¢; < L < ¢, and f has no critical points between

c1 and co, L = co.

Assuming the existence of the second derivative, points of inflection of y(z) occur where
y"(z) = 0. From dy/dx = f(y) we have d*y/dx? = f'(y) dy/dz. Thus, the y-coordinate of a
point of inflection can be located by solving f’(y) = 0. (Points where dy/dxz = 0 correspond

to constant solutions of the differential equation.)

Solving 42 —y — 6 = (y — 3)(y +2) = 0 we see that 3 and —2
are critical points. Now d?y/dx? = (2y — 1)dy/dx = (2y — 1)(y — 5+
3)(y + 2), so the only possible point of inflection is at y = %,
although the concavity of solutions can be different on either side
of y=—2 and y = 3. Since y"(z) < 0for y < —2 and 1 <y < 3,

and y”’(z) > 0 for -2 < y < % and y > 3, we see that solution

curves are concave down for y < —2 and % < y < 3 and concave £

up for -2 <y < % and y > 3. Points of inflection of solutions of

autonomous differential equations will have the same y-coordinates
because between critical points they are horizontal translations of

each other.

If (1) in the text has no critical points it has no constant solutions. The solutions have
neither an upper nor lower bound. Since solutions are monotonic, every solution assumes all

real values.
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2.1 Solution Curves Without a Solution

The critical points are 0 and b/a. From the phase portrait we see that 0 is an
attractor and b/a is a repeller. Thus, if an initial population satisfies Py > b/a,

the population becomes unbounded as ¢ increases, most probably in finite time, %--
ie. P(t) > oc0ast— T. If 0 < Py < b/a, then the population eventually dies out, '
that is, P(t) — 0 as t — oo. Since population P > 0 we do not consider the case

Py < 0. oT

From the equation dP/dt = k (P — h/k) we see that the only critical point of the autonomous
differential equationis the positive number h/k. A phase portrait shows that this point is
unstable, that is, h/k is a repeller. For any initial condition P(0) = Fy for which 0 < Py < h/k,
dP/dt < 0 which means P(t) is monotonic decreasing and so the graph of P () must cross the
t-axis or the line P — 0 at some time ¢; > 0. But P(¢;) = 0 means the population is extinct

at time %q.

Writing the differential equation in the form

i~ (7 ) |

= — =

k

we see that a critical point is mg/k.

From the phase portrait we see that mg/k is an asymptotically stable critical point. 1
Thus, tlim v =mg/k.
— 00

Writing the differential equation in the form

dv  k ymg o\ k mg mg
dt_m(k; ”>_m< k ”)(\/k”

we see that the only physically meaningful critical point is \/mg/k.

/ms 1
k

From the phase portrait we see that y/mg/k is an asymptotically stable critical
point. Thus, tlim v=1+/mg/k.
—00

(a) From the phase portrait we see that critical points are o and /5. Let X (0) = Xj.
If Xog < a, we see that X = aast — oo. If a < Xy < 3, we see that X — «
as t — oo. If Xy > (3, we see that X (¢) increases in an unbounded manner, s+
but more specific behavior of X (t) as t — oo is not known.

45



46 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) When o = 3 the phase portrait is as shown. If Xy, < «, then X(t) — «
as t — oo. If Xo > «, then X(¢) increases in an unbounded manner. This
could happen in a finite amount of time. That is, the phase portrait does not
indicate that X becomes unbounded as t — co.

(c) When k = 1 and a = S the differential equation is dX/dt = (o — X)2

X(t) =a—1/(t +c) we have dX/dt = 1/(t + ¢)? and

(o= 2)° = [a_ <a_t—|1—c>]2: (t+1c)2 -

For X(0) = a/2 we obtain

1
Xt)=a— ——.
®) t+2/a
For X(0) = 2a we obtain
1
X(t)=a- .
®) t—1/«a

2/ ! 1/a !

For

For Xy > «, X (t) increases without bound up to t = 1/a. For t > 1/a, X(t) increases

but X — a as t — oo.

2.2 Separable Variables

In many of the following problems we will encounter an expression of the form In|g(y)| = f(z)+ec.
To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = ef@)Fe = eef (@)

which implies g(y) = +eel®) . Letting ¢ = +e® we obtain g(y) = crel @,

1. From dy = sin bx dx we obtain y = —% cos bx + c.

2. From dy = (z + 1)?dz we obtain y = +(z + 1)* +c.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

2.2 Separable Variables

. From dy = —e™3* dx we obtain y = %6_390 +c.
F ! dy =d btai ! + 1 !
. From — dy = dz we obtain ——— =x+cory=1— .
(y —1)2 4 y—1 Y x+c
1 4 ) 4
. From — dy = — dz we obtain In |y| = 41n |z| + c or y = c12*.
Yy x
1 ) 1 9 1
. From — dy = -2z dz we obtain —— = —z” + cor y = — .
Y Y e+
From e~ dy = e3*dx we obtain 3¢~ %Y + 2¢3% = c.
1
. From ye¥dy = (e‘x + e‘3m) dx we obtain ye¥ —e¥ + e + ge_gx =c
1 9 . y2 .Z'3 1 3
. From (y+2+ — | dy = 2° Inz dx we obtain 7+2y+ln|y| = §In|3:| —3° +ec.
Y
F d ! d btai 2 ! +
rom ——— dy = ———— dx we obtain = c.
2y +32 YT 4z +5)7 % +3 4z+5
1
From dy = ———5—dz or sinydy = —cos?xdr = —%(1 + cos2x)dx we obtain
cscy sec? x
—cosy = —%x— %sin2w+c or 4cosy =2z +sin2x +cy.
sin 3x 9 . 9 1 9
From 2y dy = —————dx or 2y dy = — tan 3z sec” 3z dz we obtain y~ = —g sec” 3z + c.
cos® 3z
From < dy = e dz we obtain — (¥ +1) ' =1 (e +1) 2 +¢
(ev + 1) (er +1)° 2
From ——_dy = —~_ dz we obtain (1 + y2)1/2 = (1 + x2)1/2 +c.

Y
(L) 7 (14a?)!?

From % dS = k dr we obtain S = ce".

1
From 070 dQ = kdt we obtain In|Q — 70| = kt + c or Q — 70 = ¢ e,
From #dP = l—l—; dP = dt we obtain In|P| —In|l — P| = t + ¢ so that
p—p2" “\P"1-P - -
t
In 1—P‘ =t+cor T p = ae- SolvmgfoerehaveP—71+Clet.

1
From N dN = (te't? — 1) dt we obtain In |[N| = te!™2 — e*2 —t + cor N = cye

-2 -1
From z+3dy:i+4daz or (1—%) dy = <1—%+4> dx we obtain

4
y—5lnjy+3|=z—5ln|lz+4/+c or <3:_j—_3> = eV,
Y

tet+2 _et+2 ¢

47
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20.

21.

22.

23.

24.

25.

26.

27.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

1 2 2 )
From vt dy—$+ dx or <1—|——>dy:<1—|— 3>dwwe0btain

y—1 - zx-—3 y—1 T —
_ (y_1)2_ -y
y+2lnjy—1|=z+5ln|r—3|+c or ——= =ce’ Y.
(x—3)°
1 . 1.9 .1 . 1’2
From:nd:nzﬁdyweobtam 5% =sin" "y +cory=sin 74—61 .
-y
1 1 * 1
From — dy = dr = c dx we obtain —— = tan"'e® + ¢ or
2 e 4 e~ " (e")? +1 Y

Y= "tant et +c’

1
From ——— dx = 4dt we obtain tan~! 2 = 4t +c. Using z(7/4) = 1 we find ¢ = —37/4. The

224+ 1
3 3
solution of the initial-value problem is tan™' 2 = 4t — ZF or x = tan <4t — %)
1 1 1 1 1 1 1 1
From dy = de or = —— — —— | dy = = — dx we obtain
y2—1 2 -1 2\y—1 y+1 2\z—-1 =x+1

y—1 clx—1)

Injly—1—Injy+1=Injz—1 —In|lz+ 1| +1nc or . Using y(2) = 2 we

y+1  z4+1
. o Cy—1 xz—1
find ¢ = 1. A solution of the initial-value problem is = ory =ux.
y+1 x+1
1 1-— 1 1 1
From —dy = 2x dx = <—2 - —) dz we obtain In|y| = —— —In|z| = ¢ or zy = c1e /7.
Y x x x x
Using y(—1) = —1 we find ¢; = e~!. The solution of the initial-value problem is zy = e~ 11z

ory = e~ H1/2) /g,

From ] dy = dt we obtain —% In|1—2y| =t+cor1—2y=cre 2. Using y(0) = 5/2 we

find ¢; = —4. The solution of the initial-value problem is 1 — 2y = —4e~ 2! or y = 2e 72 + % .

Separating variables and integrating we obtain

dx B dy
V-2 /1 —2

=0 and sinlz—sinly=c

Setting = 0 and y = /3/2 we obtain ¢ = —7/3. Thus, an implicit solution of the initial-

1

value problem is sin~'z — sin~!y = 7/3. Solving for y and using an addition formula from

trigonometry, we get

1

3vV1 — a2
yzsin(sin_ x+%) ::ECOS%—I— 1—:1:%110%2%—1—%.



2.2 Separable Variables

1 _
28. From ——— dy = T dx we obtain
1+ 2)

1 1
B tan™! 2y = 3 tan~'22 +¢ or tan"!2y+tan~lz? =¢;.

Using y(1) = 0 we find ¢; = 7/4. Thus, an implicit solution of the initial-value problem is

2

tan~! 2y + tan~ ' 2? = /4. Solving for y and using a trigonometric identity we get

2y = tan (% —tan~! xz)

= 1 tan (E — tan~* a;2)
Y73 4

1 tan7 —tan (tan—! 2?)
2 1+ tan 7 tan (tan~! 2?)

C11—a?
21427

29. Separating variables and then proceeding as in Example 5 we get

dy a2

dw ¢
Ldy _
y dr
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30. Separating variables and then proceeding as in Example 5 we get

=Y sin ()
1 dy . 9
7 dr = sin (z*)

. T

70 |2 :/_251n(t2)dt
_1 1 = : Sin 2
s ey = e

31. Separating variables we get

@_2:17—1—1 1
der 2y

2ydy = 2z + 1) dx

/2ydy:/(2x—|—1) dx -3
-4

Y=z +r+c

The condition y(—2) = —1 implies c = —1. Thus 4> =22+ 2 —landy = —vV22 +x — 1 in

order for y to be negative. Moreover for an interval containing —2 for values of x such that
1 5

22+ —1>0 we get <_OO’_§_ g)



32.

33.

34.

35.

2.2 Separable Variables

Separating variables we get
dy 2
20—2) —==3 4 2
(2y — 2) T z° + 4 +

(2y —2) dy = (32 + 42 + 2) da K 1
/(2y—2)dy=/(3x2+4x+2) da =

i

/2(y—1)dy=/(3:172—|—4:1:—|—2)d:1: -3

(y—1)? =2®+ 222 + 2z + ¢

The condition y(1) = —2 implies ¢ = 4. Thus y = 1 — V23 + 222 + 2z + 4 where the minus
sign is indicated by the initial condition. Now 2%+ 222 + 2244 = (z + 2) (22 + 1) > 0 implies

x > —2, so the interval of definition is (-2, c0).

Separating variables we get

eVYder—e Pdy=0

6
eYdr =e"dy
4
e“dr=eYdy
2
/emdx:/e_ydy
ef=—eY+e

The condition y(0) = 0 implies ¢ = 2. Thus e™¥ = 2 — e®. Therefore y = —In (2 — €*). Now
we must have 2 —e® > 0 or e¥ < 2. Since €” is an increasing function this imples z < In2

and so the interval of definition is (—oo,1n 2).

Separating variables we get

sinzdr +ydy =0

/sinxdm+/ydy:/0dx

L,
—cosx+§y =c

1

The condition y(0) = 1 implies ¢ = —5. Thus —cosx + %yz = —% or y> = 2cosx — 1.

Therefore y = /2 cos z — 1 where the positive root is indicated by the initial condition. Now
we must have 2cosz —1 > 0 or cosz > % This means —7/3 < x < 7/3, so the the interval
of definition is (—m/3,7/3).

(a) The equilibrium solutions y(z) = 2 and y(x) = —2 satisfy the initial conditions y(0) = 2

51



52 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

and y(0) = —2, respectively. Setting x = % and y = 1 in y = 2(1 + ce?®) /(1 — ce?®) we

obtain . .
+ce, 1l—ce=2+2ce, —1=3ce, and c=——.

1=2
3e

1—ce
The solution of the corresponding initial-value problem is

1— %64:(:—1 3 _ eho—1

y:21+%e4~"’_1 R

(b) Separating variables and integrating yields
1 1
Zln]y—2\ — Zln]y+2\ +1Inc; =2z

Inly —2|—Infy+2|+1nc=4z

‘C(y—Q)‘_4x

Y+ 2
Cy_2: 4z
Y+ 2

Solving for y we get y = 2(c + €*)/(c — *). The initial condition y(0) = —2 implies
2(c+1)/(c — 1) = =2 which yields ¢ = 0 and y(z) = —2. The initial condition y(0) = 2
does not correspond to a value of ¢, and it must simply be recognized that y(z) =2 is a
solution of the initial-value problem. Setting x = i andy =1iny = 2(c+e'®)/(c—el®)

leads to ¢ = —3e. Thus, a solution of the initial-value problem is
—3e +et® 3 —elol
Yy =2 =2 .
—3e — et® 3+ etr—l

36. Separating variables, we have

dy _ dv or /ﬁzln\xl—i-c.
yly —1)

Inly—1]—Injy|=In|z|+¢

In

= C

-1
Y =e“ =c.
Y

Solving for y we get y = 1/(1 — c1x). We note by inspection that y = 0 is a singular solution

of the differential equation.



(a) Setting z =0 and y = 1 we have 1 = 1/(1 — 0), which is true for all values of ¢;. Thus,

solutions passing through (0,1) are y = 1/(1 — c1z).

(b) Settingz =0and y =0iny =1/(1—cyx) we get 0 = 1. Thus, the only solution passing

through (0,0) is y = 0.

1

2.2 Separable Variables

(c) Settingz =3 and y =3 we have £ =1/(1 —1¢1),s0 ¢ = —2 and y = 1/(1 + 2z).

(d) Setting z =2 and y = 1 we have - =1/(1 —2¢;), s0 ¢; = —3 and

y=1/1+3z)=2/(2+3x).

37. Singular solutions of dy/dx = xy/1—y? are y = —1 and y = 1. A singular solution of

(e® + e *)dy/dr = y*is y = 0.

38. Differentiating In (22 4+ 10) + cscy = ¢ we get

2 — cscy cot @ =0
22+ 10 L
2x 1 cosydy 0

22410 siny siny dz

or

)

2z sin? y dx — (2% + 10) cos y dy = 0.

Writing the differential equation in the form

dy 22 sin’ y

de (224 10)cosy

we see that singular solutions occur when sin?y = 0, or y = kn, where k is an integer.

39. The singular solution y = 1 satisfies the initial-value problem.

1017

—-0.004 -0.002

098

097*%

- - X
0.002 0.004
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. - X
0.002 0.004

- - X
0.002 0.004

d ’
40. Separating variables we obtain ﬁ = dz. Then 1.02
y [e—
1 r+c—1 Lol
———=x+4+c¢ and y=—"-—+—+.
y—1 T +c
Setting x = 0and y = 1.01 we obtain ¢ = —100. The solution 00040002
is
x — 101
YT o100 0991
098 -
41. Separati iabl btai dy dr. Th
. Separating variables we obtain ——————— = dx. Then
P s (y—1)2+0.01 1.0004
1
10tan ' 10(y — 1) =2+ ¢ and y:1+1—0tanx1—4(_)c. 1.0002
Setting x = 0 and y = 1 we obtain ¢ = 0. The solution is =
y=1+itan£. 0.9998 |
10 10
0.9996
. . . dy
42. Separating variables we obtain ———————— = dx. Then,
(y—1)2—0.01
Withu:y—landazl—lo,we get 10004
. 10y — 11 N 1.0002
n =x+c
10y =9 0.004 —0.002
Setting * = 0 and y = 1 we obtain ¢ = 5Inl = 0. The 0.9998
solution is
51n ‘ 10y — 11 ‘ _ 0.9996
10y — 9
Solving for y we obtain
114 9e"P
Y710 10675
Alternatively, we can use the fact that
dy 1 y—1 _
/m = —0—1 tanh 1 0—1 = —10tanh 1 10(y — 1)

X
0007 0004

(We use the inverse hyperbolic tangent because |y — 1] < 0.1 or 0.9 < y < 1.1. This

follows from the initial condition y(0) = 1.) Solving the above equation for y we get y =

1+ 0.1tanh (z/10).



2.2 Separable Variables

43. Separating variables, we have

dy dy (i vz 2N,
y—y3_yﬂ—yxl+w__< " >dy -

y 1-y 1+y

Integrating, we get

1 1
ln|y|—§ln|1—y|—§ln|1+y|::17+c.

When y > 1, this becomes

1 1
lny—gln(y—l)—iln(y—l—l):lnL:x—Fc.

N

Letting # = 0 and y = 2 we find ¢ = In (2/v/3). Solving for y we get y1(z) = 2¢%//4e2% — 3,

where 2 > In (v/3/2).

When 0 < y < 1 we have

1 1
lny—éln(l—y)—gln(l—i-y)Zlnizx-i-c-

Letting x = 0 and y = % we find ¢ = In (1/v/3). Solving for y we get ya(x) = €*/Ve2® + 3,

where —o0o < & < 00.

When —1 < y < 0 we have

1 1 —
In(—y)—5lh(l—y) - sh(l+y) =l ——= =z +c

V1—y?

Lettingz = 0 and y = —% we find ¢ = In (1/4/3). Solving for y we get y3(z) = —e*/Ve2¥ + 3,

where —oo < x < 00.

When y < —1 we have

1 1 —
ln(—y)—gln(l—y)—iln(—l—y):lniy:x—i-c.

N

Letting = 0 and y = —2 we find ¢ = In (2/y/3). Solving for y we get

ya(r) = —2e*/\/4e2® — 3, where x > In (v/3/2).

y y y y
4 4 4t 4
2 2F 2 2
/—

+ * * * - X X X T S 2 y s

1 2 3 4 5 -4 2 2 4 -4 2 Tr~2 4 1 2 3 4 5

2 ) -2 2
—4 -4 -4 -4

55
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44.

45.

46.
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(a) The second derivative of y is 3

Py dyle -3 1 i
d? —(y=12 0 (=32 (y-3)F ﬁ/
\\’\4

The solution curve is concave down when d?y/dz? < 0 2

or y > 3, and concave up when d?y/dz? > 0 or y < 3.

From the phase portrait we see that the solution curve

is decreasing when y < 3 and increasing when y > 3.

(b) Separating variables and integrating we obtain

8
(y —3)dy = dx /j/
1
§y2_3y:x+c 2\\

y? —6y+9=21+c 1 1 2 3 4 3

(y—3)2=2r+c

y=3+tV2xr+c.

The initial condition dictates whether to use the plus or minus sign.

When y1(0) = 4 we have ¢; = 1 and y1(z) = 3 + v2z + 1 where (—1/2,00).
When y5(0) = 2 we have ¢; = 1 and yo(x) = 3 — V22 + 1 where (—1/2,00).
— 2z — 1 where (1/2,00).

(
When y3(1) = 2 we have ¢; = —1 and y3(z) = 3
When y4(—1) = 4 we have ¢; = 3 and y4(x) = 3 + 2z + 3 where (—3/2,00).

We separate variables and rationalize the denominator. Then

dy — 1‘ _l—s%na:dle—s.inzx dle—sinxdx
1+sinz 1—sinz 1 —sin®x cos? x

= (sec2 T — tan x sec m) dx.

Integrating, we have y = tanxz — secx + C.

Separating variables we have \/y dy = sin/x dz. Then

/\/ﬂdy:/sinﬂda: and §y3/2 :/Sin\/Ed:E.

1
To integrate sin/z we first make the substitution v = y/z. Then du = —=dz = % du and
x

NE
/sinﬁdmz/(sinu) (2u) du:2/usinudu.



47.

48.

2.2 Separable Variables 57

Using integration by parts we find

/usinudu = —ucosu + sinu = —/z cos\/z + sin /.

Thus

[SSREIR )

yz/sinﬁdmz —2y/x cos/x + 2siny/z + C
and

y:32/3 (—\/E cos\/5+sin\/§+0).

Separating variables we have dy/ (\/y +y) = dz/(y/x +z). To integrate /da:/ (Vo + )

we substitute u? = x and get

2 2
/u+”u2 duz/1+udu:2ln\1+u\+c=21n(1+ﬁ) +e
Integrating the separated differential equation we have
2In(14+ ) =2In(1+vz)+¢ or In(1+y) =In(1+z)+Ine.

Solving for y we get y = [c1 (1 + /Z) — 1]°.

Separating variables and integrating we have

dy _ [y
/y2/3 (1—yl/3) —/ :1:

y2/3
/71_y1/3dy:x+cl

BIn|l -y =2+4¢
In 1—y1/3 :—g—I—CQ
1— /3] = cgeo/3
1 — y/3 = cpeo/3
Y3 =14 cge/3

3
Y= (1 + C5€_x/3> .
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50.

51.

52.
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Separating variables we have y dy = eVidr. If u = VZ, then u? = r and 2udu = dz. Thus,

eVPdr = | 2uedu and, using integration by parts, we find

1
/ydy:/eﬁda: SO §y2:/2ue“du:—2e“—i—C:2\/56‘/5—26‘/5—1-07

and

y:2\/\/56\/5—e\/5+0.

To find C' we solve y(1) = 4.

y(l):2\/ﬁeﬁ—eﬁ+0:2\/5:4 so  C=4.

and the solution of the intial-value problem is y = 2\/ VTevT —eVT 4+ 4.

Seperating variables we have y dy = z tan™! x dz. Integrating both sides and using integration

by parts with « = tan™' 2 and dv = x dx we have
/ydy = ztan 'z dx

1 1 1
y2:§$2tan_1x—§x+§tan_1x+C’

DO =

1

P =a2?tan tae —x +tan x4+ O

y=+v22tan"lz —z +tan"lz + )

To find C; we solve y(0) = 3.

y(0) = V02 tan=20 — 0 + tan=1 0 + C; = /C; = 3 SO Cy =9,

and the solution of the initial-value problem is y = vVz2tan 1z — 2z +tan "tz +9.

(a) While yo(z) = —v/25 — 22 is defined at = —5 and x = 5, y4(z) is not defined at these

values, and so the interval of definition is the open interval (—5,5).

(b) At any point on the z-axis the derivative of y(x) is undefined, so no solution curve can
cross the z-axis. Since —x/y is not defined when y = 0, the initial-value problem has no

solution.

The derivative of y = (%:172 — 1)2 is dy/dr = x (%xz — 1). We note that zy'/2 = z ‘%:172 — 1|.
We see from the graphs of y (black), dy/dz (red), and zy'/? (blue), below that dy/dx = xy'/?

on (—o0,2] and [2,00).



53.

54.

55.

2.2 Separable Variables

Alternatively, because vV X? = | X| we can write

x(%xz—l), —oco<x <=2
2
a;yl/zzx\/g:x <lx2—1> :xlx2—1‘: —x(l$2—1) —2<r<?2
4 4 1 ’
x(%xz—l), 2<zr<00.

From this we see that dy/dz = 2y'/? on (—oo, —2] and on [2, c0).

Separating variables we have dy/ (\/ 1+ 92 sin® y) =dx 3-§y

which is not readily integrated (even by a CAS). We 25

note that dy/dxz > 0 for all values of = and y and that 1?

dy/dx = 0 when y = 0 and y = 7, which are equilibrium )

solutions. Y N
6 -4 2 2 4 6 8

(a) The solution of ¥/ =y, y(0) = 1, is y = e®. Using separation of variables we find that the
solution of ¥/ = y[1+1/(xInz)], y(e) =1, is y = " “Inz. Solving the two solutions

simultaneously we obtain

x e

e =" “Inx, SO e =Inx and x=e°

(b) Since y = (<) ~ 233 x 101:656:520 the y-coordinate of the point of intersection of the

two solution curves has over 1.65 million digits.

We are looking for a function y(z) such that

dy 2

2

YWYy —1.
Y *<dw>

Using the positive square root gives

dy
212
dx

dy =dx

1— 92
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56.

57.

58. (a) Separating variables and integrating, we have 2
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Thus a solution is y = sin (z + ¢). If we use the negative square root we obtain
y=sin(c—z)=—sin(z —c¢) = —sin (z + ¢1).

Note that when ¢ = ¢ = 0 and when ¢ = ¢; = /2 we obtain the well known particular
solutions y = sinx, y = —sinx, y = cosx, and y = — cosx. Note also that y =1 and y = —1

are singular solutions.

(b) For |z| > 1 and |y| > 1 the differential equation is dy/dz = \/y? — 1 /v/22 — 1. Separat-
ing variables and integrating, we obtain

d d
y_ * and cosh 'y =cosh 'z +ec.

-1 V-1

Setting # = 2 and y = 2 we find ¢ = cosh™' 2 — cosh™* 2 = 0 and cosh™!y = cosh™! z.

An explicit solution is y = .

Since the tension 77 (or magnitude 77) acts at the lowest point of the cable, we use symmetry
to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform
(that is, weighs a constant p pounds per horizontal foot) implies W = px, where z is measured
in feet and 0 < z < L/2. Therefore (10) becomes dy/dx = (p/T1)x. This last equation is a
separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the
initial condition y(0) = a shows that the shape of the cable is a parabola: y(z) = (p/211)2*+a.
In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that
y(L/2) = h+a. By applying this last condition to y(z) = (p/211)x? + a enables us to express
p/2T} in terms of h and L: y(x) = (4h/L*)z? + a. Since y(x) is an even function of x, the
solution is valid on —L/2 < x < L/2.

(3y? +1)dy = —(8z +5)dz and y* + y = —42® — 5z +c. 4
Using a CAS we show various contours of 2
f(xz,y) = y> +y + 422 + 5z. The plots shown on

f
=N
[—5,5] x [—5, 5] correspond to c-values of 0, +5, £20, +40, %

Z —

§

4 2 0 2 4

480, and +125. -
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(b) The value of ¢ corresponding to y(0) = —11is f(0,—1) = —2; T
to y(0) = 2is f(0,2) = 10; to y(—1) =4 is f(—1,4) = 67; !
and to y(—1) = =3 is —31. 2

59. (a) An implicit solution of the differential equation (2y + 2)dy — (422 + 6x) dx = 0 is
y2+2y—$4—3:172—|—c:0.

The condition y(0) = —3 implies that ¢ = —3. Therefore 3> + 2y — 2% — 322 — 3 = 0.

(b) Using the quadratic formula we can solve for y in terms of z:

—24 /4 +4(z* + 322 + 3)
y= .
2

The explicit solution that satisfies the initial condition is then
y=—1—+a*+3z3+4.

(c) From the graph of the function f(x) = 2* + 32 + 4 below we see that f(z) < 0 on the
approximate interval —2.8 < z < —1.3. Thus the approximate domain of the function

y=—1—-vat+33+4=-1—/f(x)
isx < —-28 or x> —1.3. The graph of this function is shown below.

=1 = Vfx)

Sfx)

a4 2 2
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(d) Using the root finding capabilities of a CAS, the zeros of f are found
to be —2.82202 and —1.3409. The domain of definition of the solution
y(x) is then x > —1.3409. The equality has been removed since the
derivative dy/dx does not exist at the points where f(z) = 0. The
graph of the solution y = ¢(x) is given on the right.

60. (a) Separating variables and integrating, we have

y
\
(=2y +y*) dy = (z — 2?) dx 4l \
and 2t O ))
—2‘1'13—1:172—1:1:3—1—0 ’ Q g
Y Tt T3 Sl
Using a CAS we show some contours of Ll \
R
f(z,y) = 2y° — 6y* + 223 — 322 6 -4 2 0 2 4 6

The plots shown on [—7,7] x [—5, 5] correspond to c-values of —450, —300, —200, —120,
—60, —20, —10, —8.1, —5, —0.8, 20, 60, and 120.

(b) The value of ¢ corresponding to y(0) = 3 is ,
I (0, %) = —%. The portion of the graph be- 4 \
tween the dots corresponds to the solution curve 2t :D
satisfying the intial condition. To determine the 0 C x
interval of definition we find dy/dx for ot
27 4T

2y — 6y% + 223 — 322 = - = . .
4 -2

(e
v b
IN
(o)}

Using implicit differentiation we get ' = (x —22)/(y? — 2y), which is infinite when y = 0
and y = 2. Letting y = 0 in 2y3 — 6y% 4 22% — 322 = —% and using a CAS to solve for z
we get © = —1.13232. Similarly, letting y = 2, we find z = 1.71299. The largest interval
of definition is approximately (—1.13232,1.71299).



2.3

5. For y + 322y = 22 an integrating factor is el 3a%dr — o2 o that

6.

7.

. Fory+y=e

(c) The value of ¢ corresponding to y(0)
f(0,—2) = —40. The portion of the graph to the
right of the dot corresponds to the solution curve

satisfying the initial condition. To determine the

interval of definition we find dy/dz for

2% — 6y? + 223 — 322 = —40.

|
[e/<e)

2.3 Linear Equations

£ \S TR ST

4

-2

0 2 4 6 8 10

Using implicit differentiation we get 3’ = (x —22)/(y? — 2y), which is infinite when y = 0
and y = 2. Letting y = 0 in 2y3 — 6y + 223 — 322 = —40 and using a CAS to solve for x
we get x = —2.29551. The largest interval of definition is approximately (—2.29551, c0).

Linear Equations

for —oo < x < o0.

—00 < x < 00. The transient term is ce™

3

for —oo < x < 0o. The transient term is ce™ 7.

for —oo < x < 0o. The transient term is ce™

Yy = % + ce™ for —0o < z < oo. The transient term is ce™

For ¢ + 2zy = 2°

1.2

2 . . _
Yy =zx° — % 4+ ce™™ for —oo < x < oo. The transient term is ce

2

1 1 .
For i+~ y = — an integrating factor is el (
x x

for 0 < < co. The entire solution is transient.

2x

xT

. For y/+4y = % an integrating factor is e/ 4% = ¢4 g0 that

4x

1/x) dx

d
. For ¢ — 5y = 0 an integrating factor is e [5de — ¢=5% g5 that —

. For ¥/ + 2y = 0 an integrating factor is el 2dr — o2¢ g4 that

dx

23

dx

d
% an integrating factor is e/ ¥ = % so that . [e"y] = e
x

[e_sxy] =0and y = ce®®

% [e%y] =0and y = ce”?* for

4 T

Tand y = %639”4—66_

[e4xy] = %e“ and y = %—1—66_4:0

an integrating factor is el 2wdr — o7® g4 that

a [ewSy} = 22¢” and

22

d 1 1
=z so that — [zy] = —and y = P
dz x x x

63
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10.

11.

12.

13.

14.

15.

16.
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d
. For y/ —2y = 22+5 an integrating factor is e~/ 29 = ¢=27 50 that Iz [e_zxy] = 2 2452
x

and y = —%m2 — %m — % + ce?® for —oco < x < co. There is no transient term.
/ . . . . _ [ (1/96) dx 1 d 1 .
. For y — —y = xsinx an integrating factor is e~ - = — so that o | Y| = s and
x x T |x

y=cx —xcosx for 0 <z < co. There is no transient term.

2 3 d
For y’—l—; Yy = " an integrating factor is el @/w)dr — 32 g6 that e [:E2y] =3randy = %+cx‘2

for 0 < z < co. The trancient term is cx 2.

4 d
For 3/ + . y = 2% — 1 an integrating factor is el A/o)de — 24 4 that T [:E4y] = 2% — 2% and

Y= %az?’ — %x +cx~ for 0 < 2 < co. The transient term is cz 4.

For 3 — ﬁy = & an integrating factor is e /[#/(+2)ldr — (1 4 1)e=% go that
x

d 2 3 x

T (z+1ey] =z(z+1)e® and y = —x — ;_:_1 ;j_ 1 for —1 < < oo. There

1S no transient term.

2 e’ d
For ¢ + <1 + —> y = — an integrating factor is e/ 1+@/2)ldr — 2207 6 that d—[x2exy] =
x x x
1 x —T —T
and y = — c + “ for 0 < & < 0co. The transient term is «
2 2 22 x2

1 1
For 7/ + <1+ E) Yy = ;e‘x sin2x an integrating factor is e/I+(1/2)ldr — g 5o that

ce *

for 0 < z < oo. The entire solution

1
— [ze®y] = sin2zx and y = —%e_m cos 2x +

dx

1s transient.

dr 4 : . d
For d_x — —z = 4y° an integrating factor is e~ Wy dy = gy~ = y~* so that T [y_4a:] =4y
y oy Y

and z = 2y + cy* for 0 < y < co. There is no transient term.

d 2 : d
For d_x + —xz = €Y an integrating factor is el @/v)dy — y? so that T [yzm] = y?e¥ and
y oy Y
2 2

c c
r=e¥—-e’+ e’ + — for 0 <y < co. The transient term is — .
Yy Yy Yy



17.

18.

19.

20.

21.

22,

23.

24.

2.3 Linear Equations

2

d
Jtanzde — gec 22 50 that d—[(sec x)y| = sec” x
T

For ¢/ + (tan z)y = sec x an integrating factor is e

and y = sinz + ccosx for —m/2 < & < /2. There is no transient term.

For 3/ + (cot )y = sec? z cscx an integrating factor is el cotwde — gnlsinz| — gin 3 50 that
d ) . .
— [(sinz) y] = sec” z and y = secx + ccscx for x < w/2. There is no transient term.
7 [( ) Y] d + for 0 <z < m/2. Th t tt
x
r+2 2xe™ "

:Eil y = o7 oo integrating factor is e/l@+2)/@+Dldr — (5 4 1)e* so
1)e® 2z and LA SR S Th
d—[(:z:—l— )ety] = 2z and y = +1e_ + +1e_ or -1 < z < 0. e entire

x x x
solution is transient.
4 g - - s f W/ t2)]d 4
For y + ——y = ——— an integrating factor is el /(¥ T = (x + 2)* so that

x+2 (x+2)

d
. [(:174—2)41/] = 5(z+2)% and y = g(x +2)7 +e(z+2)7F for =2 < © < co. The

entire solution is transient.

dr .
For 70 + rsecf = cosf an integrating factor is el sec@dd — cln|secattana| — goc g 4 tan @ so

that die [(secO +tanB)r] =1+ sinf and (secd + tan@)r = 0 — cos 0 + ¢ for —m/2 < 0 < /2.

There is no transient term.

dpP )
For at + (2t —1)P = 4t — 2 an integrating factor is e/ (2= — o=t g0 that = [eﬂ_tp] _

(4t — 2)et2_t and P = 2 + ce!* for —0o < t < 0. The transient term is ce! .

-3z

d
an integrating factor is el B+(1/2)lde — pe37 g6 that — [aze?’””y] =1

1
Fory’+<3+—>y= ‘
T dx

-3z

ce
and y = e 3% + for 0 < x < co. The transient term is ce™3/z.

2 z+1

— dwzx—l
x2—1y_x—1

r+1

For ¢/ + an integrating factor is el12/(@=1)]

-1
so that di [x+1y} =land (z -1y =z(x+1)+c(z+1) for =1 <z < 1. There is no
T |z

transient term.

65
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26.

27.

28.

29.

30.

31.
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~ d
For ¢y — by = x an integrating factor is el 7Bdr — o757 g4 that T [e_sxy] = 2ze % and
x

1 1 1
Y= e5x/xe_5x dr = e <—g ze o % o +c> = —gm ~ 95 + ce®®
If y(0) = 3 then ¢ = 1 and y = -l x— i—FE €. The solution is defined on I = (—o0, o)
= T YT TR s s e

d
For ¢/ + 3y = 2z and integrating factor is el 34 — &37 5o that T [e?’x y] = 2z¢> and

2 2 2 2
Y= e_?’x/2aze?’x de = e 3% <§ red® — 9 e3® 4 c> =3%75 + ce 32,

1 2 2
If y(0) = 3 then ¢ = g and y = 379 + g e~3%. THe solution is defined on I = (—o0, 00).

1 d 1
For i/ +—y = — e® an integrating factor is e/ (/24 = g 50 that — [zy] = ” and y = Zet g S
x x dx x x

1 2 —
for 0 <z <oo. If y(1) =2 then c=2—eand y = —e” + Z— % The solution is defined on
x x

I = (0,00).
d 1 : 1 d |1

For &£ _ 24 = 2y an integrating factor is e~ /Wy — Z g5 that — [—x} = 2 and
dy vy Yy dy |y

4
z=2y?+ ¢y for 0 <y < oo. If y(1) = 5 then ¢ = —49/5 and = = 2> — ggy The solution is
defined on I = (0, 00).

di R E d E
- ; : ‘o of(R/L)dt _ _Rt/L [ Rt/L } _ Rt/L
For T + 7 7 7 an integrating factor is e e so that 7 e 7 I e

—Rt/L

E E
andi:E—Fce for —oo < t < 0. Ifz'(O):iothenc:io—E/Randi:E—i-

E
<i0 — E) e Bt/L The solution is defined on I = (—00,00)

dar ~ d
For e kT = —T,k an integrating factor is e/ (%)% = ¢=** 5o that pr [e 8T = —T, ke

and T = T}, +ceM for —oo < t < co. If T(0) = Ty then ¢ = Ty—T), and T = Ty, + (T — T} )€t

The solution is defined on I = (—o0, c0)

1 1 d
For 3/ + V= 4+ L an integrating factor is e/ (/2 dv — 3 oo that T [ry] =42 + 1 and

1 1
y:—/(4x—|—1)dx:—(2x2+:17—|—c):2:17+1—|—5.
T x T



32.

33.

34.

35.

2.3 Linear Equations

5
If y(1) = 8 then ¢ = 5 and y = 22 + 1 + —. The solution is defined on I = (0, 0).
T

For y + 4xy = 23e” an integrating factor is el dzdr _ o20% oo that [62”32 yl = 23e3*” and

dx

_9p2 2 92 (1 2 1 2 1 2 1 2 _9p2
y:e2x /x363x d$:€2x <—£263x __63:(: +c>:—x2ex — " foece 2:(:'

6 18 6 18
1 1 1 1
If y(0) = —1 then ¢ = —1—; and y = 6 a2e”” — e e — 1—26_2932. The solution is defined on

I = (—o00,00).

1 Inz
T1Y

~ d
an integrating factor is e/ /@Dl dr — 211 g0 that —[(2+1)y] = Inx

For ¢/ =
ory—i—x z+1 dx

and

= Inx — + < for 0<z<o0
YTt 241 41 '
T 21 L
If y(1) = 10 then ¢ = 21 and y = Inz — + . The solution is defined on
r+1 z+1 x+1
I = (0,00).
For 3/ + Ly - an integrating factor is e/ /@+Dlde — 4 4 1 g5 that
x+1 x(z+1)

d 1
%[(:L'—I—l)y]—g and

1 1 1 1
y= /—da;: (Inz+c) = =Ty

z+1 ) =z z+1 r+1 z+4+1
If y(e) =1 th d Iz + —% . The solution is defined on I (0,00)
e) = enc=-ecandy= . The solution is = (0, 00).
Y Y z+1 x+1

g d
For 3/ — (sinz)y = 2sinz an integrating factor is el (=sinz)dr _ ceosz o that . [ Ty] =
T

COsS T

2(sinz)e and

y — e—COSIE /2(8111%) eCOS.CE dm — e—COSIE (_26COSLE _"_ C) — _2 _’_ce—COS(E'

If y(r/2) =1 then ¢ =3 and y = —2 + 3e~ “**. The solution is defined on I = (—o0, c0).
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36.

37.

38.

39.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS
For i + (tanz)y = cos®x an integrating factor is e/tanedr — enlsccz] — gecy so that
d—[(sec:n)y] = cosxz and y = sinxcosz + ccosx for —7m/2 < =z < w/2. If y(0) = —1
x
then ¢ = —1 and y = sinx cos z — cos z. The solution is defined on I = (—7/2,7/2).
For ¢/ + 2y = f(x) an integrating factor is e?* so that
y
1 2x !
e+, 0<x<3
20 _ ) 2
ye™t =
co, x> 3.
5 X
If y(0) = 0 then ¢; = —1/2 and for continuity we must
have ¢y = %66 — % so that
1 —2x
Y= 1
—(e® —1)e ", >3
2
For ¢ + y = f(x) an integrating factor is e” so that
y

ex—i—Cl, 0<x<1

xT

ye =

—e* +c9, x>1.

If y(0) = 1 then ¢; = 0 and for continuity we must have

co = 2e so that

1, 0<z<l1

y:

27— 1, z>1.

For y' 4+ 22y = f(x) an integrating factor is e so that
1
Eer—l—cl, 0<z<1

c2, x> 1.

If y(0) = 2 then ¢; = 3/2 and for continuity we must have

Ccy = %6—!— % so that

1 3
§+§f“, 0<z<l1
y:
1 3
<§e—|—§> e_IQ, x>1




2.3 Linear Equations

40. For . , If
T PR |
v 1+ xzy N —x
T2 x> 1, S
an integrating factor is 1 + 22 so that 4

1
5952—1—61, 0<x<1

(1+:L"2)y:

1 1
PO 9 =T S 1
2 2(L+22)
y =
3 1 o1
——,
2(1+a2) 2
41. We first solve the initial-value problem 3/ + 2y = 4z,
y
y(0) = 3 on the interval [0,1]. The integrating factor is 201
ef2dw _ 62327 S0
151
d 2x 2
il — 42
@ fe2ry) — dae
101
ey = /4:17629” dr = 2ze*® — e** 4 ¢
5.
y=2x—1+ce %2
3 x

Using the initial condition, we find y(0) = —14+¢; = 3,50 ¢; = 4 and y = 22 — 1 + 4e™ 2%,
0 <z < 1. Now, since y(1) =2 -1+ 4e 2 =1+ 46_2, we solve the initial-value problem
y' — (2/x)y = 4z, y(1) = 1 + 4e~2 on the interval (1,00). The integrating factor is

of (~2/z)dz _ ,~2Inz 2

=x “, S0

d . o 2
& —4 -
T [ Y] Tx .

4
x_2y:/—dx:4lnx+02
x

y =422 Inz + ez’

(We use Inz instead of In |z| because x > 1.) Using the initial condition we find
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70 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS
y(1) =co =1+4e 2, soy =42’ Inz + (1 +4e 2)z?, z > 1. Thus,
20 — 1 +4e 2%, 0<z<1

y:
42 Inx + (1 +4e_2) 22, x> 1.

42. We first solve the initial-value problem 1’ +y = 0,

y(0) = 4 on the interval [0,2]. The integrating factor 1
is ef Ldw — e’, so \
d o
%[emy] =0 1
ey = /Odaz =c
y=cre ".

Using the initial condition, we find y(0) = ¢; =4, s0 ¢ =4 and y = 4e™*, 0 < z < 2. Now,

since y(2) = 4e~2, we solve the initial-value problem g’ + 5y = 0, y(1) = 4e~2 on the interval

(2,00). The integrating factor is e/ >%* = €5 5o
d 15
e [yl =0
S5r, __ —
ety = /Odaz =
y=coe

Using the initial condition we find y(2) = coe !0 = 4e72, 50 c3 = 4e® and y = 4eBe™5 =

4e875% g > 2. Thus, the solution of the original initial-value problem is
4e 7", 0<x<2

y =
42875 x> 2.



2.3

43. An integrating factor for ¢y — 2zy = 1 is e, Thus

ey = / e dt = \/TE erf(z) + ¢
0

VT .

y=-5¢ 2e1rf(x) +ce”.

From y(1) = (yV7/2)eerf(1) + ce = 1 we get ¢ = e~ ! — @erf(l).
initial-value problem is

erf(z) + <e—1 VT erf(1)> e

2 2

="y g exz(erf(x) —erf(1)).

44. An integrating factor for v/ — 2zy = —1 is e=2°. Thus

ey = —/ e dt = —g erf(z) + c.
0

From y(0) = y/7/2, and noting that erf(0) = 0, we get ¢ = /m/2. Thus

Vi VEY _VE Vi

y=e" <—— erf(z) + —> = V2 (1 - erf(z)) = 8 e

2 2 2

45. For y + ey = 1 an integrating factor is e¢". Thus

x

d x x x
. [ee y] =¢° and e“y= / e dt + c.
€L 0

From y(0) =1 we get c=¢, 50 y = e~ Omeet dt + el=¢".

Linear Equations

The solution of the

erfc (x).

1
46. Dividing by 22 we have 1/ — —Yy = . An integrating factor is e/ Thus
x

a [el/my] = ze'/* and el/my:/ te!t dt + c.
€L 1

From y(1) = 0 we get ¢ =0, so y = e~ /% [ tel/t dt.
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72 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

47. An integrating factor for

is 22. Thus

sin x

d o
— =10
dx [x y] x
z’y = 10/ Mt e
0 t
y = 10z"2Si (z) + cx 2.

From y(1) =0 we get ¢ = —1085i(1). Thus

y = 10272 Si(z) — 10272 Si (1) = 1022 (Si (x) — Si(1)).

48. The integrating factor for 3’ — (sin x2) y=0ise" Jo sint*dt - Thep
i {e—f;sintzdty} -0
dx
e~ Jy sint? dty — ¢

y=c efox sin 2 dt

Letting t = \/7/2u we have dt = /7 /2 du and

x \2/mx
/ sint2dt:\/f/ sin(iu2>du:\/ES gaz
0 2 0 2 2 ™

v Mzs(” 2/7”0>. Using S(0) =0 and y(0) = ¢; = 5 we have y = 5eV Mzs(” 2/7”0>.

S0 Y = cie
49. We want 4 to be a critical point, so we use ' =4 — y.

50. (a) All solutions of the form y = 2°e® — z%e® + cx? satisfy the initial condition. In this case,
since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied

and the initial-value problem does not have a unique solution.



51.

52.

53.

54.

2.3 Linear Equations

(b) The differential equation has no solution satisfying y(0) = yo, yo > 0.

(c) In this case, since zg > 0, Theorem 1.2.1 applies and the initial-value problem has a

5

unique solution given by y = z°%e” — z1e® + cz* where ¢ = yo/x§ — 20 + .

On the interval (—3,3) the integrating factor is

"z dx/(x%-9)

_ e—fmdw/(g—mz) _ e%ln(g—m2) _ /9 22

e./

and so

%[ 9—x2y}:0 and y=

¢
9 — g2

xT

We want the general solution to be y = 3x — 5 + ce™*. (Rather than e™, any function that

approaches 0 as x — 0o could be used.) Differentiating we get
Y =3—ce " =3—(y—3x+5)=—y+3z—2,
so the differential equation 3’ + v = 3z — 2 has solutions asymptotic to the line y = 3x — 5.

The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at z = 1

is 1 — 1/e. Thus, y is not differentiable at x = 1.

a) Differentiating y. = ¢/x3 we get
(a) gy g

so a differential equation with general solution y. = c/x3 is 2y’ + 3y = 0. Now using

yp:x3

xy, + 3yp = z(32%) + 3(2%) = 623

so a differential equation with general solution y = ¢/a® + 23 is oy’ + 3y = 623. This

will be a general solution on (0, 00).
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74 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) Since y(1) = 13—1/13 = 0, an initial condition is y(1) = 0. 3y__
Since y(1) = 1342/1% = 3, an initial condition is y(1) = 3.
In each case the interval of definition is (0, c0). The initial-
value problem z7' 43y = 623, (0) = 0 has solution y = 2° 1
for —oo < x < oo. In the figure the lower curve is the —— 5’ —
graph of y(x) = 23 — 1/23, while the upper curve is the T
graph of y = 23 — 2/23, +
3+

(¢) The first two initial-value problems in part (b) are not unique. For example, setting
y(2) = 2% — 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to

the solution y = 2% — 1/23.
55. Since el P@ dute — ccof P(@)dz — o P(x) 4 e would have
crel P@dey — o)y /clefp(x)dxf(a;) dz and e/ P@dry — ¢y y /ef P@)de ¢ (1) da,
which is the same as (4) in the text.

56. We see by inspection that y = 0 is a solution.

57. The solution of the first equation is 2 = ¢;e . From z(0) = z¢ we obtain ¢; = z¢ and so

z = zge~M*t. The second equation then becomes

d d
d_l; =zohe M — Ny or d_i/ + Aoy = moAre M

which is linear. An integrating factor is e*2*. Thus

d
et |:6A2ty] _ xo)\le—)\lte)\gt _ IIJ‘OAle(AQ_)\l)t
dt

Aot ‘TO)\l ()\2—)\1)t

e = —Q¢ +c

A2 — A1 ?
oA
Y L e—)\lt + C2€_>\2t.

T - N
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From y(0) = yo we obtain ca = (yoA2 — yoA1 — 2oA1) / (A2 — A1). The solution is

__ToM ot YoA2 — YoA1 — T oot
YT X — M '

dFE 1
58. Writing the differential equation as a + RO E = 0 we see that an integrating factor is

e!/BC . Then

£ o]

R = ¢

E = ce YEC

From E(4) = ce */1¢ = Ey we find ¢ = Ege* "¢, Thus, the solution of the initial-value
problem is

E = Eoe4/RCe—t/RC — Eoe_(t_4)/RC.

(b) Using a CAS we find y(2) ~ 0.226339.

éx

60. (a) Jy

=
[\8}
w
~
W
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(b) From the graph in part (b) we see that the absolute maximum occurs around z = 1.7.
Using the root-finding capability of a CAS and solving y/(z) = 0 for = we see that the

absolute maximum is (1.688,1.742).

61. (a) y

(b) From the graph we see that as * — oo, y(x) oscillates with decreasing amplitudes ap-
1 Yoy
proaching 9.35672. Since lim S(z) = 50 We have lim y(z) = 5eV™® ~ 9.357, and

T—00 T—00

1 /7]
since lim S(x)= —g5. we have li)IEl y(z) = 5e” V™8 ~ 2.672.

T—r—00

(c) From the graph in part (b) we see that the absolute maximum occurs around = = 1.7
and the absolute minimum occurs around x = —1.8. Using the root-finding capability of
a CAS and solving y/(x) = 0 for x, we see that the absolute maximum is (1.772,12.235)

and the absolute minimum is (—1.772,2.044).

2.4 Exact Equations

1. Let M = 22 — 1 and N = 3y + 7 so that M, = 0 = N,. From f, = 2z — 1 we obtain
f=2>—z+h(y), W(y) =3y+7, and h(y) = %yz + 7y. A solution is 2% — z + %y2 + 7y =c.

2. Let M =2x+y and N = —x —6y. Then M, =1 and N, = —1, so the equation is not exact.

3. Let M = 5z + 4y and N = 4z — 8y so that M, =4 = N,. From f, = 5z + 4y we obtain
f= %:172 +4ay + h(y), M (y) = =8>, and h(y) = —2y*. A solution is %xz +dzy — 2y = c.

4. Let M = siny — ysinz and N = cosx + zcosy — y so that M, = cosy —sinxz = N,. From
fs = siny — ysinz we obtain f = zsiny + ycosz + h(y), ' (y) = —y, and h(y) = -3y A

N ; 1,2 _
solution is wsiny + ycosx — 5y~ = c.



10.

11.

12.

13.

14.

15.

16.

17.

2.4 Exact Equations

. Let M = 2y?z —3 and N = 2yx? +4 so that M, = 4xy = N,. From f, = 2%z — 3 we obtain

f=2%y? =3z +h(y), M(y) =4, and h(y) = 4y. A solution is 2%y?> — 3z + 4y = c.

. Let M = 423 — 3ysin3z — y/x? and N = 2y — 1/ + cos 3z so that M, = —3sin 3z — 1/2?

and N, = 1/2? — 3sin3z. The equation is not exact.

Let M = 2? —y? and N = 2% — 22y so that M, = —2y and N, = 2z — 2y. The equation is

not exact.

. Let M =1+Inz+y/xand N = —1+Inz so that M, =1/x = N,. From f, = —1+Inx we

obtain f = —y+ylnx+ h(x), h'(x) =1+1Inz, and h(z) = xlnz. A solution is —y +ylnz+

zlnx = c.

. Let M =19? —y?sinz — 2 and N = 3zy® + 2y cos x so that M, = 3y? — 2ysinxz = N,. From

fr =y —y?sinx — x we obtain f = xy> + y?cosz — %x2 + h(y), W' (y) =0, and h(y) =0. A

solution is zy> + y? cos x — %xz =c.

Let M = 2% + y3 and N = 3zy? so that M, = 3y?> = N,. From f, = 2> + 3> we obtain
f= %az‘l +zy3 + h(y), W' (y) = 0, and h(y) = 0. A solution is %x‘l + a2y = c.

Let M = ylny —e ™ and N = 1/y + zlny so that M, =1+ Iny + ze™™ and N, = Iny.

The equation is not exact.

Let M = 32%y+¢¥ and N = 23 +ze¥ — 2y so that M, = 32° +¢e¥ = N,. From f, = 322y +e¥
we obtain f = x3y+wxeV+h(y), M (y) = —2y, and h(y) = —y>. A solution is 23y+ze¥ —y% = c.

Let M = y — 622 — 2ze® and N = z so that M, =1 = N,. From f, = y — 622 — 2ze”
we obtain f = zy — 223 — 2we” + 2¢% + h(y), K (y) = 0, and h(y) = 0. A solution is
ry — 223 — 2xe” + 2% = c.

Let M =1-3/x+yand N =1-3/y+x sothat M, =1=N,. From f, =1-3/z+y
3

we obtain f = x — 31In|z| + 2y + h(y), W' (y) =1 — =, and h(y) = y — 3In|y|. A solution is
Y

r+y+zy—3n|zy| =c.

Let M = 2%y% — 1/ (1+9x2) and N = 23?2 so that M, = 3z%y?> = N,. From
fo = 223 -1/ (1 + 9x2) we obtain [ = %:Egy?’ - %arctan (3z) + h(y), W (y) = 0, and
h(y) = 0. A solution is #3y3 — arctan (3z) = c.

Let M = —2y and N = 5y — 2z so that M, = -2 = N,. From f, = —2y we obtain
f=—2xy+ h(y), K (y) =5y, and h(y) = %y2. A solution is —2xy + %y2 =c.

Let M = tanx —sinxzsiny and N = cosxcosy so that M, = —sinzcosy = N,. From
fz = tanx — sinx siny we obtain f = In|sec x| + coszsiny + h(y), A'(y) = 0, and h(y) = 0.

A solution is In |sec z| + coszsiny = c.
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18.

19.

20.

21.

22.

23.

24.

25.

26.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Let M =2ysinxcosx —y + 2:7;269092 and N = —z +sin? 2 + 4xyewy2 so that
M, =2sinzcosx — 1+ Zl:vy?’egcy2 + zlyer2 = N,.

From f, = 2ysinz cosx — y + 2y2e®¥’ we obtain f = ysin?z — zy + 2% + h(y), W' (y) =0,
and h(y) = 0. A solution is ysin?z — zy + 26" = ¢.

Let M = 4t3%y — 15t> —y and N = t* + 3y> — t so that M, = 43 —1 = N;. From
fi = 4%y — 1512 — y we obtain f = t*y — 5t3 — ty + h(y), W (y) = 3y?, and h(y) = y>.
A solution is t*y — 5t3 — ty + y> = c.

Let M =1/t +1/t* —y/ (t* + y*) and N = ye¥ + ¢/ (t* + y?) so that
M, = (yz—t2)/(t2+y2)2 = N.. From f; = 1/t + 1/t2 — y/ (t2+y2) we obtain

1 t
f=In|t| - T arctan <—> + h(y), W (y) = ye¥, and h(y) = ye¥ — e¥. A solution is
Y
1 t
In |[t| — — — arctan <—> +ye’ —e¥ =c.
t y

Let M = 22 + 22y + y*> and N = 2zy + 22 — 1 so that M, = 2(z +y) = N,. From
fe = 2% 4+ 22y + y* we obtain f = %x?’ + 2%y + 2y? + h(y), ' (y) = —1, and h(y) = —y. The
solution is %x?’ +a2?y+ay?—y = c. If y(1) = 1 then ¢ = 4/3 and a solution of the initial-value
problem is %:173 + 2%y +ay? —y = % .

Let M = e* 4+ y and N = 2+ 2 + ye¥ so that M, = 1 = N,. From f, = e + y we
obtain f = e* + xy + h(y), h'(y) = 2 + ye¥, and h(y) = 2y + ye¥ — e¥. The solution is
e’ +xy+2y—+ye¥ —e¥ =c. If y(0) =1 then ¢ = 3 and a solution of the initial-value problem
ise” +xy+ 2y +ye¥ —e¥ =3.

Let M = 4y + 2t — 5 and N = 6y + 4t — 1 so that M, = 4 = N;. From f; = 4y +2t — 5
we obtain f = 4ty + > — 5t + h(y), h'(y) = 6y — 1, and h(y) = 3y?> — y. The solution is
4ty + 12 — 5t +3y? —y = c. If y(—1) = 2 then ¢ = 8 and a solution of the initial-value problem
is 4ty +t> — 5t +3y% —y = 8.

Let M = ¢/2y* and N = (3y? —t?) /y° so that M, = —2t/y°> = Ny. From f; = t/2y* we
t2 3 3 t2 3
obtain f = 1 + h(y), W (y) = "l and h(y) = o7 The solution is i i c. If
t2 3 5
y(1) =1 then ¢ = —5/4 and a solution of the initial-value problem is Ry =-1

Let M = y?cosx — 322y — 2z and N = 2ysinz — 23 + Iny so that M, = 2y cosx — 3x2 = N,.
From f, = y?cosz — 3z%y — 2z we obtain f = y?sinz — 23y — 2% + h(y), W' (y) = Iny, and
h(y) = ylny —y. The solution is y?sinz — 23y — 22 + ylny —y = c. If y(0) = e then ¢ = 0

and a solution of the initial-value problem is y?sinz — 23y — 22 + ylny —y = 0.

Let M = y? +ysinz and N = 2ry —cosx — 1/ (1+y2) so that M, = 2y +sinx = N,. From

fr = y? +ysinz we obtain f = 2y? — ycosz + h(y), W (y) = and h(y) = —tan"!y.

1492’
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28.

29.

30.

31.

32.

33.

34.

35.

36.

2.4 Exact Equations

The solution is zy? — ycosz —tan~!y = ¢. If y(0) = 1 then ¢ = —1 — 7/4 and a solution of
T

the initial-value problem is zy? — ycosz —tan 'y = —1 — 1

Equating M, = 3y? + 4kxy? and N, = 3y? + 40xy> we obtain k = 10.
Equating M, = 18zy% — siny and N, = 4kxy? — siny we obtain k = 9/2.

Let M = —2?y?sinz + 22y% cosx and N = 222y cos x so that
M

y = —22%ysinx +4xy cosx = N,. From fy= 222y cosz we obtain  f = 22y cosz +h(y),
h'(y) =0, and h(y) = 0. A solution of the differential equation is 2%y cosz = c.

Let M = (2% + 22y — v*) /(2% + 22y + y?) and N = (y? + 22y — 22)/(y? + 22y + 22) so

that M, = —4zy/(z + y)* = Np. From f, = (2* + 22y +y* — 2y?) /(z + y)* we obtain
2 2

f=x+ % + h(y), h'(y) = —1, and h(y) = —y. A solution of the differential equation is
rTy

22 +y? = c(z +y).

We note that (M, —N,)/N = 1/z, so an integrating factor is el d/z — 3 Let M = 2ay? + 322
and N = 222y so that M,, = 42y = N,. From f, = 2zy?+32? we obtain f = z?y*+ 23+ h(y),
h'(y) =0, and h(y) = 0. A solution of the differential equation is 2%y? + 2% = c.

We note that (M, — N;)/N = 1, so an integrating factor is e 4T = e Let
M = zye® + y?e* + ye® and N = ze® + 2ye® so that M, = xe® + 2ye® + e = N,. From
fy = xe® + 2ye® we obtain f = zye® + y?e® + h(x), h'(x) = 0, and h(z) = 0. A solution of

the differential equation is zye® + y?e® =

We note that (N, — M,)/M = 2/y, so an integrating factor is el 2dy/y — y?. Let M = 6zy>
and N = 4y3+92%y? so that M, = 18zy? = N,. From f, = 6xy> we obtain f = 3z2y3+h(y),
h'(y) = 4y3, and h(y) = y*. A solution of the differential equation is 3z%y> + y* = c.

We note that (M, — N,)/N = —cotx, so an integrating factor is e~ Jeotwdr — cge gz Let
M =cosxzcescx =cotx and N = (1+2/y)sinzcsce =14 2/y, so that M, =0 = N,. From
fz = cotx we obtain f = In (sinx) + h(y), ' (y) = 1+ 2/y, and h(y) =y + Iny?. A solution
of the differential equation is In (sinz) +y + Iny? = c.

We note that (M, — N;)/N = 3, so an integrating factor is el 3dr — 3 et
M = (10 — 6y + e73)e3® = 10e3® — 6ye3® + 1 and N = —2¢37, so that M, = —6e3* = N,.
From f, = 10e3* — 6ye3* 4- 1 we obtain f = %e?’x —2ye3® + x4+ h(y), W' (y) = 0, and h(y) = 0.

A solution of the differential equation is 1—39639” —2ye’® 4z =c.

We note that (N, — M,)/M = —3/y, so an integrating factor is e 3/ %/¥ = 1/y3. TLet
M= (y?+2y®) )y =1/y +x and N = (5y% — xy + y>siny)/y> = 5/y — x/y? + siny, so that
M, = —1/y* = N,. From f, = 1/y+x we obtain f = z/y+32*+h(y), ¥'(y) = 5/y-+siny, and
h(y) = 5In |y| —cosy. A solution of the differential equation is z/y+ 322 +51In |y| — cosy = c.
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37.

38.

39.

40.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

We note that (M, — N,)/N = 2z /(4 + 2?), so an integrating factor is

e~2 wde/(4+2%) — 1/(4 4 22). Let M = z/(4 + 2%) and N = (22y + 4y)/(4 + 22) = v, so
that M, = 0= N,. From f, = 2(4 + 2%) we obtain f = 1 In (4 + 2?) + h(y), #'(y) = y, and
h(y) = %y2. A solution of the differential equation is % In (4 + 22)+ %yQ = ¢. Multiplying both
sides by 2 the last equation can be written as ev’ (m2 + 4) = c1. Using the initial condition
y(4) = 0 we see that ¢; = 20. A solution of the initial-value problem is eV’ (z* +4) = 20.

We note that (M, —N,)/N = —3/(14z), so an integrating factor is e =3/ @/(142) — 1 /(144)3.
Let M = (2> + 32> —-5)/(1 +2)> and N = —(y +2y)/(1 + 2)> = —y/(1 + 2)?, so that
M, = 2y/(1 +2)® = N,. From f, = —y/(1 + 2)? we obtain f = —3¢?/(1 + z)% + h(z),
h'(z) = (22 — 5)/(1 + z)?, and h(z) = 2/(1 +2)?> +2/(1 + z) +1n|1 + z|. A solution of the

differential equation is

2

Y I +In |1 + z|

- n T = C.
20+2)?2  (1+2)? (142

Using the initial condition y(0) = 1 we see that ¢ = 7/2. A solution of the initial-value

problem is
2
2 2 7
S— 5+ 5 + +Infl+az|=_
2(1+2)° (1+2)? 1+z 2

(a) Implicitly differentiating 2 + 222y + 3? = ¢ and solving for dy/dxz we obtain

dy dy dy 322 + 4ay
322 4+ 222 2 + 4 20— =0 d - =—7-——".
v dZE+ Y+ Yz ame 222 + 2y

By writing the last equation in differential form we get (4zy +322)dx+ (2y +2x2)dy = 0.

(b) Setting z = 0 and y = —2 in 2° + 222y + y? = ¢ we find ¢ = 4, and setting v = y = 1 we

also find ¢ = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving 2? + 222y + y* = 4 for y we get

47
yi(z) = —22 — /4 — a8 + 24
S~
and \
yo(z) = —2® + /4 — a3 + 24, 4 2 xx
2
Observe in the figure that y;(0) = —2 and y2(1) = 1. v,
L4
-6t
To see that the equations are not equivalent consider dex = —(z/y) dy. An integrating factor

is p(x,y) = y resulting in y dz + x dy = 0. A solution of the latter equation is y = 0, but this

is not a solution of the original equation.
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41. The explicit solution is y = /(3 + cos2z)/(1 — 22). Since 3 + cos?z > 0 for all  we must
have 1 — 22 > 0 or —1 < & < 1. Thus, the interval of definition is (—1,1).

42. (a) Since f, = N(z,y) = ze™ + 2ry + 1/z we obtain f = ™ + xy® + Yy h(z) so that
T

fe =ye™ +y2 - % +h/((£). Let M(w,y) = yeY —|-y2 — % .

(b) Since f, = M(z,y) = y'?z=/? + (:172 + y)_l we obtain
1 1 _
f=2y'2212 4 3 In|2? +y| + g(y) so that f, =y~ /222 4 3 (2 +y) "4 d(y). Let
1 _
N(z,y) =y 22 + 3 (z* +y) "
43. First note that
d(x/a:2+ N L dor Ly
y ) /$2+y2 /$2+y2 Y

Then zdr +ydy = /22 + y? dx becomes

x y
———do+ L —dy=d (Va4 ) =do.

The left side is the total differential of y/22 + y? and the right side is the total differential of
x + ¢. Thus /22 + y2 = z + ¢ is a solution of the differential equation.

44. To see that the statement is true, write the separable equation as —g(z)dz + dy/h(y) = 0.
Identifying M = —g(x) and N = 1/h(y), we see that M, = 0 = N, so the differential

equation is exact.
45. (a) In differential form
(v2 — 32x) dr+xvdv =10

This is not an exact equation, but u(xz) = x is an integrating factor. The new equation

(va — 32x2) dz+z%v dv = 0 is exact and solving yields %x2v2 — %x?’ = c. When z = 3,

v =0 and so ¢ = —288. Solving %x%z — %x?’ = —288 for v yields the explicit solution
x 9
=84/ ——.
v(x) 3 2

(b) The chain leaves the platform when z = 8, and so

8 9
= - — — & 12.7 ft
v(8) =8 3~ 5 7 ft/s
46. (a) Letting .
2xy Y-
M(Z’,y):m and N(ac,y)ZI—i-m

we compute
- 223 — 8xy? -
N CER T R
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so the differential equation is exact. Then we have

of _ 2y 2, 2\-2
(2 4 a2y ___Y
flz,y) = —y(@"+y°) " +9(y) o +9(y)
af_ y2_x2 , B - y2_x2
3_y_ ($2+y2)2 +g(y)_N(x7y)_1+(x2+y2)2

Thus, ¢'(y) = 1 and g(y) = y. The solution is y — % = ¢. When ¢ = 0 the solution
T Yy
is 22 4+ 9% = 1.

(b) The first graph below is obtained in Mathematica using f(x,y) =y — y/(z% + y?) and

ContourPlot|[f[x, y], {x, -3, 3}, {y, -3, 3},
Axes—>True, AxesOrigin—>{0, 0}, AxesLabel—>{x, y},
Frame—>False, PlotPoints—>100, ContourShading—>False,
Contours—>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}]

The second graph uses

¥ -ty _ Py
T =—y| —Z and T = —.
c—y c—y

In this case the z-axis is vertical and the y-axis is horizontal. To obtain the third graph,
we solve y—vy/(x2+y?) = c for y in a CAS. This appears to give one real and two complex
solutions. When graphed in Mathematica however, all three solutions contribute to the
graph. This is because the solutions involve the square root of expressions containing c.

For some values of ¢ the expression is negative, causing an apparent complex solution to
actually be real.




2.5

2.5 Solutions by Substitutions

Solutions by Substitutions

1. Letting y = ux we have

(x —uzx)dr +z(udr + xdu) =0

dr+xdu=0
d—x—i-du:O
T

In|z|+u=c

zln|z|+y = cx.

2. Letting y = ux we have

(x +ux)de + zx(udr + vdu) =0
(142u)dr+2du=0

dm+ du B
T 1+2u

0
1
1n\x!+§ln]1+2u\:c
2 <1+2Q> =c
T

2+ 2xy = c1.

3. Letting z = vy we have

vy(vdy +ydv) + (y — 2vy)dy =0
vyzdv+y(7)2—2v+1)dy20

vdv dy

S ERT

1
ln\v—ll—m—kln\ylzc

r

' ! +1Inly|
————F+Injy|=c
y r/y—1

In

(z—y)n|z —y[—y=clz—y).
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4. Letting x = vy we have

y(vdy +ydv) —2(vy +y)dy =0
ydv—(v+2)dy =0

dv —@—O
v+ 2 y

Injv+2—Injy| =c

In

E4—2‘—1m|y|:c
Yy

T+ 2y = 1y’

5. Letting y = ux we have

(u2:n2 + u:z:z) dr — x*(uwdx + x du) = 0
wdr —xdu=0

d d
do _du_
X u

1
Injz|+—=c
u
ln\xl—kzzc
Y

yln|z| + 2 = cy.

6. Letting y = ux and using partial fractions, we have

(u?2? + ua?) dz + 2 (udz + z du) = 0
z? (v + 2u) dz + 2* du = 0

d_x du

_ " )
x +u(u+2)

1 1
ln|x|—|—§ln|u|—§ln|u+2|:c




2.5 Solutions by Substitutions
7. Letting y = ux we have

(ur — x)dx — (ux + z)(udr + xdu) =0
(u2+1)d$+$(u+1)du:0

d 1
—:E—l-szdu:O
T us+1

1
ln]az\+§ln(u2+1) +tan "t u = ¢

2
In 22 <y_ + 1) +2tan~!

Yy _

x? s &

In (2% + %) + 2tan ' L = ¢
x

8. Letting y = uxz we have
(x + 3uz) dr — (3z + ux)(udr + z du) =0
(u? = 1) dz + z(u+3)du=0
dx u+3

e T qu=
x+(u—1)(u+1) u="0
In|z|+2Inju—1]—Inju+ 1| =c
z(u—1)2

u+1 -

o(f-1) =a(f+)

(y—=z)?=c(y+m).

9. Letting y = ux we have

—uzdz + (x +Vuz)(udr + xdu) =0
(22 4 22/u) du + 2u®/? dz = 0

(u‘3/2+l> du+dm =0

u T
202 fInful +In|z| = ¢

Inly/z|+n|x| =2v/z/y +c
y(iny] - o)? = 4z.
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10. Letting y = ux we have

Va2 —u222dr — 22du =0
21 —u?de —2*du=0, (z>0)
d_x_ du
r Vie

Inz —sin"tu=-c

=0

sintu=lnz+c¢

sin™! ¥_ Inz + ¢

]le &

=sin (Inz + ¢2)
y = xsin (Inz + c2).

See Problem 33 in this section for an analysis of the solution.
11. Letting y = ux we have
(m3 - u3x3) dz 4+ v*2*(udx + x du) = 0
dr + v’z du =0

d
& du=0
x

1
1 —ud =
n|:13|+3u c

323 |z| + ¢ = er2®.

Using y(1) = 2 we find ¢; = 8. The solution of the initial-value problem is 322 In |z|+7® = 823.

12. Letting y = ux we have
(2% + 2u22?)dx — ua®(udz + x du) =0
22(1 + u?)de — uz® du = 0

d_x_ udu
xr  14u?

=0

1
In |z| — §ln(1 +u?)=c
$2

14+ u?

= Cl
= ¢ (2® + 7).

Using y(—1) = 1 we find ¢; = 1/2. The solution of the initial-value problem is 22* = y2 + 2.



2.5 Solutions by Substitutions

13. Letting y = ux we have

(z + uze")de — ze'(udr + x du) =0
de —ze du =0

d
—:E—e“du:O
T

In|z| —e"=c

In|z| — e¥/* = c.

Using y(1) = 0 we find ¢ = —1. The solution of the initial-value problem is In |z| = e¥/* — 1.

14. Letting = = vy we have

15.

16.

17.

18.

19.

y(vdy +ydv) +vy(lnvy —Iny —1)dy =0
ydv+ovlnvdy =0

d d
v+_y:

0
vinv  y

In|In|v|| +Injy| =c

x
yln —‘ =cj.
Yy
Using y(1) = e we find ¢; = —e. The solution of the initial-value problem is yIn E‘ = —e.
Yy

1 1 dw 3 3
From y' + —y = —y~2 and w = y* we obtain — + —w = = . An integrating factor is z* so
x x de =z x

that 23w = 2% +cor y3 =1+ cx™3.

dw
From ' —y = e*y? and w = y~! we obtain o +w = —e”. An integrating factor is e* so
x
that ew = —%62:0 +cory = —%e“’” + ce™ ",
/ 4 -3 - dw : : i =3
From ¢’ + y = xy* and w = y~° we obtain proe 3w = —3z. An integrating factor is e SO
x

that e 3w = ze™3* + %e_?“ +cory B =x+ % + ce3?.

1 dw 1
From 3y’ — (1 + —> y =% and w = y~! we obtain Ir + (1 + —> w = —1. An integrating
x x x
factor is ze® so that ze®w = —ze® + e +cor y ' =—1+ =+ Cea,
x  x
1 1 dw 1 1
From 3/ — e —t—2y2 and w =y~ we obtain o + W=7 An integrating factor is ¢ so

1 c t
that tw = Int + cor y~ ! = n Int+ e Writing this in the form — = Int 4+ ¢, we see that the
Y

solution can also be expressed in the form e!/¥ = ¢;t.
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21.

22,

23.

24.

25.

26.

27.

28.

29.
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2t dw 2t —2t
F ! = *and w =y btain — — = S A
rom y +3(1+t2)y 3(1+t2)y and w =y~ we obtain — 1+t2w e n
integrating factor is —— so that — = 4 coryd=1+c(1+£)
integrating acor181+t2 so tha A cory ® = c .
3 d 6 9
From ¢y — —y = —2y4 and w = y~> we obtain aw + —w = —— . An integrating factor
x x r x
is 2% so that 20w = —%az‘r’ +cory 3 = —%x_l +cx70. If y(1) = % then ¢ = 4—59 and
y_3 = —%x‘l + 4—5?:17_6.
/ —1/2 3/2 _dw 3 3 : : i 03T/2
Fromy' 4y =y and w = y°/* we obtain I + gW=75- An integrating factor is e SO

x
that e3%/2w = e3%/2 4 ¢ or y3/2 =14 ce3%/2, If y(0) = 4 then ¢ = 7 and Y32 =14 7e737/2,

d 1
Let w = x +y + 1 so that du/dx = 1+ dy/dz. Then U —w?or — du = dz. Thus
) dx 1+ u?

tan'u=x+4+coru=tan(r+c),and z+y+1=tan(z+c)ory=tan(x+c)—z — 1.
du 1—u

Let w = = + y so that du/dz = 1+ dy/dx. Thend——l = or udu = dx. Thus
x

tul=a+coru? =2x+cy, and (z +y)? =2z +c1.
du 9 9
Let w = x + y so that du/dx = 1 + dy/dx. Then p 1 =tan“u or cos*udu = dz. Thus
x
Tu+ 1sin2u = 2+ cor 2u+sin2u = 4z + ¢y, and 2(z + y) +sin2(z +y) = 4z + ¢ or
2y +sin2(zx +y) = 2z + ¢;.

d 1
Let u = x + y so that du/dr = 1+ dy/dz. Then 1 = snwor ———du = da.
_ dx 1+sinu
Multiplying by (1—sin«)/(1—sin u) we have y du = dz or (sec? u—sec utan u)du = dx.
cos? u

Thus tanu — secu = x + ¢ or tan (x + y) —sec (z +y) =z + ¢

1
Let u = y — 2z + 3 so that du/dx = dy/dx — 2. Thenj—u+2:2+\/ﬂor Tdu:dx. Thus
T u
2Vu=z+cand 2/y —2x +3 =1z +c.

d
Let w =y — x + 5 so that du/dz = dy/dx — 1. Then ﬁ +1=1+¢" or e “du = dx. Thus

—e =g +cand —e VT = 4.

d 1
Let u = x + y so that du/dx = 1+ dy/dz. Then M1 =cosuand —— du = dz. Now
dx 1+ cosu

1 1—cosu 1—cosu 9
= 5 = =~ = csc”u — cscucotu
1+cosu 1—cos“u sin“ u

so we have [ (csc?u — cscucot u)du = [ dx and —cot u+cscu = x+c. Thus —cot (z +y) +
csc(x +y) = x + c. Setting 2 = 0 and y = 7/4 we obtain ¢ = /2 — 1. The solution is

esc(z+y) —cot (x+y) =z 4+V2—1.



30.

31.

32.

2.5 Solutions by Substitutions

Luet—ku2 = 3z + 2y so that du/dx = 3 + 2dy/dx. Then Z—Z =3+ u2—1:2 = 55_:_26 and
50U 16 du = dx. Now by long division

ut2 1. 4

Su+6 5 25u+30
so we have

1 4
/<5+25u+30> du = da

and fu+ 5t In[25u + 30| = = + c. Thus
1 4
5(3x—|—2y)—|—2—5ln|75x—|—50y+30| =z +c
Setting © = —1 and y = —1 we obtain ¢ = % In 95. The solution is
1(3 +2)+41 |75 + 50y + 30| +4195
— — In = — n
plot TR T g IO s
or

5y — 5z + 21n |75z + 50y + 30| = 21n 95

We write the differential equation M (z,y)dz + N(z,y)dy = 0 as dy/dx = f(z,y) where

fla,y) = —]\]\J,((iyy)) :

The function f(z,y) must necessarily be homogeneous of degree 0 when M and N are ho-
mogeneous of degree a.. Since M is homogeneous of degree a, M (tz,ty) = t*M(x,y), and

letting t = 1/ we have
1 (0%

Thus

dy _ __a*MQy/x)  M(Ly/r) Ly
dr fla,y) = CzeN(Ly/z)  N(,y/z) F <_> '

Rewrite (522 — 2y?)dz — zydy = 0 as

and divide by zy, so that

We then identify
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33. (a) By inspection y = x and y = —x are solutions of the differential equation and not

members of the family y = zsin (Inz + ¢32).

(b) Letting z =5 and y = 0 in sin™! (y/x) = Inx + 3 we get
sinT'0=In5+ ¢y or ca = —In5. Then
sin™! (y/x) = Inz —In5 = In (z/5). Because the range of 20F

the arcsine function is [—7/2,7/2] we must have

15¢
™ xT ™
——<lhZ <= 10}
2 57 2
e—’ﬂ'/2 é g Se’ﬂ'/2 5-

The interval of definition of the solution is approximately [1.04,24.05].

34. Asx — —00, % — 0and y — 22+3. Now write (1+ce%)/(1—ceb) as (e75%+¢) /(e 7% —¢).
Then, as  — 00, e % — 0 and y — 2z — 3.

35. (a) The substitutions y = y; + u and

dy _dn  du
de  dr = dx
lead to
dyy | du 2
T T = Pt u)+ Ry +u)
= P+ Qu1 + Ry? + Qu + 2y Ru + Ru?
or d
U 2
= 2 = Ru?.
e (Q+2y1R)u = Ru

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

dw
% + (Q + 2y1R)w =—R

by the substitution w = u ™.

d 1 4

(b) Identify P(z) = —4/2%, Q(x) = —1/z, and R(z) = 1. Then d_w + (—— + —> w=—1.
x r  x

An integrating factor is 2 so that z3w = —%x‘l +coru= [—%x + cx_3] !

2 2 < 1 _3>‘1
y=—+u or y=—+|—r+tcx
T T 4

36. Write the differential equation in the form z(y'/y) = Inz + Iny and let v = Iny. Then
du/dx = y'/y and the differential equation becomes z(du/dz) =Ilnx + u or du/dr —u/x =



37.

38.

2.5 Solutions by Substitutions

(Inz)/a, which is first-order and linear. An integrating factor is e~/ %/* = 1/, so that
(using integration by parts)

d |1 Inx u 1 Inx
—|-u|l=—% and - =-—--——+c
dx 22 x

T T T
The solution is
ecx—l
Iny=—-1-Inx+cx or y=
T
Write the differential equation as
d 1
& + —v= 321)_1,
de x
and let v = v2 or v = u!/2. Then
d’U o 1 _1/2 du
de 2 dz’
and substituting into the differential equation, we have
1 d 1 d 2
~ 1288 + —u'? = 32072 or ot + —u =64
2 dr x dr x

The latter differential equation is linear with integrating factor el @/x)dz _ z2, so

i [m2u] = 642

dx
and
64 64
x2u:§x3+c or 02:395—1-%.
Write the differential equation as dP/dt — aP = —bP? and let u = P~! or P = u~!. Then
dt dt’
and substituting into the differential equation, we have
d
—u 2 d—Z; —au "t = —bu? or d_:fb + au = b.

The latter differential equation is linear with integrating factor el adt = e, so

d at _ at
7 [e®u] = be

and

b
eatu: _eat+c
a

_ b
eatP 1:_eat+c
a

b
Pl=—qce ™
a

p_ 1 B a
C blatcem® b+ cleat’
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2.6

1.

2.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

A Numerical Method

We identify f(z,y) = 2z — 3y + 1. Then, for h = 0.1,

Ynt1 = Yn + 0.1(2z,, — 3y, + 1) = 0.22,, + 0.7y, + 0.1,

and
y(1.1) =~y =0.2(1) +0.7(5) + 0.1 = 3.8
y(1.2) ~ 1o = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98
For h = 0.05,
Yn+1 = Yn + 0.05(2z,, — 3y, + 1) = 0.1z, + 0.85y,, + 0.1,
and

) ~ (1) 4+ 0.85(5) + 0.1 = 4.4

y(1.1) ~ yo = 0.1(1.05) + 0.85(4.4) + 0.1 = 3.895
) ~ 1(1.1) + 0.85(3.895) + 0.1 = 3.47075
2) ~ 1(1.15) + 0.85(3.47075) + 0.1 = 3.11514

We identify f(x,y) =z + y?. Then, for h = 0.1,

Ynt1 = Yn + 0.1(zy, + y,%) =01z, +y, + O.ly,%,

and
y(0.1) ~ y; = 0.1(0) + 0+ 0.1(0)* = 0
y(0.2) =~ yo = 0.1(0.1) + 0+ 0.1(0)? = 0.01
For h = 0.05,
Yni1 = Yn + 0.05(zy, +y2) = 0.052,, + yy, + 0.05y2,
and
y(0.05) ~ y1 = 0.05(0) + 0 + 0.05(0)2 = 0
y(0.1) ~ yo = 0.05(0.05) + 0 + 0.05(0)* = 0.0025
¥(0.15) ~ y3 = 0.05(0.1) 4 0.0025 4 0.05(0.0025)% = 0.0075
1(0.2) &~ y4 = 0.05(0.15) + 0.0075 4 0.05(0.0075)% = 0.0150

. Separating variables and integrating, we have

@:daz and In|y|=2z+c.
Y

Thus y = ¢1e” and, using y(0) = 1, we find ¢ = 1, so y = e” is the solution of the initial-value

problem.
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h=0.1 h=0.05

x y Actual Abs. % Rel. ¥ y Actual Abs. % Rel.
" " Value Error Error " " Value Error Error
0.00 1.0000 1.0000 0.0000 0.00 0.00 1.0000 1.0000 0.0000 0.00
1.10 1.1000 1.1052 0.0052 0.47 0.05 1.0500 1.0513 0.0013 0.12
0.20 1.2100 1.2214 00114 0.93 0.10 1.1025 1.1052 0.0027 0.24
0.30 1.3310 1.3499 0.0189 1.40 0.15 1.1576 1.1618 0.0042 0.36
0.40 1.4641 14918 0.0277 1.86 0.20 1.2155 12214 0.0059 0.48
0.50 1.6105 1.6487 0.0382 2.32 0.25 1.2763 1.2840 0.0077 0.60
0.60 1.7716 1.8221 0.0506 2.77 0.30 1.3401 1.3499 0.0098 0.72
0.70 1.9487 2.0138 0.0650 323 0.35 14071 14191 0.0120 0.84
0.80 2.1436 2.2255 0.0820 3.68 0.40 14775 14918 0.0144 0.96
0.90 2.3579 2.4596 0.1017 413 0.45 1.5513 1.5683 0.0170 1.08
1.00 2.5937 2.7183 0.1245 4.58 0.50 1.6289 1.6487 0.0198 1.20
0.55 1.7103 1.7333 0.0229 1.32

0.60 1.7959 1.8221 0.0263 1.44

0.65 1.8856 1.9155 0.0299 1.56

0.70 1.9799 2.0138 0.0338 1.68

0.75 2.0789 2.1170 0.0381 1.80

0.80 2.1829 2.2255 0.0427 1.92

0.85 2.2920 2.3396 0.0476 2.04

0.90 2.4066 2.4596 0.0530 2.15

0.95 2.5270 2.5857 0.0588 227

1.00 2.6533 2.7183 0.0650 2.39

4. Separating variables and integrating, we have
Y —92dr and Inly = 2?
=2zxdr an nlyl =z°+ec.

Thus y = cler and, using y(1) = 1, we find ¢ = e~

initial-value problem.

Y

1

, S0 Yy = e**~1 is the solution of the

h=0.1 h=0.05

x y Actual Abs. % Rel. x y Actual Abs. % Rel.
" " Value Error Error " " Value Error Error

1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0000 0.0000 0.00

1.10 1.2000 1.2337 0.0337 2.73 1.05 1.1000 1.1079 0.0079 0.72

1.20 1.4640 1.5527 0.0887 5.71 1.10 1.2155 1.2337 0.0182 1.47

1.30 1.8154 1.9937 0.1784 8.95 1.15 1.3492 1.3806 0.0314 2.27

1.40 2.2874 26117 0.3243 12.42 1.20 1.5044 1.5527 0.0483 3.11

1.50 2.9278 3.4903 0.5625 16.12 1.25 1.6849 1.7551 0.0702 4.00

1.30 1.8955 1.9937 0.0982 493

1.35 2.1419 22762 0.1343 5.90

1.40 24311 2.6117 0.1806 6.92

145 27714 30117 0.2403 7.98

1.50 3.1733 3.4903 0.3171 9.08
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h=0.1 h=0.05
X, Y X, Y
0.00 0.0000 0.00 0.0000
0.10 0.1000 0.05 0.0500
0.20 0.1905 0.10 0.0976
0.30 0.2731 0.15 0.1429
0.40 0.3492 0.20 0.1863
0.50 0.4198 0.25 0.2278
0.30 0.2676
0.35 0.3058
0.40 0.3427
045 0.3782
0.50 04124
h=0.1 h=0.05
x, Y, ) Y
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5431 0.10 0.5232
0.30 0.5548 0.15 0.5322
0.40 0.5613 0.20 0.5395
0.50 0.5639 0.25 0.5452
0.30 0.5496
0.35 0.5527
0.40 0.5547
045 0.5559
0.50 0.5565
h=0.1 h=0.05
X, Y X, Y
1.00 1.0000 1.00 1.0000
1.10 1.0000 1.05 1.0000
1.20 1.0191 1.10 1.0049
1.30 1.0588 1.15 1.0147
1.40 1.1231 1.20 1.0298
1.50 1.2194 1.25 1.0506
1.30 1.0775
135 1.1115
1.40 1.1538
145 1.2057
1.50 1.2696

6.

8.

10.

h=0.1 h=0.05
X b X by
0.00 1.0000 0.00 1.0000
0.10 1.1000 0.05 1.0500
0.20 1.2220 0.10 1.1053
0.30 1.3753 0.15 1.1668
0.40 1.5735 0.20 1.2360
0.50 1.8371 0.25 1.3144
0.30 1.4039
0.35 1.5070
0.40 1.6267
0.45 1.7670
0.50 1.9332
h=0.1 h=0.05
X, Y, Xa Y
0.00 1.0000 0.00 1.0000
0.10 1.1000 0.05 1.0500
0.20 1.2159 0.10 1.1039
0.30 1.3505 0.15 1.1619
0.40 1.5072 0.20 1.2245
0.50 1.6902 0.25 1.2921
0.30 1.3651
0.35 1.4440
0.40 1.5293
0.45 1.6217
0.50 1.7219
h=0.1 h=0.05
X b X, Y
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5499 0.10 0.5250
0.30 0.5747 0.15 0.5375
0.40 0.5991 0.20 0.5499
0.50 0.6231 0.25 0.5623
0.30 0.5746
0.35 0.5868
0.40 0.5989
0.45 0.6109
0.50 0.6228
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11. Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=025 h=0.1 =005

) y y
7 7 RK4 7 RK4
6 6 6
5 5 5
4 4 4
3F4 3 3
2 2 2
1 1 Euler 1

u X T X
2 4 6 8 10 2 4 6 8 10
12. See the comments in Problem 11 above.
h=025 h=0.1 h=005
y y y
6 6 RK4 6 RK4
5 5 5
4 4 Euler 4 Euler
Euler
3 3 3
2 2 2
1 1 1
X X X
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

13. Using separation of variables we find that the solution of the differential equation is y =
1/(1 — ?), which is undefined at x = 1, where the graph has a vertical asymptote. Because
the actual solution of the differential equation becomes unbounded at x approaches 1, very
small changes in the inputs x will result in large changes in the corresponding outputs y. This
can be expected to have a serious effect on numerical procedures. The graphs below were
obtained as described in Problem 11.

h=0.1 h=0.05

107 107

8 Ric4 3 RK4

6 6

4 /// ' y /

2 Euler 2

X X
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

14. (a) The graph to the right was obtained using RK4
and ListPlot in Mathematicawith h = 0.1. 0.5
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(b) Writing the differential equation in the form y + 2zy = 1 we see that an integrating

. 3 2
factor is e/ 242 = ¢ , SO

i[e“"”2 | = e
dx =

and .
Y= e / e’ dt + ce™ .
0
This solution can also be expressed in terms of the inverse error function as
T
y = g e_m2erﬁ(:17) +ece .
Letting = = 0 and y(0) = 0 we find ¢ = 0, so the solution of the initial-value problem is

y=e" / el dt = \/7% e_xQerﬁ(x).
0

(c) Using FindRoot in Mathematica we see that y'(z) = 0 when x = 0.924139. Since
y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139,0.541044) is
a relative maximum. Now, using the substitution u = —t in the integral below, we have

y(—z) = e (-)? /0 el” dt = e_xQ/O (-’ (—du) = —e_x2/0 e du = —y(x).

Thus, y(z) is an odd function and (—0.924139, —0.541044) is a relative minimum.

Chapter 2 in Review

1. Writing the differential equation in the form ¢y’ = k(y + A/k) we see that the critical point
—A/k is a repeller for k > 0 and an attractor for k < 0.
2. Separating variables and integrating we have
d 4
Yo i
y x
Iny=4lnz+c=Inz'+¢

y = crat.

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions
for k = 0 and no solutions for k # 0.

3. True; y = ko/kq is always a solution for k1 # 0.

4. True; writing the differential equation as aq(z)dy + az(x)y dr = 0 and separating variables
yields




10.

11.

12.

3
. % = xsiny (There are many answers.)
dr
. False: 70 =r0+r+60+1=(r+1)(0+1).
. True

Chapter 2 in Review

Since the differential equation in the form ¢’ = 2 — |y| is seen to be autonomous, 2 — |y| = 0

has critical points 2 and —2 so y; = 2 and y, = —2 are constant (equilibrium) solutions.
d
Y _ e dp
Y
Iny=¢"+c¢
y=e"t=¢e%C”" or y=ce
y ==, y(=1)=2
dy -z, <0
de z, x>0
1
3 2+ c, =<0
y =
L o,
5 x4+ C9, X Z 0

1
The initial condition y(—1) = 2 implies 2 = 5 +c1 and thus ¢; =

N | Ot

Now y(x) is supposed

to be differentiable and so continuous. At x = 0 the two parts of the functions must agree

and so ¢ = ¢ = 3 So,

(5—x2), xz <0 5

(:172—1—5), x>0

N = DN =

Y= ecosx/xte—costdt
0

d x
% — eCOSZ'xe_ Ccos T + (_ Sin x) eCOSCE\/O te_ cost dt
d d
%zx—(sin:n)y or £+(Sin$)y:x.
Y dy 2
Yoyt Eoy+s
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dy 2 o2
13. - = (y—1)"(y —3)
dy 2
14. =2 — y(y —2)%(y — 4
Iy yly—2)°(y —4)

15. When n is odd, 2™ < 0 for x < 0 and 2™ > 0 for > 0. In this case 0 is unstable. When n is

even, ' > 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

When n is odd, —2™ > 0 for z < 0 and —2" < 0 for x > 0. In this case 0 is asymptotically

stable. When n is even, —z" < 0 for < 0 and for > 0. In this case 0 is semi-stable.

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph
we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is
an asymptotically stable critical point. Thus, tlim P(t) =1.3214.
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18.
(a) linear in y, homogeneous, exact (b) linear in z
(c) separable, exact, linear in x and y (d) Bernoulli in x
(e) separable (f) separable, linear in x, Bernoulli
(g) linear in x (h) homogeneous
(i) Bernoulli (j) homogeneous, exact, Bernoulli
(k) linear in z and y, exact, separable, (1) exact, linear in y
homogeneous
(m) homogeneous (n) separable

19. Separating variables and using the identity cos? z = %(1 + cos 2z), we have

2 Y
dr = ———dy,
cos” x ax 21 Y

1 1 1
§x+Zsin2$:§1n(y2+1)+c,



20.

21.

22.

Chapter 2 in Review

and

2z 4 sin 2z = 21In (y2 + 1) +c.
Write the differential equation in the form
ylnzda: = (mlnE — y> dy.
Y Y

This is a homogeneous equation, so let x = uy. Then dr = udy + y du and the differential

equation becomes

ylnu(udy + ydu) = (uylnu —y)dy or ylnudu = —dy.

Separating variables, we obtain

d
Inudu = —22
Y
ulnju| —u=—Inly| + ¢
a1 —E:—ln|y|—|—c
Yy Yy Yy

z(lnzx —Iny) —xz = —ylnl|y| + cy.

The differential equation
dy 2 3z

iz 6z 117" Gri1?

is Bernoulli. Using w = y>, we obtain the linear equation

dw+ 6 92
—t ——w=— .
der 6z +1 6x +1

An integrating factor is 6x + 1, so
d (62 + 1)w] = —92?
— [(6x w] = -9z
dx ’

33 n c
6x+1 6z+1’

and
(6z 4 1)y® = =323 + .

(Note: The differential equation is also exact.)
Write the differential equation in the form (3y? + 2z)dz + (4y* + 6zy)dy = 0. Letting
M = 3y? + 2z and N = 4y? + 62y we see that M, = 6y = N,, so the differential equation is

exact. From f, = 3y*>+2x we obtain f = 3zy*+2%+h(y). Then f, = 6zy+h/(y) = 4y*+ 62y
and 1/ (y) = 4y” so h(y) = 3y°. A one-parameter family of solutions is

4
3vy? + 2% + gy?’ =c.
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23. Write the equation in the form

dQ 1 .3
%‘F?Q—t Int.

An integrating factor is e™f = ¢, so

d _
- [tQ) =t"Int

1 5 15
tQ) = ——t —t°Int
Q o5 +5 nt+c
and
14 1y c
=——1 —t"Int + —.
@=—ggt Tyl ity
24. Letting u = 2z + y + 1 we have
du_2+dy
dr dx’

and so the given differential equation is transformed into

U d_u_2 =1 or d_u_2u—|—1
dz N de  u

Separating variables and integrating we get

u

du =d
ut1 T
1 1 1
- — = du = dx
2 22u—+1
1 1
§u—zln]2u+l\:x+c

2u —1In [2u + 1| = 4z + c1.

Resubstituting for u gives the solution
dr+2y+2—Injde +2y+3| =4z + ¢

or

2y+2—Inldz 4+ 2y + 3| =c.

25. Write the equation in the form

@4_ 8x 2
dr " 2+a? T 2ra

An integrating factor is (a:2 + 4)4, SO

% [(:172 + 4)4y} =2z (m2 + 4)3

(m2—|—4)4—|—c

EN-

($2 +4)4y _
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and

1 -
y:Z+c(:E2—|—4) *

26. Letting M = 2r2cosfsin@ + rcosf and N = 4r + sinf — 2r cos? § we see that
M, = 4r cosfsinf + cos ) = Ny, so the differential equation is exact. From
fo =2r?cosfsin 6 + rcos @ we obtain f = —r2cos? + rsinf + h(r). Then
fr = —2rcos?0 +sinf + h'(r) = 4r + sinf — 2rcos? 6 and K (r) = 4r so h(r) = 2r?. The
solution is

—r2cos? 0+ rsin + 2r2 = c.

d d 1
27. We put the equation d—y + 4 (cosx)y = x in the standard form d—y + 2(cosx)y = 3% then
x x

the integrating factor is el 2eoszde _ 2sinx  Therefore

1

y] = 5 %e

v d 2sint _ 1/:0 2sint
/0 7 [e*5 ™y (1)] dt = 5 i te? ¥ dt

. ~ = z .
e2smxy(x) _ 60 y(O) — _/ te2smt dt
0

2sinz

d 2sinz
i

. 1 [* .
e2smmy(x) _ 1= _/ te2smt dy
0

y(x) — e—2sinx + %e—2sinx/x t625int dt
0

d
28. The equation d_y — 4zy = sinz? is already in standard form so the integrating factor is
x

d
e~ JAzdr _ =22 Therefore T [e_mzy] = ¢ 22" ging2. Because of the initial condition
x

y(0) = 7 we write

P o /x —2t% 42
— e " y(t)| dt = e sint“ dt
[l o] a= [

7
- T
e_2x2y(:n) —e%y(0) = / e~ sin 2 dt
0

x
y(x) = 72 4 &2 / e ™2 sint? dt
0
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dy 2
29. We put the equation xg—g +2y = ze®” into standard form d—y +—y = e*”. Then the integrating
T x

. rz 2
factor is e/ = 9% = eln@® — 22 Therefore

d
2% + 2zy = 22e”

dx
% [xzy] _ $26x2
/x 12y di = /x t2et” dt
p dt 1

3
= x
z2y(z) —y(1) = /1 2" dt

30.
d
xﬁ + (sinz)y =0
d .
dy | sma:y _0
dz

nt

The integrating factor is elo =i dy, Therefore,

a {efoz dty] — 0

dx
/xi [e.ﬂf“‘%duy(t)} dt = /x()dt =0
o dt 0
10
~~

ld Sty () — &y (0) = 0

x sint dt

y(x) = 10e™ Jo
31.

—ty= f(l‘), y(O) =9, where f($) =

e 0<x<l1
0, z>1

For 0 <z <1,

ey=x+c

y=xe *+cre*
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Using y(0) = 5, we have ¢; = 5. Therefore y = ze™* + 5e~*. Then for x > 1,

d . . B
%[e yl =0

e’y = cy
y=coe ©
Requiring that y(z) be continuous at x = 1 yields

cze_1 —e 1 +5e7!

62:6
Therefore
() xe P 4+5e7" 0<zx<1
y(z) =
6e 7, r>1
32.
@—’-P((ﬂ) =€’ (0)=-1 where P(x) = b Osesd
dr Y Y ) 1oz
For 0 <z <1,
d
ﬁ[emy]:ezx
1
exy:§e2x+cl
1 x —T
yzie + cie
sing y(0) = —1, we have ¢; = —5. Therefore y = 5¢* — 5¢™*. Then for z > 1,
Using y(0 1, we h 2. Theref le? — 3¢ Then f 1
d . _
ol =1

e ty=x+co

y = ze’ + coe”

Requiring that y(x) be continuous at z = 1 yields

e+c e—le—§e_1
79"
1 3
Cy = —5 — 56
Therefore
1 3
5690—56_93, 0<z<l1
y(x) = 3
ze® — e — S22 p>1
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33.

34.

35.

36.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The differential equation has the form (d/dz) [(sin z)y] = 0. Integrating, we have (sinx)y = ¢
or y = ¢/sinx. The initial condition implies ¢ = —2sin (77/6) = 1. Thus, y = 1/sinz, where

the interval (m,2m) is chosen to include z = 77 /6.

Separating variables and integrating we have

dy
—2:

—2(t + 1) dt
" (t+1)

1
——=—(t+1)? +c

Y
1 h
= , where —c=c¢
L T R, !
The initial condition y(0) = —% implies ¢; = —9, so a solution of the initial-value problem is
1 1

= — or = -5 T =

N R P YT rar-8

where —4 <t < 2.

(a) For y <0, /y is not a real number.

(b) Separating variables and integrating we have

dy
— =dr and 2/y=zx+c.
VY v

Letting y(z¢) = yo we get ¢ = 2,/yg — o, so that

1
2/y=x+2\/yo —zo and yzz(x—l—Z\/%—xo)z.

Since /y > 0 for y # 0, we see that dy/dx = %(m +2/90 — xo) must be positive. Thus,
the interval on which the solution is defined is (zg — 2,/%g, 00).

(a) The differential equation is homogeneous and we let y = ux. Then

(2% — ) dx + zydy = 0
(2% — u*2?) dx + ua®(udx + x du) = 0
dr +urdu =0

uduy = ——
T

1 2
- _—_l
Y nlz|+c

— = —2In|z|+c1.

The initial condition gives ¢; = 2, so an implicit solution is y? = (2 — 21n |z]).
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(b) Solving for y in part (a) and being sure that the initial con-
dition is still satisfied, we have y = —v/2|z|(1 — In |z|)1/2, 2}
where —e < x < e so that 1 —In|z| > 0. The graph of N
this function indicates that the derivative is not defined at .
z = 0 and z = e. Thus, the solution of the initial-value 2o A b2
problem is y = —v2z(1 — Inz)'/?, for 0 < z < e. Ll

37. The graph of y;(z) is the portion of the closed blue curve lying in the fourth quadrant. Its
interval of definition is approximately (0.7,4.3). The graph of ys(z) is the portion of the
left-hand blue curve lying in the third quadrant. Its interval of definition is (—oc,0).

38. The first step of Euler’s method gives y(1.1) ~ 9+0.1(1+3) = 9.4. Applying Euler’s method
one more time gives y(1.2) ~ 9.4 4+ 0.1(1 + 1.1v/9.4 ) ~ 9.8373.

39. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.
The direction field is then as shown in the figure at the
right. It appears from the figure that the differential

equation has critical points at —2 (an attractor) and
at 2 (a repeller). Thus, —2 is an aymptotically stable

critical point and 2 is an unstable critical point.

40. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.
The direction field is then as shown in the figure at the
right. It appears from the figure that the differential

equation has no critical points.
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