A Tutorial on Gaussian Processes
(or why | don’t use SVMs)

Zoubin Ghahramani

Department of Engineering
University of Cambridge, UK
Machine Learning Department

Carnegie Mellon University, USA

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

MLSS 2011

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X,y}

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f)p(D|f)

p(f|D) = (D)

Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function
mapping some input space X to R.

f: X — R

Notice that f can be an infinite-dimensional quantity (e.g. if X = R)

Let f = (f(x1),..., f(z,)) be an n-dimensional vector of function values evaluated
at n points z; € X. Note f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {z1,...,2,} C X,
the marginal distribution over that finite subset p(f) has a multivariate Gaussian
distribution.

Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset {x1,...,2z,} C X, the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, u(z), and a
covariance function, or kernel, K (x,x').

p(f (@), f(z')) = N(u, %)

where

= [4] E = [2(((5’,?) f((((gfi))

and similarly for p(f(x1), ..

., f(z,)) where now g is an n x 1 vector and X is an
n X nm matrix.

Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, u(x), and a
covariance function, K(x,x’).

An example covariance function:

K(QZ@ZCj) = voexp{— (‘337, _xj‘) } + U1 +U25z’j

r

with parameters (vg, v1, V2, T, @)

These kernel parameters are interpretable and can be learned from data:

vo signal variance
v; variance of bias
Vo nolise variance
r lengthscale

« roughness

Once the mean and covariance functions are defined, everything else about GPs
follows from the basic rules of probability applied to mutivariate Gaussians.

Samples from GPs with different K (x,x’)

Using Gaussian processes for nonlinear regression

Imagine observing a data set D = {(x;,v:)i—1} = (X,y).

Model: yi = [f(xi)+e
€ N("O7O-2)

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

p(y.[x., D) = / p(ys %0 £, D) p(f|D) df

We can also compute the marginal likelihood (evidence) and use this to compare or
tune covariance functions

p(y|X) = / p(y 1. X) p(f) df

Prediction using GPs with different K (x,x’)

A sample from the prior for each covariance function:

fix)

f(x)

50
X

50
X

50
X

Corresponding predictions, mean with two standard deviations:

Gaussian process (GP) priors

N

n—1, given

GP: consistent Gaussian prior on any set of function values f = {f,
corresponding inputs X = {x, }A_,

one sample function

prior
p(f X) — N(07 KN)

Covariance: K,,,,y = K(x,,X,;80), hyperparameters 0

— v ex —_——

n
Td

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {f,}"_,, given

corresponding inputs X = {x, }A_,

N function values

prior

f1

f3 fa

Covariance: K,,,,y = K(x,,,X,;80), hyperparameters 0

2
K : i e —
—vexp |—=

GP regression

Gaussian observation noise: y,, = f, + €,, where €, ~ N(0,c?)

sample data

w
\... - - -
" RS . marginal likelihood
~. :D o® ..: . o..:“...\g.:.’:’..o. . 2
' R P A ane L L p(ylx) — N(07 Ky+o I)
Ay - S e
.o:o o.. .c. ..'.-.: :..“
‘.. o.'. °
o.;p'..::::.

predictive distribution
p(ys|x:, X, y) = N (s, 07)

Mx — K*N(KN + 021)_1y
0'2 — K** - K*N(KN + 0-2]:)_1KN>|< + 0-2

*

GP regression

Gaussian observation noise: y,, = f, + €,, where €, ~ N(0,c?)

sample data

w
\... - - L]
" RS . marginal likelihood
~. ..D o® ..: . o..:“...\g.:.’:’..o. . 2
' R P A ane L L p(ylx) — N(07 Ky+o I)
X - S M R
::o o.. .c. ..'.-.: :..“
‘.. o.'. °
o."p'..:::‘f.

predictive distribution
p(ys|x:, X, y) = N (s, 07)

Mx — K*N(KN + 021)_1y
0'2 — K** - K*N(KN + 0-2]:)_1KN>|< + 02

*

GP learning the kernel

Consider the covariance function K with hyperparameters @ = (vg, v1,71,...,74, Q):

D ‘Qj(_d)_x('d)‘ o
Ko(xi,%x;) = vo exp —Z< - :) + U1

.
d—1 d

Given a data set D = (X,y), how do we learn 87

The marginal likelihood is a function of 6

p(y|X,8) = N(0,K, + 0°T)

where its log is:

1 1
Inp(y|X,0) = ~3 Indet(Ky + 0°I) — in(Kg + 0*I) "'y + const

which can be optimized as a function of 0 and o.

Alternatively, one can infer 8 using Bayesian methods, which is more costly but
iImmune to overfitting.

From linear regression to GPs:
e Linear regression with inputs x; and outputs y;: v = Bo + Gix; + €
M
e Linear regression with M basis functions: y; = Z B Om(x;) + €;
m=1

e Bayesian linear regression with basis functions:
Bm ~ N(:]0,\;,) (independent of 3;, V¢ # m), e; ~ N(-|0,0?)

e Integrating out the coefficients, §;, we find:

M
Ely;] =0, Cov(yi, y;) = Kij = Z A O (@) G (25) + bi50°

m=1

This is a Gaussian process with covariance function K (x;,x,) = K;;.

This GP has a finite number (M) of basis functions. Many useful GP kernels
correspond to infinitely many basis functions (i.e. infinite-dim feature spaces).

A multilayer perceptron (neural network) with infinitely many hidden units and
Gaussian priors on the weights — a GP (Neal, 1996)

Using Gaussian Processes for Classification

Binary classification problem: Given a data set D = {(x;,¥;)}I{, with binary class
labels y; € {—1, 41}, infer class label probabilities at new points.

4 . - 0.9
al . 0.8
2 / N TN 1 B Ho7
/ / 1 7/ |
1 — y=-1 / N7
' /| P i f 1 b Hos
."“v —= :-T- E 7 /' : }\. l
‘ 7)) A i
05 ot N _NAH " v\ F qos
f — ‘/,/ ‘/ / \ \
- { [/ 0 ¥)
-1F 7 (1A ! / /1 - 0.4
0 Ve TN {
4 7/ 1\
[{ 7 // W\ /)
-2t \ \ / g 0.3
_a} B 1 0.2
_1 1 1 1)
-1 -0.5 0 0.5 1
" A . . . : . A 0.1
X -4 -3 -2 -1 0 1 2 3 4

There are many ways to relate function values f; = f(x;) to class probabilities:

r 1—|—exp%—y'f‘) sigmoid (logistic)
e — D (y;fi) cumulative normal (probit)
Plyilfi) = < H (y; f:) threshold
L e+ (1 —2¢)H (yif;) robust threshold

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).

Support Vector Machines

Consider soft-margin Support Vector Machines:
min flw]?+C Y (1 - f)
W 2 i 1J1)+

where ()4 is the hinge loss and f; = f(x;) = W - x; + wp. Let's kernelize this:

X = ¢(xi) = k(- %), w— f()
By reproducing property: (k(-,x3), () = f(x5).
By representer theorem, solution: f(x) = Z a;k(x,x;)

Defining f = (f1,... fn)! note that f = Ko, so a = K™ !f
Therefore the regularizer £||w||> — 3| f[I7, = 5(/(), f())n = 50 ' Ka = 5f '"K™'f

So we can rewrite the kernelized SVM loss as:

S P SO
min §f K f+CZ(1_yifi)+

Support Vector Machines and Gaussian Processes

1
We can write the SVM loss as: min —f' K7f 4 CZ(l —yifi)+

£ 2

1
We can write the negative log of a GP likelihood as: §fTK_1f— Zlnp(yi\j};) +c

Equivalent? No.

With Gaussian processes we:

Handle uncertainty in unknown function f by averaging, not minimization.
Compute p(y = +1[x) # p(y = +1/f,%).

Can learn the kernel parameters automatically from data, no matter how
flexible we wish to make the kernel.

Can learn the regularization parameter C without cross-validation.

Can incorporate interpretable noise models and priors over functions, and can
sample from prior to get intuitions about the model assumptions.

We can combine automatic feature selection with learning using ARD.

A picture

Linear Logistic
Regression Regression
Bayesian Bayesian
Linear Logistic
Regression Regression
Kernel Kernel
Regression Classification

GP GP

Regression Classification

Classification

Bayesian
Kernel

Matlab Demo: Gaussian Process Classification

matlab/gpml-matlab/gpml-demo
demo_ep_2d

demo_gpr

Sparse Approximations: Speeding up GP learning
(Snelson and Ghahramani, 2006a, 2006b; Naish-Guzman and Holden 2008)

We can approximate GP through M < N inducing points f to obtain this Sparse
Pseudo-input Gaussian process (SPGP) prior: p(f) = [df [p(fn|f) p(f)

GP prior SPGP prior

N(Oa KN)

p(f) = N(OaKNMK]TjKMN + A)

= + \

|

Q

e SPGP covariance inverted in O(M?*N) < O(N?) = much faster
e SPGP = GP with non-stationary covariance parameterized by X

e Given data {X,y} with noise o2, predictive mean and variance can be computed
in O(M) and O(M?) per test case respectively

Builds on a large lit on sparse GPs (see Quifionero Candela and Rasmussen, 2006).

Some Comparisons

Table 1: Test errors and predictive accuracy (smaller is better) for the GP classifier, the support
vector machine, the informative vector machine, and the sparse pseudo-input GP classifier.

Data set GPC SVM IVM SPGPC
name train:test dim err nlp err #sv er nlp M er nlp M
synth 250:1000 2 | 0.097 0.227 | 0.098 98 | 0.096 0.235 150 | 0.087 0.234 4
crabs 80:120 5 | 0.039 0.096 | 0.168 67 | 0.066 0.134 60 | 0.043 0.105 10
banana 400:4900 2 | 0.105 0.237 | 0.106 151 | 0.105 0.242 200 | 0.107 0.261 20
breast-cancer 200:77 9 | 0.288 0.558 | 0.277 122 | 0.307 0.691 120 | 0.281 0.557 2
diabetes 468:300 8 | 0.231 0475 | 0.226 271 | 0.230 0486 400 | 0.230 0485 2
flare-solar 666:400 9 | 0.346 0.570 | 0.331 556 | 0.340 0.628 550 | 0.338 0.569 3
german 700:300 20 | 0.230 0482 | 0.247 461 | 0.290 0.658 450 | 0.236 0491 4
heart 170:100 13 | 0.178 0423 | 0.166 92 | 0.203 0455 120 | 0.172 0414 2
image 1300:1010 18 | 0.027 0.078 | 0.040 462 | 0.028 0.082 400 | 0.031 0.087 200
ringnorm 400:7000 20 | 0.016 0.071 | 0.016 157 | 0.016 0.701 100 | 0.014 0.089 2
splice 1000:2175 60 | 0.115 0.281 | 0.102 698 | 0.225 0403 700 | 0.126 0.306 200
thyroid 140:75 5 | 0.043 0.093 | 0.056 61 | 0.041 0.120 40 | 0.037 0.128 6
titanic 150:2051 3 | 0.221 0.514 | 0.223 118 | 0.242 0.578 100 | 0.231 0.520 2
twonorm 400:7000 20 | 0.031 0.085 | 0.027 220 | 0.031 0.085 300 | 0.026 0.086 2
waveform 400:4600 21 | 0.100 0.229 | 0.107 148 | 0.100 0.232 250 | 0.099 0.228 10

From (Naish-Guzman and Holden, 2008), using exactly same kernels.

Feature Selection

Example: classification

input x = (x,...,zp) € RP
output y € {+1,—1}

2P possible subsets of relevant input features.

One approach, consider all models m € {0, 1} and find

m = argmax p(D|m)
m

Problems: intractable, overfitting, we should really average

Feature Selection

e Why are we doing feature selection?
e What does it cost us to keep all the features?

e Usual answer (overfitting) does not apply to fully Bayesian methods, since they
don’t involve any fitting.

e We should only do feature selection if there is a cost associated with measuring
features or predicting with many features.

Note: Radford Neal won the NIPS feature selection competition using Bayesian
methods that used 100% of the features.

Feature Selection using ARD in GPs

Problem: Often there are many possible inputs that might be relevant to predicting
a particular output. We need algorithms that automatically decide which inputs are
relevant.

Automatic Relevance Determination:

Consider this covariance function:

-
1 2 (d) _ :C(C,l)
K,, s =vexp | —=

The parameter r, is the length scale of the function along input dimension d.

As 14 — 0o the function f varies less and less as a function of z(#), that is, the dth
dimension becomes irrelevant.

Given data, by learning the lengthscales (r1,...,7p) it is possible to do automatic
feature selection.

Bayesian Discriminative Modeling

Terminology for classification with inputs x and classes y:

e Generative Model: models prior p(y) and class-conditional density p(x|y)

e Discriminative Model: directly models the conditional distribution p(y|x) or
the class boundary e.g. {x:p(y = +1|x) = 0.5}

Myth: Bayesian Methods = Generative Models

For example, it is possible to define Bayesian kernel classifiers (i.e. Gaussian
processes) analogous to support vector machines (SVMs).

" BPM

(figure adapted from Minka, 2001)

Conclusions

Linear
Regression

Logistic
Regression

Bayesian
Linear
Regression

Bayesian
Logistic
Regression

Kernel
Classification

Kernel
Regression

GP
Regression

N

Bayesian

GP
Classification

e Gaussian processes define distributions on functions which can be used for nonlinear regression,
classification, ranking, preference learning, ordinal regression, etc.

e GPs are closely related to many other models. We can derive them from:
— Bayesian kernel machines
— Linear regression with basis functions
— Infinite multi-layer perceptron neural networks
— Spline models

e Compared to SVMs, GPs offer several advantages: learning the kernel and regularization
parameters, integrated feature selection, fully probabilistic predictions, interpretability.

Appendix

An example of ARD for classification

Data set: 6-dimensional data set with three relevant features and three irrelevant
features. For each data point #;, the relevant features depend on its class label:

5

ri 22, x3 ~ N(y;, 1), while the irrelevant features do not: xt, 22, 19

~ N(0,1).

Result: 174,75,7¢ — o0 improving the likelihood and classification error rates,
compared to a single-lengthscale model.

Methods single lengthscale | multiple lengthscales
log p(y|X, 0) -55.4480 -35.4119
Error rates 0.0600 0.0400

Example from (Kim and Ghahramani, 2004)
More on ARD and feature selection with thousands of inputs: (Qi et al, 2004).

Feature Selection: Automatic Relevance Determination

Bayesian neural network

Data: D = {(x (n) y(”)) n=1 = (X,¥)
Parameters (Welghts). 0 = {{wi;}, {vi}}

prior p(0|a)

posterior p(0|a, D) x p(y|X,0)p(0|a)

evidence p(y|X,) fp (y|X,0)p(0|a) dO
prediction p(y'|D,x’,) = [p(y'|x/, 9) (0|D,) dO

Automatic Relevance Determination (ARD):

1

Let the weights from feature x4 have variance o " p(waj|ag) = N(0,a; ")

ag — 00 variance — 0 weights — 0 (irrelevant)
Let's think about this: o, < 0o finite variance weight can vary (relevant)

ARD: optimize & = argmax p(y|X, o).

During optimization some a4 will go to oo, so the model will discover irrelevant
inputs.

Sparse GP overview

This work contains 2 key ideas:
1. A new sparse Gaussian process approximation based on a small set of M ‘pseudo-

inputs’ (M < N). This reduces computational complexity to O(M?N)

2. A gradient based learning procedure for finding the pseudo-inputs and
hyperparameters of the Gaussian process, in one joint optimization

References

Qi, Y., Minka, T.P., Picard, R.W., and Ghahramani, Z. (2004) Predictive Automatic Relevance
Determination by Expectation Propagation. In Twenty-first International Conference on
Machine Learning (ICML-04). Banff, Alberta, Canada.

Quifionero-Candela, J. and Rasmussen, C.E. (2005) A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research 6:1959.

Naish-Guzman, A. and Holden, S. (2008) The generalized FITC approximation. Advances in
Neural Information Processing Systems 20:1057-1064.

Neal, R. M. (1996) Bayesian learning for neural networks. Springer Verlag.

Neal, R. M. (1998). Regression and classification using Gaussian process priors (with discussion).
In Bernardo, J. M. et al., editors, Bayesian statistics 6, pages 475-501. Oxford University Press.

O’Hagan, A. (1978). Curve Fitting and Optimal Design for Prediction (with discussion). Journal
of the Royal Statistical Society B, 40(1):1-42.

Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian Processes for Machine Learning. MIT
Press.

Snelson, E. and Ghahramani, Z. (2006a) Sparse Gaussian Processes using Pseudo-Inputs. In
Advances in Neural Information Processing Systems 18 (NIPS-2005).

Snelson, E. and Ghahramani, Z. (2006b) Variable noise and dimensionality reduction for sparse
Gaussian processes. In Uncertainty in Artifical Intelligence 22 (UAI).

More information and code at: http://www.gaussianprocess.org/

