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1  Introduction

Software Engineering (SE) is in a perpetual crisis. Software
products are increasing in complexity, the cost to develop
and maintain systems is skyrocketing, and our ability to
understand systems is decreasing. A basic goal of SE is to
successfully manage and control complexity; the “crisis”
indicates that SE technologies are failing to achieve this
goal. There are many culprits. One surely is that today’s soft-
ware design and implementation techniques are simply too
low-level, exposing far more detail than is necessary to make
an application’s design, its construction, ease of modification
simple. Future software design technologies will need to do
much better, and it should not be surprising that they will be
quite different from those of today.

Looking to the future, SE paradigms will likely embrace the
following ideas:

• Generative Programming (GP)
• Domain-Specific Languages (DSLs)
• Automatic Programming (AP)

GP is about automating software development. Eliminating
the task of writing mundane and rote programs is a mother-
hood to improved programmer productivity and program
quality. Program synthesizers will transform input specifica-
tions into target programs. These specifications will not be
written in Java or C# — which are far too low-level — but
rather in high-level notations called DSLs that are specific to
a particular domain. DSL programs are known to be both
easier to write and maintain than their low-level (e.g., Java)
counterparts. Ideally, DSLs will be declarative, allowing
their users to define what is needed and leave it up to the
DSL compiler to automatically produce an efficient program
that does the how part. But placing the burden of program
synthesis on a DSL compiler should not be taken lightly.
This is the problem of AP; it is a technical problem of great
difficulty, as little progress has been made in the last 20 years
to produce demonstrably efficient programs from declarative
specs. Advancement on all three fronts (GP, DSLs, and AP)
may be needed before the crisis in SE will noticeably dimin-
ish.

While it is wishful thinking that simultaneous advances on
all three fronts is possible, it is worth noting that a spectacu-
lar example of this futuristic SE paradigm was realized over
20 years ago — ironically around the time when others gave
up on AP. And not only that, it had a fundamental impact on
commercial applications. The example is relational query
optimization. SQL is a prototypical DSL: it is a declarative
language for retrieving data from tables. An SQL compiler
translates an SQL statement into a relational algebra expres-
sion. A query optimizer accomplishes the goal of automatic
programming by applying equational rewrite rules to auto-
matically optimize relational algebra expressions. The task
of translating an optimized expression into an efficient pro-
gram is an example of generative programming.

Relational optimizers revolutionized databases: data
retrieval programs that were hard to write, hard to optimize,
and hard to maintain are now produced automatically. There
is nothing special about data retrieval programs: all interest-
ing programs are hard to write, optimize, and maintain. Thus
if ever there was a “grand challenge” for SE, it is to replicate
the success of relational query optimization in other
domains. 

AHEAD is a theory of Feature Oriented Programming
(FOP) that shows how the concepts and framework of rela-
tional query optimization generalize to other domains. ATS
is a suite of tools that implement the AHEAD theory.

1.1   Background
How would you describe a program that you’ve written to a
prospective customer? You are unlikely to recite what DLLs
you’re using — because the customer would unlikely have
any interest such details. Instead, you would take a more
promising tact of explaining the features that your program
offers its clients. This works because clients know their
requirements and can see how features satisfy requirements.

Successful programs come in different flavors, e.g., entry-
level through deluxe. The differences between these catego-
ries are the presence or absence of features (or more com-
monly, sets of features). Entry-level versions have a minimal
feature set; deluxe advertises the most.
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But if we describe programs by features or differentiate
programs by features, why can’t we build programs (or pro-
gram families) from feature specifications? In fact, we can.
This is the area of research called product-lines. The ability
to add and remove features implies that features are modu-
larized. We focus on a particular sub-topic of product-line
research that deals with feature modularization. By making
features first-class design and implementation entities, it is
easier to add and remove features from applications. (In
fact, this is a capability that most of us wish we had today
— the ability to add and remove features from our pro-
grams. We don’t have it now; the purpose of this paper is to
explain how it can be done in a general case). It happens
that feature modularity goes far beyond conventional
notions of code modularity. This, among other things,
makes it a very interesting topic.

Feature oriented programming (FOP) is the study of fea-
ture modularity and programming models that support fea-
ture modularity. A powerful form of FOP is based on a
methodology called step-wise refinement (SWR). SWR is
both simple and ancient: it advocates that complex pro-
grams can be constructed from simple programs by incre-
mentally adding details. When incremental units of change
are features, FOP and SWR converge. This is the starting
point of AHEAD and ATS. But what is a feature refine-
ment? How is it represented? And how are refinements and
their compositions modeled?

1.2   A Clue
Consider any Java class C. A class member could be a data
field or a method. Class C below has four members m1—m4.

class C {
member m1;
member m2;
member m3;
member m4;

} (1)

Have you ever noticed that when C belongs to an inherit-
ance hierarchy, the members of C could be distributed over
C’s ancestors? For instance, one possibility is to have class
C1 encapsulate member m1 and C23 encapsulate members m2
and m3:

class C1 { member m1; }

class C23 extends C1 {
member m2;
member m3;

}
class C4 extends C23 { member m4; }
class C extends C4 {} (2)

From a programmatic viewpoint, both definitions of C,

namely (1) and (2), are equivalent. In fact, we could fur-
ther decompose C23 to be:

class C2 extends C1 { member m2; }
class C3 extends C2 { member m3; }
class C23 extends C3 {}

and the definition of C would not change; it would still have
members m1—m4. Moreover, there’s nothing really special
about the placement of member m1 (or m2 …) in this hierar-
chy. If m1 is a method and it references other members, as
long as these members are not defined lower in the inherit-
ance chain, it can appear in any class of the chain.

If you have taken a course on algebra, you have seen these
ideas before. Consider sets and the union operator. We can
define the sets:

C1 = { m1 }
C2 = { m2 }
C3 = { m3 }
C4 = { m4 }

C23 = C2 ∪ C3
C = C1 ∪ C23 ∪ C4 = C1 ∪ C2 ∪ C3 ∪ C4

Union is a commutative operator, which means that the
order in which the union of sets is taken doesn’t matter.
This is similar to, but not exactly the same as inheritance
because as we saw, a method can be introduced only as long
as members it references are not defined in lower classes. 

Something a bit closer to inheritance are vectors and the
vector operations of addition(+) and movement(→). Sup-
pose we define vectors in 4-space:

C1 = (m1,0,0,0)
C2 = (0,m2,0,0)
C3 = (0,0,m3,0)
C4 = (0,0,0,m4)

You know about vector arithmetic; vector movement is the
path that is followed when laying vectors end-to-end. Vec-
tor arithmetic is commutative; vector movement isn’t:

C = (m1,m2,m3,m4) = C1 + C2 + C3 + C4
C1 + C2 + C3 + C4 = C4 + C3 + C2 + C1

C1 → C2 → C3 → C4 ≠ C4 → C3 → C2 → C1

Inheritance has the flavor of both vector arithmetic and vec-
tor movement.

When you think about an operator for inheritance, what
you are really defining is an operator for class refinement.
A class refinement can add new members and refine exist-
ing members of a class. (Java doesn’t support field refine-
ments, but method overrides or extensions is method
refinement).
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Here’s an example. Suppose a program P has a single class
B that initially contains a single data member x:

class B { int x; } (3)

Suppose a refinement R of program P adds data member y
and method z to class B. This class refinement is written as:

refines class B { 
int y; 
void z() {...} 

} (4)

The composition of R with P defines a new program N with a
single class, namely B, with the following three members:

class B {
int x;
int y;
void z() {...}

} (5)

In effect, this composition is expressed by the following
inheritance chain, called a refinement chain:

class BP { int x; }

class BR extends BP {
int y;
void z() {...}

}

class BN extends BR {} (6)

where subscripts indicate the program or refinement from
which that fragment of B is defined.

We can express these ideas algebraically in terms of “con-
stants” and “functions”. Program P is a constant — it
defines a base artifact. A refinement is a function that maps
programs, so R is a function. A composition is an expres-
sion. Thus, we can model (5) and (6) as the equation N =
R(P).

We can express our previous example about class C in this
manner. Here is one way: let C1 be a constant and C2, C3,
and C4 be refinements:

class C { member m1; } // constant C1

refines class C { member m2; } // function C2

refines class C { member m3; } // function C3

refines class C { member m4; } // function C4

Now, class C of (1) can be synthesized from the expression
C4(C3(C2(C1))). Moreover, we see that C23 has an obvious

representation as a composite function or composite refine-
ment:

C23 = C2 • C3

where •  is the function composition operator. (Notationally
R(P) is equivalent to R•P. Eventually we will only use the •
notation to denote composition). The refinement of C23 is:

refines class C {
member m2;
member m3;

} (7)

There remains loose ends to tie up before a bigger picture
emerges. First, there’s scalability. The effects of a refine-
ment need not be limited to a single Java class. In fact, it is
common for a “large-scale” refinement to encapsulate
refinements of multiple classes as well as adding new
classes. That is, such a refinement would augment existing
classes of a program with new members and override exist-
ing members, but would also introduce new classes that
could be subsequently refined.

Second, refinements have meaning when they encapsulate
the implementation of a feature. Have you ever added a
new feature to an existing program? You discover that you
often have to extend a number of classes, as well as intro-
duce new classes to a program. Well, that’s a “large scale”
refinement called a feature refinement.

Third, in product-line design, feature refinements are ste-
reo-typical units of application design that can be composed
with other such design elements to produce customized pro-
grams. A design for a product-line — called a domain
model — is a set of constants and functions, where con-
stants correspond to base programs and functions are fea-
ture refinements. These “units” — constants and functions
— are effectively the legos of a domain that can be snapped
together (i.e., composed functionally) to synthesize custom-
ized programs.

Fourth, recall that a key to the success of relational query
optimizers is that they used equational representations of
programs. That is, a data retrieval program was defined by a
unique composition of relational algebra operators. To see
the generalization of these ideas to other domains, a domain
model is a set of operators (“constants” and “functions”)
whose compositions define the space of programs that can
be synthesized within a domain. Given equational represen-
tations, there will always be algebraic identities among
operators. These identities can be used to optimize equa-
tional representations of programs, just like relational query
optimizers.
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Finally, we have equated the terms “function” and “opera-
tor” in our discussions, but a mathematician would object
as the ideas are not the same. An operator is a higher-order
function, i.e., a function that maps functions. The calculus
operators of differentiation and integration are examples.
So when we talk about programs and program refinements,
are we talking about functions or operators?

The answer is operators. Programs have command line
arguments, hence they are functions. Program refinements
are program-to-program mappings (i.e., function-to-func-
tion mappings), and hence they must be operators. Thus,
domain models really are algebras — a set of operators that
are specific to a particular domain of programs. Composi-
tions of these operators represent different programs in the
domain.

Even though we are dealing with operators, we will con-
tinue to refer to them as functions (which indeed they are).
Now, let’s consider a more precise way to express these
ideas.

2  A Model of FOP

Salient ideas of FOP as expressed by two models: GenVoca
and its successor AHEAD.

2.1   GenVoca
GenVoca is a design methodology for creating application
families and architecturally-extensible software, i.e., soft-
ware that is customizable via module additions and remov-
als. It follows traditional step-wise refinement with one
major difference: instead of composing thousands of micro-
scopic program refinements (e.g., x+1⇒inc(x)) to yield
admittedly small programs, GenVoca scales refinements so
that each adds a feature to a program, and composing few
refinements yields an entire program.

In GenVoca, programs are constants and refinements are
functions that add features to programs. Consider the fol-
lowing constants that represent programs with different fea-
tures:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and
produces a refined or feature-augmented program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A multi-featured application is an equation that is a named
expression. Different equations define a family of applica-
tions, such as:

app1 = i(f) // app1 has features i and f
app2 = j(g) // app2 has features j and g
app3 = i(j(f)) // app3 has features i, j, f

Thus, the features of an application can be determined by
inspecting its equation.

Note that a function represents both a feature and its imple-
mentation — there can be different functions with different
implementations of the same feature:

k1(x) // adds k with implementation1 to x
k2(x) // adds k with implementation2 to x

When an application requires the use of feature k, it is a
problem of equation optimization to determine which
implementation of k is best (e.g., provides the best perfor-
mance)1. It is possible to automatically design software
(i.e., produce an equation that optimizes some criteria)
given a set of declarative constraints for a target applica-
tion. 

Although GenVoca constants and functions seem untyped,
typing constraints do exist as design rules. Design rules are
domain-specific constraints that capture syntactic and
semantic constraints that govern legal compositions. It is
common that the selection of a feature will disable or
enable the selection of other features.

2.2   AHEAD
AHEAD, or Algebraic Hierarchical Equations for Applica-
tion Design, embodies several key generalizations of Gen-
Voca. First, a system has many representations besides
source code, including UML documents, makefiles, BNF
grammars, documents, performance models, etc. A model
of FOP must deal with all these representations.

Second, each representation is written in its own domain-
specific language. The code representation of a program
may be represented in Java, a machine executable represen-
tation may be a class file, a makefile representation could
be an Ant XML file, a performance model may be a set of
Mathematica equations, and so on. An FOP model must
support an open-ended spectrum of DSLs to express arbi-
trary system representations.

Third, when a system is refined by the addition of a new
feature, any or all of the representations of a system may be
updated. Thus, the concept of refinement applies not only
source code representations, but all representations as well.

1.   Different equations represent different programs and equation optimi-
zation is over the space of semantically equivalent programs. This is iden-
tical to relational query optimization: a query is represented by a relational
algebra expression, and this expression is optimized. Each expression rep-
resents a different, but semantically equivalent, query-evaluation program.
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Fourth, FOP models must deal with a very general notion of
modularity: a module is a containment hierarchy of related
artifacts. A class is a module (1-level hierarchy) that con-
tains a set of data members and methods. A package or JAR
file is a module (2-level hierarchy) that contains a set of
classes. A J2EE EAR file is a module (3-level hierarchy)
that contains sets of packages or JAR files, HTML files,
and descriptor files. Going further, a client-server system is
also a module (a multi-level hierarchy) that contains repre-
sentations of both client and server programs.

Given the above, the GenVoca model generalizes. A “con-
stant” is module that defines a containment hierarchy of
related artifacts of different types written in their own
DSLs. A “refinement” is function that maps containment
hierarchies. Thus, whenever a refinement is applied to a
system (i.e., an AHEAD constant), any or all of the repre-
sentations in this module (containment hierarchy) will be
updated and new artifacts introduced. Thus, as AHEAD
refinements are applied, all of the representations of a gen-
erative program will remain consistent. This is exactly what
is needed.

The notations of AHEAD extend those of GenVoca. A
model is a set of features that are “constants” or “functions”
called units. An alternative name for set is a collective.
Thus, model M is a collective of units:

M = { a, b, c, d, ... }

Individual units may themselves be collectives, recursively:

a = { x, y, z }
z = { r, q }
...

The nesting of sets (collectives) models a containment hier-
archy or module. Composition of units is defined by the
laws of inheritance. That is, given units X and Y:

X = { ax, bx, cx }
Y = { ay, cy, dy }

Composition of Y and X, denoted Y•X, is formed by “align-
ing” the units of X and Y that have the same name (ignoring
subscripts) and composing:

Y•X = { ay•ax, bx, cy•cx, dy } (8)

Composition is recursive: if units represent collectives,
their compositions are expanded according to (8).

To see the connection with inheritance, consider the follow-
ing inheritance hierarchy which is a class representation of
(8). Assume a and c are methods, where ay and cy refine (or
override) their super-methods ax and cx:

class X {
member ax;
member bx;
member cx;

}

class Y extends X {
member ay;
member cy;
member dy;

}

class Y•X extends Y {}

How the composition operator •  is defined depends on the
artifact type. •  is polymorphic: it can be applied to all arti-
facts (i.e., all artifacts can be composed/refined) but what
composition/refinement means is artifact type dependent
(i.e., how makefile artifacts are refined will be analogous to
but not the same as how code artifacts are refined).

AHEAD representations lead to simple tools and imple-
mentations. While there are many ways in which contain-
ment hierarchies can be realized, the simplest way is to map
containment hierarchies to file system directories. Thus a
feature might encapsulate many Java files, class files,
HTML files, etc. Feature composition corresponds to direc-
tory composition.

We’ll see examples of these ideas in the following sections.

3  A Simple Example

Consider a family of elementary post-fix calculators2. Cal-
culators in this family are differentiated on (a) the arith-
metic constants BigInteger or BigDecimal that can be
specified and (b) the set operations that can be performed
on them, which includes addition, division, and subtraction.

A model that describes this family is C:

C = { Base, BigI, BigD, Iadd, Idiv,
Isub, Dadd, Ddivd, Ddivu, Dsub }

The lone constant in this model is Base, which defines an
empty calc (short for “calculator”) class (Figure 1a). The
refinements BigI and BigD introduce a 3-level stack of Big-
Integer or BigDecimal constants, respectively (Figure 1b-
c).3 BigI and BigD are mutually exclusive as the stack vari-
ables introduced by both have the same name, but are of
different types. Thus, calculators either work on BigInte-
ger or BigDecimal numbers, but not both.

2.   Modeled after Hewlett-Packard calculators.
3.   A BigInteger is an unlimited precision integer; a BigDecimal is
an unlimited-precision, signed decimal number.
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The refinements Iadd, Idiv, and Isub respectively intro-
duce the BigInteger addition, division, and subtraction
methods to the calc class (Figure 1d-e). The refinements
Dadd, Ddivd, Ddivu, and Dsub do the same for BigDecimal
methods (Figure 1f-g). Note that there are two mutually
exclusive BigDecimal division refinements: Ddivd and
Ddivu. Ddivd rounds answers down, Ddivu rounds up.

As you may have already noticed, these files look like Java
programs, but the language that we are using is not Java but
an extended Java language called Jak (short for “Jakarta”).
Jak files have “.jak” extensions, like Java files have Java
extensions.

A calculator is defined by an equation. Here are just a few
calculator definitions:

i1 = Iadd•BigI•Base
i2 = Isub•Iadd•BigI•Base
i3 = Idiv•Iadd•BigI•Base

d1 = Dadd•BigD•Base
d2 = Dsub•Dadd•BigD•Base
d3 = Ddivd•Dadd•BigD•Base

Calculator i1 offers BigInteger addition. i2 also supports
subtraction. i3 has BigInteger addition and division. d1—
d3 are the corresponding calculators for BigDecimal num-
bers using rounded-down division. The code generated for
the i3 calc class is shown in Figure 2.

class calc { }

import java.math.BigInteger;

refines class calc {
   static BigInteger zero = BigInteger.ZERO;
   BigInteger e0 = zero, e1 = zero, e2 = zero;

   void enter( String val ) {
      e2 = e1;
      e1 = e0;
      e0 = new BigInteger(val);
   }

   void clear() {
      e0 = e1 = e2 = zero;
   }

   String top() { return e0.toString(); }
}

import java.math.BigDecimal;

refines class calc {
   static BigDecimal zero = new BigDecimal("0");
   BigDecimal e0 = zero, e1 = zero, e2 = zero;

   void enter( String val ) {
      e2 = e1;
      e1 = e0;
      e0 = new BigDecimal(val);
   }

   void clear() {
      e0 = e1 = e2 = zero;
   }

   String top() {  return e0.toString(); }
}

refines class calc {
   void divide() {
      e0 = e0.divide( e1 );
      e1 = e2;
   }
}

import java.math.BigDecimal;

refines class calc {
   void divide() {
      e0 = e0.divide( e1, 

BigDecimal.ROUND_DOWN );
e1 = e2;

   }
}

(b) BigI/calc.jak (c) BigD/calc.jak

(a) base/calc.jak (d) Idiv/calc.jak (f) Ddivd/calc.jak

Figure 1. Files from the C model

refines class calc {
   void add() {
      e0 = e0.add(e1);
      e1 = e2;
   }
}

(e) Iadd/calc.jak
and Dadd/calc.jak

layer i3;

import java.math.BigInteger;

class calc {
   static BigInteger zero = BigInteger.ZERO;
   BigInteger e0 = zero, e1 = zero, e2 = zero;

   void add() {
      e0 = e0.add(e1);
      e1 = e2;
   }

   void clear() {
      e0 = e1 = e2 = zero;
   }

   void divide() {
      e0 = e0.divide( e1 );
      e1 = e2;
   }

   void enter( String val ) {
      e2 = e1;
      e1 = e0;
      e0 = new BigInteger(val);
   }

   String top() { return e0.toString(); }
}

Figure 2. i3/calc.jak
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Model Exercises
[1] What other calculator features could be added to C?

What would be their Jak definitions? Look at the Big-
Integer and BigDecimal pages in J2SDK documenta-
tion for possibilities.

[2] Suppose the size of the stack were to be made variable.
How would this be expressed as a refinement? What
modifications of existing refinements would be
needed?

[3] Modify model C so that BigDecimal round-up and
round-down are features, which could parameterize
operations like division.

[4] How would C be modified to permit the synthesis of a
program that would invoke the calculator from the
command-line? From a GUI?

Tool Exercises
An AHEAD model C corresponds to a directory C, and each
unit U in C corresponds to a subdirectory of C, namely C/U.
The contents of a unit in our example is merely a calc.jak
file. The AHEAD directory structure of C is:

C/Base/calc.jak // see Figure 1a
C/BigI/calc.jak // see Figure 1b
C/BigD/calc.jak // see Figure 1c
C/Iadd/calc.jak // see Figure 1d
C/Idiv/calc.jak // see Figure 1e
C/Isub/calc.jak
C/Dadd/calc.jak // see Figure 1d
C/Ddiv/calc.jak // see Figure 1f
C/Dsub/calc.jak

Although we provide no calc.jak files for Isub and Dsub,
they are easy to write. In fact, they are identical just like the
calc.jak files for Iadd and Dadd.4 

The composer tool is used to evaluate equations. composer
has lots of optional parameters. For our tutorial, we need to
reset one of these parameters. Create in the model directory
a file called composer.properties. Its contents is a single
line (which says when composing Jak files, use the jampack
tool):

unit.file.jak : JamPackFileUnit

To compose files, run composer in the model directory. The
order in which model units are listed on the composer com-

mand line are inside-to-outside order, and the name of the
composition is given by the target option. Thus, to evalu-
ate i3 use:

> cd C
> composer --target=i3 Base BigI Idiv Iadd

The result of the composition is the directory C/i3, which
contains a single file, calc.jak, shown in Figure 2. Note
that the order in which units are listed on the composer
command line is in reverse order of an equation — base
first, outermost refinement last.

Validate your Model Exercise solutions by implementing
them using AHEAD tools.

3.1   Translating to Java
The jak2java tool converts synthesized Jak files to their
Java counterparts:

> cd i3
> jak2java *.jak

The above command-line translates all Jak files (in our
case, there is only one file — calc.jak) to their Java equiv-
alents. Of course, these generated files can be compiled in
the usual way:

> javac *.java

3.2   Design Rules
New arithmetic operations could be added to C to greatly
enlarge the family of calculators that can be synthesized. At
the same time, it becomes increasingly clear that not all
compositions are meaningful. In fact, it is quite easy to
deliberately or unintentionally specify meaningless compo-
sitions, but composer is quite happy (typically) to generate
code for these compositions. We need automated help to
detect such situations. 

Design rules are domain-specific constraints that define
composition correctness predicates. Design rule checking
(DRC) is the process by which design rules are composed
and their predicates validated. A general theory for DRC is
based on attribute grammars. Consider a grammar represen-
tation of model C:

C :- Base | BigI | BigD | Iadd | Idiv |
Isub | Dadd | Ddiv | Dsub ;

A sentence of this grammar defines a syntactically correct
composition of terms (units of C). Like any grammar, some
sentences are semantically valid while others are not. To
weed out incorrect sentences, a grammar is augmented with
variables called attributes. Conditions for correct sentences
(or correct compositions) are predicates defined over these

4.   So why not just define one layer to represent both? This could be done
with our current tools, as they are preprocessors. In future tools, these files
will be different, because the types of variables for e1—e3 will need to be
explicitly declared. When this occurs, the corresponding files will indeed
be different.
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attributes. Two different sets of attributes are used: those
whose values propagate from right-to-left (called inherited
or flowleft attributes), and those whose values propagate
from left-to-right (called synthesized or flowright
attributes).

AHEAD provides a tool for design rule checking called
drc. A drc specification lists all attributes that are exter-
nally or locally defined to that layer, followed by a set of
preconditions (requires) and postconditions (provides)
for inherited (flowleft) attributes and synthesized (flow-
right) attributes. drc attributes can be of two types: inte-
ger-ranges (Int) or a null-valued boolean (Bool). 

The legal set of sentences/compositions of C is depicted
using choice notations in Figure 3. Either BigInteger or
BigDecimal is chosen and at least one operation is selected
followed by BigI•Base or BigD•Base. Question: how can
these constraints be expressed as design rules?

There are many ways: here is one that uses only Bool
attributes. The initial value of drc attributes is ‘unknown’,
and can be subsequently set to ‘true’ or ‘false’. 

We use three attributes: start, type, and atLeastOneOp.
start and type are flowright attributes — their values are
propagated right-to-left. start is true when the Base layer
is present in an equation. type is true when either the BigI
or BigD layer is present in an equation.

atLeastOneOp is an flowleft attribute — its value is prop-
agated from left-to-right. atLeastOneOp is true when at
least one operation layer (e.g., Iadd, Idiv, Dadd, or Ddiv) is

present in an equation. All three attributes are defined in the
Base layer’s design rule file (Figure 4a).

Preconditions on the usage (or position) of a layer in an
equation are defined by requires predicates. The Base
layer has a requires predicate which states that at least one
operation unit appear in an equation (Figure 4a). Postcondi-
tions of a unit are defined by provides predicates. Base has
a provides predicate that initializes the start and type
attributes to ‘true’ and ‘false’ respectively.

The preconditions for using BigI are listed in Figure 4b.
BigI is correctly used if start is true and type is false.
(This constraint forces Base to be “right” of BigI). A post-
condition for BigI is that type is true. The design rule file
for BigD is the same as that for BigI.

The design rule files for operation units are essentially the
same (Figure 4c). The precondition for their use is that both
start and type be asserted (meaning that Base and either
BigI or BigD are to the “right” of the operation in an equa-
tion). The postcondition is that atLeastOneOp is true, mean-
ing that there is at least one operation in the equation.

A feature of drc specifications is the “single” modifier,
which all design rule files in C have. single means that a
layer can appear at most once — a single time — in an
equation. So compositions like BigI•BigI are flagged as
errors. The “constant” modifier tells drc that the layer is a
constant, not a refinement. The Base file is a constant
(Figure 4a); the other units of C are refinements.

Model Exercises
[5] Our model is not exactly complete. It admits incorrect

compositions like: Ddiv•BigI•Base. How would you
extend the design rule files to preclude this possibility?

[6] It is often the case that refinements appear in pairs.
Suppose if the addition operation appears in an equa-
tion, so too must the subtraction operation. The opera-
tions don’t have to be adjacent — if addition is added
to an equation, eventually subtraction will be too, and
vice versa. How would you extend the design rule files
to express this possibility?

Dadd•
Ddiv•
Dsub•

choose-at-least-one

Iadd•
Idiv•
Isub•

choose-at-least-one

BigI

BigD

•Base

choose-one

Figure 3. Legal sentences/compositions of C

single constant layer;

flowleft Bool start;
flowleft Bool type;
flowright Bool atLeastOneOp;

provides flowleft start and !type;
requires flowright atLeastOneOp;

single layer;

extern flowleft Bool start;
extern flowleft Bool type;

requires flowleft start and !type;
provides flowleft type;

single layer;

extern flowright Bool atLeastOneOp;
extern flowleft Bool type;
extern flowleft Bool start;

requires flowleft type and start;
provides flowright atLeastOneOp;

(a) base/rules.drc (b) BigI/rules.drc (c) Iadd/rules.drc

Figure 4. Design Rule Files
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[7] Extend the DRC specifications so that calculators have
a minimal number of operations (not just, say, divi-
sion).

Tool Exercises
To each subdirectory of C, add the appropriate design rule
file. Here is a part of the C directory structure:

C/Base/calc.jak // see Figure 1a
C/Base/rules.drc // see Figure 4a
C/BigI/calc.jak // see Figure 1b
C/BigI/rules.drc // see Figure 4c
C/Iadd/calc.jak // see Figure 1d
C/Iadd/rules.drc // see Figure 4c
...

When composer evaluates an equation, the corresponding
Jak and drc files in each layer are composed. Thus, using
the same call to composer as before:

> cd C
> composer --target=i3 Base BigI Idiv Iadd 

produces a directory i3 with two files: calc.jak (see
Figure 2) and rules.drc (see Figure 5). Note that the gen-
erated DRC file has no requires statements. Generally if
there are requirements, this means that the synthesized pro-
gram is incomplete — other layers (units) must be com-
posed to form a complete program. For example, the
composition BigI•Base is incomplete, because it lacks an
operation layer. When composer is run on this equation, a
warning is generated by drc:

> composer --target=i3prime Base BigI

drc Warning: rules.drc: equation i3prime is 
incomplete: non-null requirements present

requires left atLeastOneOp
composer: 1 warning occurred

The corollary is also true: a lack of requires statements
usually means that the resulting Jak files can be translated
to Java using the jak2java tool.

As an exercise, try building other equations and examine/
understand its results.

4  Other ATS Tools

There are quite a few ATS tools that you can use. You have
seen composer, jak2java, jampack, and drc. Now let’s look
at mixin, unmixin, and reform.

4.1   mixin
composer invokes a set of tools when features are com-
posed. The drc tool composes drc files, and the jampack
tool composes Jak files.

mixin is another tool that can compose Jak files. Edit the
unit.file.jak line in the composer.properties file to be:

unit.file.jak : MixinFileUnit

This is the default setting for unit.file.jak. If composer
doesn’t see a composer.properties file, it uses mixin to
compose Jak files.

Let’s re-evaluate the i3 equation to see how mixin works:

> cd C
> composer --target=i3 Base BigI Idiv Iadd

This is the same command as before. However, the
calc.jak file that is produced is quite different and is
shown in Figure 6.

The idea behind mixin is simple: each refinement is
mapped to class in an inheritance/refinement chain. Each
class (or interface) is prefaced by a SoUrCe statement which
indicates the name of the feature and the actual file from
which the class was derived. Thus, in Figure 6 four Jak files
were composed to yield the calc class; this class is the ter-
minal class of the refinement chain. All other classes are
abstract — meaning that they can’t be instantiated and
whose purpose is only to contribute members to the final
class in the chain. Note that class names are mangled (i.e.,
by appending $$<layerName>) to make them unique. 

The intent of mixin and jampack is that you can use either
tool to compose Jak files. As you’d expect, the programs of
Figure 2 and Figure 6 are functionally equivalent.

Both mixin and jampack can compose files that they them-
selves have produced. That is, a jampack-produced Jak file
can be composed with another jampack-produced Jak file.
The same holds for mixin. Because jampack-produced Jak
files have the same format as uncomposed Jak files, mixin
can compose files produced by jampack. However, the
reverse is not true: jampack cannot compose mixin-pro-
duced files.

single layer i3;

flowright Bool atLeastOneOp;
flowleft Bool start;
flowleft Bool type;

// externally defined attributes

provides right atLeastOneOp;
provides left start and type;

Figure 5. i3/rules.drc
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4.2   unmixin
So why use mixin? Why not always use jampack? Consider
a typical debugging cycle: you compose files, use jak2java
to translate Jak files to Java files, compile and run the Java
files to discover bugs. The original Jak files are patched and
the cycle continues. You will see that knowing what feature
files to update won’t always be easy — and the problem
becomes worse as the number and size of the Jak files
increases. 

Because mixin preserves refinement boundaries, it is easy
to know what feature to update. In fact, with SoUrCe state-
ments, the propagation of changes can be done automati-
cally. That’s the purpose of unmixin. The idea is that you
compose a bunch of Jak files, edit the composed files, and

run unmixin on the edited files to back-propagate the
changes to the original feature files. For example, suppose
we add a comment to the bottom-most class in the refine-
ment chain of Figure 6:

SoUrCe  Idiv "../Idiv/calc.jak";
class calc extends  calc$$Iadd {

void divide() {
// divide and pop stack
e0 = e0.divide( e1 );
e1 = e2;

}
}

By running unmixin, this change is propagated back to the
Idiv/calc.jak file:

> cd C
> unmixin calc.jak

See for yourself that the change was indeed made. Here are
things to remember about unmixin:

• it can take any number of Jak files on its command line,
• the contents of the class or interface in the command-

line file will replace the contents of the class or interface
in the original file,

• implements declarations are also propagated, and
• don’t change the contents of the SoUrCe statements!

unmixin updates the original uncomposed files only if
changes to its composed counterpart has been updated.

4.3   reform
reform is a pretty-printing tool that will format unruly Jak
files (and Java files!) and make them unbelievably beauti-
ful. Consider the 1-line calc.jak file:

refines class calc { void divide() { e0 = 
e0.divide( e1 ); e1 = e2; } }

By running:

> reform calc.jak

reform copies the original file into calc.jak~ and updates
calc.jak to be:

refines class calc {
void divide() {

e0 = e0.divide( e1 );
e1 = e2;

}
}

layer i3;

import java.math.BigInteger;

SoUrCe RooT base "../base/calc.jak";
abstract class calc$$base {}

SoUrCe  BigI "../BigI/calc.jak";
abstract class calc$$BigI extends  calc$$base {
    static BigInteger zero = BigInteger.ZERO;
    BigInteger e0 = zero, e1 = zero, e2 = zero;

    void add() {
        e0 = e0.add( e1 );
        e1 = e2;
    }

    void clear() {
        e0 = e1 = e2 = zero;
    }
    void divide() {
        e0 = e0.divide( e1 );
        e1 = e2;
    }

    void enter( String val ) {
        e2 = e1;
        e1 = e0;
        e0 = new BigInteger( val );
    }

    String top() {
        return e0.toString();
    }
}

SoUrCe  Iadd "../Iadd/calc.jak";
abstract class calc$$Iadd extends  calc$$BigI {
    // adds BigIntegers
    void add() {
        // adds BigIntegers
        e0 = e0.add( e1 );
        e1 = e2;
    }
}

SoUrCe  Idiv "../Idiv/calc.jak";
class calc extends  calc$$Iadd {
    void divide() {
        e0 = e0.divide( e1 );
        e1 = e2;
    }
}

Figure 6. mixin-produced .jak file
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5  More Features of Jak Files

There are three additional features of the Jak language that
you should be aware: Super references, refinement of con-
structors, and local ids.

5.1   The Super Construct
To reference a method m(int x, float y) of a superclass in
Java, you write:

super.m(x,y);

In Jak files, use the Super construct instead:

Super(int,float).m(x,y);

Super(<argument types>) prefaces a Super call and lists
the argument types of the method to be called. Consider the
class foo and a refinement:

class foo {
void dosomething() { /*code*/ }

}

refines class foo {
void dosomething() {

/* more before */
Super().dosomething();
/* more later */

}

In this example, the Super references the dosomething()
method prior to its refinement. A jampack composition of
these definitions yields:

class foo {
final void dosomething$$one() { /*code*/ }

   void dosomething() {
/* more before */
dosomething$$one();
/* more later */

}
}

You see that the original dosomething() method is present
in foo, except that it has been renamed, along with its refer-
ences. The corresponding mixin composition is:

SoUrCe ...;
abstract class foo$$one {

void dosomething() { /*code*/ }
}

SoUrCe  ...;
class foo extends  foo$$one  {

void dosomething() {
/* more before */
Super().dosomething();
/* more later */

}
}

When jak2java translates the above, Super(...) refer-
ences are replaced by “super”. In general, always use the
Super(...) construct to reference superclass members;
ATS tools do not recognize “super”.

5.2   Refining Constructors
A constructor is a special method and to refine a construc-
ture requires a special declaration in Jak files. Consider the
following file that declares a constructor:

class test {
int y;
test() { y = -1; }

}

A refinement of test and its constructor is:

refines class test {
int x;
refines test() { x = 2; }

}

where “refines <constructor>” is the Jak statement that
declares a refinement of a particular constructor. The jam-
pack composition of these files is:

class test {
int y;
int x;
test() { { y = -1; } { x = 2; } }

}

That is, the actions of the original constructor are grouped
into a block and are performed first, then the actions of the
constructor refinement are grouped into a block and per-
formed next. The semantically equivalent mixin composi-
tion is:

SoUrCe ...;
abstract class test$$t1 {

int y;
test$$t1() { y = -1; }

}

SoUrCe ...;
class test extends  test$$t1  {

int x;
refines test() { x = 2; }

}

5.3   Local Ids
Variables that are local to a layer/feature are common. Such
variables are used only by the layer itself, and are not to be
exported or referenced by other layers.
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Suppose a class bar declares a local variable x, and a refine-
ment of bar declares a local variable, also named x:

jampack is smart enough to alert you that multiple defini-
tions of x are present; mixin isn’t that smart — and you will
discover the error when you compile the translated Java
files and see there are multiple definitions of x.

The way to fix this is by using a Local_Id declaration. This
declaration lists the set of identifiers (i.e., variable names
and method names) that are local to a feature; ATS tools
will mangle their names so that they will always be unique.
So a better way to define the above is:

The jampack and mixin compositions are shown below:

where local names are replaced with their mangled counter-
parts so that their names no longer conflict.

6  A More Complex Example

Consider model L, which defines a set of programs that
implement linked lists:

L = { sgl, dbl, sgldel, dbldel }

The lone constant is sgl which contains a pair of classes,
list and node, that implement a bare-bones singly-linked
list (Figure 7a-b).

A refinement of sgl is dbl, which converts the program of
sgl into a doubly-linked list. dbl is a “cross-cut” that aug-
ments the node class with a prior pointer, adds a last
pointer to the list class, and refines the list insert
method so that the constants of the last and prior pointers
are consistent (Figure 7c-d).

The composition both = dbl•sgl yields the doubly-linked
list program of Figure 8. The code indicated in red origi-
nates from the dbl refinement.

class bar {
int x;

}

refines class bar {
float x;

}

Local_Id x;

class bar {
int x;

}

Local_Id x;

refines class bar {
float x;

}

class bar {
   int x$$one;
   float x$$two;
}

SoUrCe ...;
abstract class bar$$one {
   int x$$one;
}

SoUrCe  ...;
class bar extends  bar$$one  {
   float x$$two;
}

refines class list {
   node last = null;

   void insert( node n ) {
      if (last == null)

last = n;
 if (first != null) 

first.prior = n;
      Super(node).insert(n);

n.prior = null;
   }
}

refines class node {
   node prior = null;
}

(c) L/dbl/list.jak

(d) L/dbl/node.jak

Figure 7. The sgl and dbl Layers

class list {
   node first = null;

   void insert( node n ) {
      n.next = first;
      first = n;
   }
}

class node {
String constant;

   node   next = null;
}

(a) L/sgl/list.jak

(b) L/sgl/node.jak

class list {
   node first = null;
   node last = null;

   final void insert$$sgl( node n ) {
      n.next = first;
      first = n;
   }

void insert( node n ) {
      if (last == null)

last = n;
 if (first != null) 

first.prior = n;
insert$$sgl.insert(n);

n.prior = null;
   }
}

class node {
   String constant;
   node   next = null;
   node prior = null;
}

Figure 8. Composition dbl• sgl

(a) L/both/list.jak

(b) L/both/node.jak
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Now suppose we want to enhance the design of our list pro-
grams by adding a delete method. sgldel does exactly this
for singly-linked lists: it adds a delete method to the list
class (Figure 9a).

We can use sgldel in a composition slist that defines a sin-
gly-linked list with both insert and delete methods:

slist = sgldel • sgl

To create a doubly-linked list that has both insert and delete
methods requires a new refinement dbldel (see Figure 9b).
dbldel converts the singly-linked list deletion algorithm of
sgldel to a doubly-linked list deletion algorithm by replac-
ing (or overriding) the findAndDelete method.

The following equations yield identical programs for insert-
ing and deleting elements from a doubly-linked list. The
reason why they are equivalent is that the refinements dbl
and sgldel are independent of each other, and thus can be
composed in any order.

dlist = dbldel•dbl•sgldel•sgl (9)

= dbldel•sgldel•dbl•sgl (10)

Model Exercises
[8] Suppose other operations for traversing the list were

added. How would this impact model L? What about
the operation reverse, which reverses the order in
which nodes are listed?

[9] Suppose the “ordering” feature is added to a list, mean-
ing that nodes have keys and nodes are maintained in
ascending key order. How would this feature impact L?

[10] Consider a “monitor” feature, which precludes more
than one thread to access a list at a time. How would
this feature impact L? How would it be defined?

Tool Exercises
The directory structure for L is:

L/sgl/list.jak // see Figure 7a
L/sgl/node.jak // see Figure 7b
L/dbl/list.jak // see Figure 7c
L/dbl/node.jak // see Figure 7d
L/sgldel/list.jak // see Figure 9a
L/dbldel/list.jak // see Figure 9b

The files of Figure 8 are the result of evaluating the equa-
tion both = dlb•sgl using the composer tool:

> cd L
> composer --target=both sgl dbl

The generated directory structure is:

L/both/list.jak // see Figure 8a
L/both/node.jak // see Figure 8b

6.1   Adding Design Rules
Once again, not all compositions of units of L are semanti-
cally correct. The legal compositions are:

sgl
dbl•sgl
sgldel•sgl
dbldel•sgldel•dbl•sgl
dbldel•dbl•sgldel•sgl

What are the design rules for L that would admit only these
compositions? The rules are not difficult to express if dis-
junctions are allowed.5 But unfortunately, the drc tool cur-
rently only admits conjunctive predicates, thus making it
impossible to express such rules. At least at first glance.

There is a deeper relationship among the refinements of L
that we have not yet captured. By making this relationship
explicit, we can express the design rules of L using elemen-
tary conjunctive predicates. The idea that is missing is
called origami, the topic of the next section. 

refines class list {

   void delete( node n ) {
      if (n == first) {
        first = first.next;
      }
      else 
        findAndDelete(n);
   }

   void findAndDelete(node n) {
      node prev = first;
      while (prev != n) 
         prev = prev.next;
      prev.next = n.next;
   }
}

(a) L/sgldel/list.jak

refines class list {

   void findAndDelete(node n) {
      if (n.prior != null)
         n.prior.next = n.next;
      if (n.next != null)
         n.next.prior = n.prior;
   }
}

(b) L/dbldel/list.jak

Figure 9. The sgldel and dbldel Layers

5.   An equation is legal if sgl is the left-most unit, or if dbl is the left-
most unit and is followed by sgl, or if sgldel is the left-most unit and
is followed by sgl, or if dbldel is the left most unit and is followed by
either dbl or sgldel (in either order) followed by sgl.
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6.2   Origami
Consider the following incorrect compositions:

error1 = dbl•sgldel•sgl
error2 = dbldel•sgldel•sgl

Both define programs that are partially and thus incorrectly
implemented. error1 is a program whose insert method
works on a doubly-linked list, but whose delete method
works only on a singly-linked list. error2 is a program
whose insert method works on a singly-linked list, but
whose delete method works for a doubly-linked list.

The problem here is that if a data structure is extended (i.e.,
a singly-linked list becomes doubly-linked), then all of its
operations should be updated to maintain the consistency of
this extension, and not just some. That is, if a singly-linked
list has both insert and delete operations, when the structure
becomes doubly-linked, both operations must be updated to
work on doubly-linked lists. Equivalently, if a refinement
adds a new method to a data structure, then that method
must work for that data structure and not some other struc-
ture.

Although this is an elementary example, it is representative
of a large class of problems in FOP, namely that a model
defines a set of refinements that are not truly independent
and must be applied in groups in a lock-step — or all or
nothing — manner. Whenever you notice this phenomena,
realize that these groups represent “higher-level” features.

Here’s a useful technique for understanding this problem.
Create a matrix, called an origami matrix, where rows rep-
resent operations (insert, delete), and columns represent
structure variants (singleLink, doubleLink). Entries of
this matrix are the refinements of L (see Table 1). This
matrix can be extended to handle other operations (sort,
find) and other structure variants (ordered-lists, monitors,
etc.). 

Note: what we have done is to identify the orthogonal
“higher-level” features as ‘data structure operations’
and ‘data structure variants’.

Suppose the rows of this matrix are composed (or folded —
hence the name “origami”), where the corresponding
entries in each column are composed:

Study the entries of Table 2. Consider the entry in the sin-
gleLink column: sgldel•sgl defines a singly-linked pro-
gram S that has both an insert and delete method. The
entry in the doubleLink column, dbldel•dbl, defines a
refinement of S that converts its insert and delete methods
to work on a doubly-linked list. Thus by composing the
delete row with the insert row of Table 1, we synthesize
a data structure that has multiple methods, and a refinement
of that data structure that consistently updates these meth-
ods. This interpretation holds if more rows (operations) or
more list features (columns) are added.

The columns of Table 2 can be composed to yield a 1×1
matrix whose entry is an expression that defines a doubly-
linked list with insert and delete methods (Table 3). This
expression is identical to equation (9).

Now instead of composing rows of Table 1, let’s compose
the columns, where corresponding entries in each row are
composed:

The entry in the insert row, dbl•sgl, defines program D
that implements a doubly-linked list with an insert

method. The entry in the delete row, dbldel•sgldel,
defines a refinement of D that adds a delete method. By
composing the columns of Table 1, we have synthesized a
data structure with a single (insert) method, and a refine-
ment that adds a delete method to this structure. Again,
this interpretation holds if we add more rows (methods) or
more columns (features) to Table 1. By folding the rows of
Table 4 yields a 1×1 matrix whose entry is equation (10).
As a general rule, as long as the order in which rows and
columns (that is, ‘data structure operation’ features or ‘data
structure variant’ features) are composed are legal (where
legality is a topic of an upcoming section), the resulting
equations in a fully-folded matrix are equivalent.

doubleLink singleLink

insert dbl sgl

delete dbldel sgldel

Table 1  Origami Matrix for L

doubleLink singleLink

delete•insert dbldel•dbl sgldel•sgl

Table 2  Row-Composed Origami Matrix

doubleLink•singleLink

delete•insert dbldel•dbl•sgldel•sgl

Table 3  A Completely Folded Matrix

doubleLink•singleLink
insert dbl•sgl
delete dbldel•sgldel

Table 4  Column Composed Origami Matrix
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Origami matrices capture fundamental relationships among
groups of refinements: to build consistent and correct pro-
grams, it is often necessary to apply an entire set of refine-
ments at once. A matrix representation of these
relationships works because the set of features along one
dimension are orthogonal to those of another. In our exam-
ple, the set of methods that can be used with a data structure
is orthogonal to the set of data structure variants. 

Although this is a simple example, origami applies at much
greater levels of granularity. For example, ATS has five
tools — including jampack, mixin, and unmixin — each
having over 30K LOC, and totalling over 150K LOC.
These tools are synthesized by folding a 3-dimensional
(8×6×8) Origami matrix.

6.3   Equation Files
How are Origami matrices represented in AHEAD? Before
we can answer this question, we need to introduce some
concepts.

Typing in equations on the command line to composer can
be tedious, particularly if the equations are more than a few
terms. composer takes an alternative specification, called an
equation file, which is a list of units to compose. The order
in which the units are listed is from inside-out, and the
name of the equation is the name of the equation file.

For example, the equation A = B•C would be represented by
the equation file A.equation whose contents is:

# inside-to-outside order!
C
B

Where any line beginning with # is a comment. Like any
other artifact, equation files can be composed. File A.equa-
tion above is a “constant”. An equation file that is a refine-
ment has the special term super as one of its units. A
refinement of A.equation that puts E before C and F after B
is R.equation:

E
super
F

A composition of the above files is expressed by:

> composer --target=c.equation \
A.equation R.equation

which yields file c.equation with contents:

E
C
B
F

Now onto metamodels.

6.4   Metamodels and Origami Matrices
A metamodel is a model whose instances are themselves
models. Consider model M, which has units a, b, and c:

M = { a, b, c }

Now consider metamodel MM, which has also has three
units, each being a collective with a single unit:

MM = { AAA, BBB, CCC }
= { {a}, {b}, {c} }

A model can be synthesized by composing metamodel
units. The MM equation for model M is:

M = AAA•BBB•CCC

In this particular case, because there are no units in com-
mon with AAA—CCC, composition reduces to set-union. The
interesting thing about metamodels is that they are identical
to models. That is, a model or metamodel is a set of units,
where each unit may be a collective. Further, the composi-
tion operator for units of metamodels is the same operator
for units of models.

An origami matrix is a 2-dimensional (and in general, an k-
dimensional) array of units. A collective is a hierarchy. So
to represent matrices in AHEAD, we need to encode a
matrix as a tree. For a 2-dimensional matrix we can decom-
pose it first into rows, and then each row into columns.
Another way is to organize by columns first, and then rows.
Figure 10 shows these embeddings for an n×m matrix O
where Oij denotes the row i column j element of O.

6.5   Representing Origami Matrices
Given the ideas of equation files and metamodels, we’re
ready to see how origami matrices are represented.

First, consider a row-dominant representation of a matrix.
Figure 11a shows our example origami matrix, where the
matrix entries are equation files that have the same name
(eqn.equation). Entry subscripts denote (to us) their true
identity. Figure 11b is the corresponding row-oriented
metamodel; Figure 11c is its AHEAD directory structure.
Figure 11d-g are the contents of the equation files.

Figure 10. Matrix Embeddings in Trees

O

row1 rown

O1,1 O1,m On,1 On,m

O

col1 colm

O1,1 On,1 O1,m On,m

(a) (b)
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Why do we use this particular representation of a matrix?
Why use equation files, rather than embedding the actual
feature directories themselves? The answer: convenience.
Try to create such a hierarchical directory yourself, where
instead of equation files, you have feature directories. It’s
hard to navigate such a directory structure, let alone main-
tain it. The simpler the representation the better. So it is
common that we have a flat model directory (where fea-
tures are immediate subdirectories), and a separate origami
directory which defines the 2D relationship among features
using equation files.

Doing this improves matters slightly. Fortunately, there is a
special AHEAD tool, called obe (short for Origami
BrowsEr), that allows you to create, populate, document,
and compose origami matrices in short order. I’ll leave it as
an exercise for you to read about obe and how to use it.

Model Exercises
[11] Expand the origami matrix to handle more data struc-

ture operations and variants. Consider one variant to be
element compression — elements are stored in a com-
pressed manner, but are inserted and retrieved in an
uncompressed manner.

[12] Recall model C from Section 3. Units of C contained
both Jak files and DRC files. Create a metamodel MC
that has two units, Code and Rules. The Code unit is a
collective that contains only Jak files, the Rules unit is
also a collective that contains the corresponding DRC
files. Show that model C can be synthesized by either
Code•Rules or Rules•Code.

Tool Exercises
Once the origami matrix is set up, you can use obe to com-
pose rows and columns, or you can do it manually, as
shown below.

To fold a 2-dimensional matrix, you need to invoke com-
poser twice: once to compose rows and a second time for
columns. (For a k-dimensional matrix, we would invoke
composer k times). So to produce the AHEAD equivalent
of Table 2, we compose the rows of the origami model to
produce model Table2 = delete•insert:

> cd origami
> composer --target=Table2 insert delete

The resulting model Table2 is depicted in Figure 12a, and
its synthesized AHEAD directory structure in Figure 12b,
and the contents of the equation files in Figure 12c-d.

To produce the 1×1 matrix of Table 3 or equation (9), we
compose the columns (named single and double) using
the following command:

> cd Table2
> composer --target=both single double
> cd both
> jak2java *.jak

Another way to represent the origami matrix of Figure 11a
is by columns. We leave this as an exercise.

As another exercise, implement your solution to problem
[12].

6.6   Design Rules

Now we can address the problem of defining design rules
for our origami representation of model L. Recall that the
design rules for L without origami were too complicated to
express using the drc tool. With origami, design rules
become much simpler. All we need to do is to create design
rules for composing “higher-level” features. That is, we
need rules to define the legal orders for composing rows
(i.e., data structure operations) and columns (data structure
variants).

eqn.equationsgl

eqn.equationsgldel

eqn.equationdbl

eqn.equationdbldel

insert

delete

single double

Origami = { insert, delete }

insert = { singlei, doublei }

Origami/insert/single/eqn.equation // Figure 11d
Origami/insert/double/eqn.equation // Figure 11e
Origami/delete/single/eqn.equation // Figure 11f
Origami/delete/double/eqn.equation // Figure 11g

(a)

(b)

(c)

Figure 11. Row-Dominant Embedding of a Matrix

sgl super
dbl

super
sgldel

super
dbldel

(d) (e) (f) (g)

double = { singled, doubled }

singlei = { eqnsgl }
doublei = { eqndbl }

singled = { eqnsgldel }
doubled = { eqndbldel }

Table2 = { single, double }

single = { eqnsgldel•eqnsgl }
double = { eqndbldel•eqndbl }

(a)

Figure 12. AHEAD Origami Metamodel

Origami/Table2/single/eqn.equation // Figure 12c
Origami/Table2/double/eqn.equation // Figure 12d

(b)

sgl
sgldel

super
dbl
dbldel

(c) (d)
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The rules for ordering rows is simple: the insert row is a
‘constant’ as it represents a base data structure (Figure 13a).
The delete row is a ‘function’ that refines the insert row.
Rule: delete must follow (i.e., be to the right of) insert
(Figure 13b). The same rule can be used for the columns in
our example.

Where are these files stored? The obe tool stores them in
separate directories, one per dimension. I leave it to you as
an exercise to determine where these files might be stored if
you don’t use obe.

Model Exercises
[13] Create two different GUIs for a calculator: one uses the

standard 2D keypad, a second uses text fields to enter
constants and operations. A calculator will use one (but
not both) of these GUIs. Operations on both GUIs are
buttons. So when a calculator is extended by a new
operation, its GUI will be extended also. Express this
relationship between operation and GUIs as an origami
matrix.

[14] As additional exercises: (1) generalize the above model
that permits multiple GUIs per calculator. One idea
would use tabs, one tab per different GUI. (2) imple-
ment your model.

7  What’s Ahead0

There are lots of interesting topics and capabilities that we
have yet to explore (or develop) for AHEAD. Here are just
a few.

7.1   Extensible Languages
There are all sorts of non-Java extensions to the Jak lan-
guage that we haven’t talked about, including:

• metaprogramming — the ability to assign code frag-
ments to variables, the ability to compose code frag-
ments via escape substitutions, hygienic macros.

• state machines — an embedded DSL for supporting the
definition and refinement of state machines.

More on these topics in a future paper.

7.2   Compiler-Compiler Tools
ATS has a sophisticated set of compiler-compiler tools that
are used to (a) define base grammars, (b) define grammar
refinements, and (c) to synthesize grammars by composing
base grammars with refinements. Grammars are just
another representation of a program, in this case, a com-
piler, and ATS has tools for defining and composing gram-
mars and generating Java files from them. More on these
topics in a future paper.

7.3   Generating and Optimizing MakeFiles
The idea of modules as hierarchical collections of related
artifacts is very powerful. A paradigm of AHEAD that we
have explored so far is that of composition: that artifacts of
a system can be composed from previously defined arti-
facts. But there is another way in which system artifacts can
be produced: by derivation. For example, Java files can be
produced from Jak files by the jak2java tool; class files
can be produced from Java files by the javac compiler, and
so on. A general paradigm is depicted in Figure 14: an arti-
fact can be produced by first composing it from more ele-
mentary artifacts, followed by a derivation. Or equivalently,
it can be produced by deriving a set of artifacts from more
elementary artifacts first, and then composing the derived
representations6. This leads to the following fundamental
distributive algebraic relationship (11).

derive( artifacti • artifactj ) =
derive( artifacti ) • derive( artifactj )(11)

Ultimately, what we want is to specify an entire system —
all of its composed and derived representations — as a set
of equations. Although ATS does not yet have such a tool,
one can imagine a specification like:

Using L;

i3 = javadoc( javac( jak2java( 
sgldel( sgl ) ) ) );

single constant layer;

flowleft Bool start;

provides flowleft start;

single layer;

extern flowleft Bool start;

requires flowleft start;

(a) insert/rules.drc (b) delete/rules.drc

Figure 13. Dimension Design Rule Files

6.   Figure 14 can be generalized further, so that multiple output artifacts
can be derived from a single input artifact, and vice versa.

artifacti

artifactj

Artifacti

Artifactj

composedij Composedij
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derive

derive
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Figure 14. Compose vs. Derive
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Where the Using clause will tell this tool that sgldel and
sgl are units in model L, and by inference, composer should
be used to compose them. The resulting module will have
Drc and Jak files. The jak2java tool, when applied to a col-
lective/directory, will translate all Jak files to Java files and
add them to that directory. Similarly, the javac operator
will compile all Java files in a collective to their class file
counterparts. The javadoc operator will generate JavaDoc
HTML pages from the generated Java files, and so on.

The lesson that we learned from relational query optimizers
is that given an equational form of a program specification,
equations can be optimized. In this particular example,
there really isn’t anything to be optimized. There is, though,
a particular sequencing of the application of the javadoc,
javac, and jak2java operators that must be imposed. (In
fact, this really is the only legal ordering of these operations
for this equation). So notions of design rules apply to tool
operators. But as equations become more complicated,
there is the possibility of optimization. In some of our
larger examples using origami, generating common subex-
pressions among different sets of tools arises. Evaluating
common subexpressions once, and not many times, is an
important optimization that a tool should be able achieve
automatically.

The big picture is depicted below. Given an equational rep-
resentation of a system that specifies both the artifacts that
are to be composed and those that are to be derived, a tool
will expand the equations and perform optimizations to
synthesize the resulting system in the most efficient man-
ner. The tool will then produce an optimized set of equa-
tions, and a generator will translate these equations into a
makefile — a low-level implementation of a functional-like
language that will efficiently execute equational specifica-
tions.

7.4   Typing Programs
As mentioned earlier, refinements are functions that appear
untyped. In fact, function inputs and outputs have definite
constraints. Our tools simply have assumed that the correct
types are both being input and output. In general, this is bad
assumption.

Question: how does one type a program? Should Java inter-
faces be used? How does typing generalize to, say, drc
files? How are drc files typed? What is a general mecha-
nism for typing arbitrary artifacts and their refinements?

We have the outlines of a solution for AHEAD, but at this
time, there is no tool support.

8  Conclusions

Expressing programs as compositions of higher-level
abstractions is very appealing. Abstractions, which corre-
spond to GenVoca/AHEAD constants or functions, have a
straightforward representation in programming languages
and DSLs that have been extended to support step-wise
refinement. On a broader scale, it is intuitive to envision
that Software Engineering is about the tools and techniques
for program design and manipulation. It is appealing to see
that there is a simple algebraic foundation for supporting
this viewpoint when SE is viewed from an FOP perspec-
tive: namely, programs are values and functions (or opera-
tors) transform programs in standardized, domain-
prototypical ways.

By elevating the level of abstraction, we can see and manip-
ulate “large-scale” or “architectural” relationships among
modules called “refinements” that comprise a program —
relationships that previously were implicit and hard-wired.
The modularity that we expose through FOP and ATS is
different than conventional notions, and it is through this
novelty that we gain considerable power. By expressing
designs as models (algebras), we create designs for families
of programs called product-lines, and create designs for
programs that are architecturally extensible (i.e., that can be
redefined by new compositions of refinements).

This paper has explored basic concepts of FOP and a
(small) subset of the tools of the AHEAD tool suite. In
future papers, we will see further evidence of the power and
generality of AHEAD and its tools.
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