Algorithms for String matching

Marc GOU
July 30, 2014

Abstract

A string matching algorithm aims to find one or several occurrences of a string within
another. The algorithm returns the position of the first character of the desired substring
in the text. There are many different solutions for this problem, this article presents the
four best-known string matching algorithms: Naive, Knuth-Morris-Pratt, Boyer-Moore and
Rabin-Karp. The results show that Boyce-Moore is the most effective algorithm to solve
the string matching problem in usual cases, and Rabin-Karp is a good alternative for some
specific cases, for example when the pattern and the alphabet are very small.

1 Introduction

The purpose of this paper is to study different algorithms for the String matching problem.
These algorithms are used for trying to find one, several or all occurrences of a defined string
(pattern) in a larger string string (typically a text). The string matching problem has a lot
of different applications in multiple areas.[4] First, an adapted and efficient algorithm of this
problem can aid to enhance the responsiveness of a text-editing software. Other applications in
information technology includes web search engines, spam filters, natural language processing,
computational biology (search of particular pattern in DNA sequence), feature detection in
digital images...

There are different solutions that allow to solve the string matching problem. First, we have
the naive algorithm, the simplest one, which tries to match the pattern to each string of the
same length in the text. From the 1970s, several others algorithms, more sophisticated and more
effective, have been invented. In 1975, Knuth, Pratt and Morris invented the first algorithm
that preprocesses the pattern to obtain a better performance, it is the Knuth-Morris-Pratt
Algorithm. In 1977, another algorithm that preprocesses the pattern was invented: Boyer-Moore
Algorithm [2], its main characteristic is the fact that it attempts to establish the correspondence
of the substring with the pattern in the reverse direction. In 1987, Rabin and Karp propose an
algorithm that is based on a completely different approach: Rabin-Karp Algorithm [5], which
computes a hash function for the pattern and then look for a match by using the same hash
function for each possible substring of the same length in the text.

In this paper, we present the four algorithms mentioned above. The final goal is to be able to
answer the question which of these algorithms is the best. To achieve this, we implement, test,
and compare the efficiency of each algorithms. The comparison will be executed in different
situations: small and large alphabet, the pattern might appear zero time, once, a few times or
many times in the text depending to its length. We can observe and analyse the effectiveness
of algorithms by measuring their execution times in these different conditions.

In Section 2 the problem is introduced and explained in detail. We will also present the
different notations used in this paper. In Section 3 we devote a section to each solution to the
problem, which explains in detail the operation of the algorithm. We start with the simplest
solution, the naive algorithm. Then we show three more sophisticated and more efficient solution.

After that, we show and compare the obtained results of each algorithm in different considered
cases in the Section 4, we observe that the Boyer-Moore Algorithm is the best solution, but not
in all cases. Finally, in Section 5, we summarize the important elements of this paper with the
conclusions.

2 Background

We introduce the following notations:
e the alphabet, ¥, is a finite set of symbols,
e the string from where to search, the text, is T, and its length | T | = n , and
e the string that is searched, the pattern, is P, and its length | P | =m .

It is clear that the text must have at least the same length as the pattern, n > m, otherwise the
problem would not make sense. In brief, the string matching problem consists of finding all valid
shifts with which a given pattern P occurs in a given text 7' [4]. A position s € {0,...,n —m}
in T is a valid shift if P occurs with shift s in T, or mathematically, if we have

pattern[i] = text[s +1i],¥i € {0,...,m — 1}
In all other cases, s is a invalid shift. If s is a valid shift, then we have P[0...m — 1] = T[s...s +
m — 1].
Example: If sale is a preconfigured keyword in a spam filter, when it scans this following
subject line, the position s = 3 is a correct shift. See Figure

NIEWSAILIE|lI|TIS|T|IME|C|O|M|E

S=3

Figure 1: Example of a string matching problem application

In following section, we would meet the notation a”, it simply represents aa...a.

n

3 Algorithms

3.1 Naive Algorithm

The idea of the naive solution is just to make a comparison character by character of the text
T[s..s +m —1] for all s € {0,...,n —m + 1} and the pattern P[0...m — 1]. It returns all the
valid shifts found. Figure [2] shows how the algorithm work in a practical example. In Figure [3]
is an implementation written in pseudo-code of the naive algorithm.

The problem of this approach is the effectiveness. In fact, the time complexity of the Naive
algorithm in its worst case is O(M x N). For example if the pattern to search is a™ and
the text is a™, then we need M operation of comparison by shift. For all the text, we need
(N — M +1) x M operation, generally M is very small compared to N, it is why we can simply
considered the complexity as O(M x N).

5=2
valid shift

Figure 2: Example of operation of the naive string matcher in a DNA string

// Return an array which contains all valid shifts in text (str)
NaiveMethod(text, pattern)

{
N = length(text);
M = length(patter,);
limit = N-M;
j =0, k=0;
array0fValidShift[];
for(i = 0; i <= limit; i++)
{
j=20;
k = 1i;
for(j = 0; j <= M AND str[k] == pat[jl; j++)
k++;
if(j >= M)
Add i to arrayOfValidShift;
}
return array0fValidShift;
}

Figure 3: Implementation of the naive solution

3.2 Knuth-Morris-Pratt Algorithm (KMP)

The KMP algorithm is a linear time algorithm, more accurately O(N + M). The main charac-
teristic of KMP is each time when a match between the pattern and a shift in the text fails, the
algorithm will use the information given by a specific table, obtained by a preprocessing of the
pattern, to avoid re-examine the characters that have been previously checked, thus limiting the
number of comparison required. So KMP algorithm is composed by two parts, a searching part
which consists to find the valid shifts in the text, where the time complexity is O(N), obtained
by comparison of the pattern and the shifts of the text, and a preprocessing part which consists
to preprocesse the pattern.

The goal of the preprocessing of pattern consist to obtain a table that gives the next position
in the pattern to be processed after a mismatch. For a pattern P[0...m — 1], the table of result of
the preprocessing will give for each character j contained in the pattern a value which is defined
as the substring that is in the same time the longest prefix of the pattern and the suffix of the
substring of pattern P’[0...5] [5]. The complexity of the preprocessing part is O(M), applying

§=3: A G A T
SUCCESS

Figure 4: Example of operation of the KMP string matcher in a DNA string

the same searching algorithm to the pattern itself.
In Figure 4 there is an example where we need three attempts to find a valid shift, whereas
with the naive solution, we need four attempts, we could not skip the shift at the position one.

3.3 Boyer-Moore Algorithm (BM)

The basic idea behind this solution is that the match is performed from right to left. This char-
acteristic allows the algorithm to skip more characters than the other algorithms, for example if
the first character matched of the text is not contained in the pattern P[0...m — 1], we can skip
m characters immediately. As the KMP algorithm, this algorithm preprocesses the pattern to
obtain a table which contains information to skip characters for each character of the pattern.
But BM algorithm use also another table based on the alphabet. It contains as many entries as
there are characters in the alphabet [2].

In the example below, we can easily persuade the advantage of BM algorithm over KMP
and the naive one, we only need four attempts to find the valid shift. In this case, the time
complexity of the BM algorithm is sublinear: O(N/M).

‘ s=9: ‘

SUCCESS ""“G|A"’“T‘

Figure 5: Example of operation of the BM string matcher in a DNA string

In the worst case, the complexity of the algorithm is O(N x M), it happens for example
when the size of the alphabet is one, or more generally when the pattern and the text are strings
composed by sequences of one same character.

3.4 Rabin-Karp Algorithm (RK)

The Rabin-Karp algorithm uses a totally different approach to solve the string matching prob-
lem. This method is based on hashing techniques. We compute a hash function h(z) for the
pattern P[0...m—1] and then look for a match by using the same hash function for each substring
of length m — 1 of the text [5].

The Rabin-Karp also use preprocessing technique before the search operation. Its prepro-
cessing operation is the hashing of the pattern, which is O(M) complexity. So, the running time
of the algorithm is O(M x (N — M + 1)), but in general, we will see, that the algorithms will
run with a complexity O(N).

Let’s introduce following notations:

e hi(p) : the hashed value of the pattern
e h(ts) : the hashed value of the substring [s,...,s + M — 1]

In Figure [6]there is an implementation of this algorithm written in pseudo-code. We can see
that the computation of h(tsy1) (REHASH(text[j], text[j+M], hText, d) in the code) can
be based on the value of h(ts) (hText in the code) by using REHASH, which is an O(1) complexity
operation [3].

Example: if we have P =“cd” and T = “abced”. Based on the implementation, we can
easily obtained h(p) = 99-2+ 100 = 298, where 99 and 100 are respectively the integer value of
¢ and d in ASCII representation.

We compute h(tp) = 292 in the same way, we can see that h(p) # h(tg), so we will use
the REHASH function to compute h(t;) = 295. This value does not match with h(p) too, so we
compute h(te) = 298, it matches with h(p), but we still need to check character by character to
avoid collisions.

4 Comparisons and analysis of the effectiveness

4.1 Working environment

The hardware used for different tests of these algorithms is a laptop with a Intel i5 dual-core
processor and with 6GB of RAM memory. This laptop runs under Linux Mint 14. All the
algorithms are implemented in C++, the compilator used is g+, the different strings using in
different tests are randomly generated by a script written in Php.

In this paper, we will consider two different alphabets, a small and a large:

1. Z|=4X={A,C,G,T}
2. ¥ =62: ¥={0,...,9,a,...,2,A,...,Z}

The first alphabet corresponds to the set of DNA nucleobases, the research of a defined DNA
sequence is one of the direct application of string matching [I]. The second alphabet have some
applications in security area (spam filter...) for example [5].

The size of the text is fixed to ten millions, five different random texts are used for each test.
Seeing that the texts are randomly generated, the number of matches depends on the size of the
alphabet and the size of the pattern. The test finds all matches in the text and return a vector
which contains all the valid shifts.

The results of these tests are expressed in seconds.

#define REHASH(a, b, h, d) ((((h) - (a)*d) << 1) + (b))

// Return an array which contains all valid shifts in text (str)
RabinKarpMethod(text, pattern)

{
N = length(text);
M = length(pattern);
d = 1, hText = 0, hPattern = 0, j = O;

// PREPROCESSING
for(i =1; 1 < M; ++1i)
d = (d<<1);

for(i

{

0; i < M; ++i)
hPattern = ((hPattern<<1) + pattern[i]);
hText = ((hText<<1) + text[il);

}

array0fValidShits([];

// SEARCHING
while(j <= N-M)

{
if (hPattern == hText) // Potential match
{
for(i = 0; i < M AND text[j+i] == pattern[i]; i++); // Check
if(i >= M) // Match / Valid shift -> add in the array
Add j to array0fValidShift;
}

// Computation of the new value of hText based on its old value
hText = REHASH(text[j], text[j+M], hText, d);

++3;

return array0OfValidShift;

Figure 6: Implementation of Rabin-Karp solution

4.2 Time measurements

Table |1 shows the results obtained with a big alphabet (alphanumeric) and Table [2|shows the
results obtained with a small alphabet (DNA).

Table 1: Table of results in milliseconds - Alphanumeric Alphabet

|pattern| | matches | Naive | KMP | BM | RK
3 40 225 221 242 | 194
10 0 224 221 82 | 194
50 0 224 221 25 | 194

Table 2: Table of results in milliseconds - DNA Alphabet

|pattern| | matches | Naive | KMP | BM | RK
3 156455 331 308 | 340 | 204
10 8 329 306 | 204 | 187
50 0 328 305 | 148 | 186

4.3 Analysis

By looking at these results, we can conclude that the best algorithm in majority of cases is
Boyer-Moore. More the pattern is long, more its advantage become significant, the reason to
this can be easily explained by the fact that it could skip more characters in this case, its
complexity is sublinear: O(N/M). But we also notice that when the pattern is very small, the
advantage of BM algorithm disappears completely.

Knuth-Morris-Pratt and the naive algorithm obtain similar results, but the result of KMP
is always a bit better. KMP could be a good choice if the length of pattern is very short.

Rabin-Karp obtains very good results in these tests, its results are a lot better than KMP
and the naive solution and it is definitely the best choice in the situations where Boyce-Moore
is not adapted.

In general, we also notice that the results with a bigger alphabet is always better than a
small one. The reason is, because with a small alphabet we have more similarity between the
pattern and substrings of the text even there are not matches, but these similarities require
more comparisons.

5 Conclusion

We have presented the most famous string matching algorithm. To answer the question: Which
algorithm is the best? We implemented the four algorithms in a practical programming language
(C++), and after made different tests and comparisons with these implementations.

The answer is that Boyer-Moore is the best algorithm. Not in all cases, as we can observe in
Section 4, but in the practical cases, generally the length of the pattern and the size of alphabet
are not so small that the advantageous characteristic of BM disappears, that is why we can
consider BM algorithm as the best one. Rabin-Karp is also an effective algorithm, it is even
better than BM when the pattern and the alphabet are very small. The naive algorithm is the
worst solution, with the slowest execution time.

References

1]

2]

Ricardo A. Baeza-Yates. ”algorithms for string searching: A survey”. ACM SIGIR Forum,
23, pages 34-58, 1989.

Robert S. Boyer and J. Strother Moore. ”a fast string searching algorithm”. Communications
of the ACM, Volume 20, Number 10, pages 762-772, october 1977.

Christian Charras and Thierry Lecroq. ”exact string matching animation in java”. Report
LIR 97.10, Université de Rouen, 1997. http://www-igm.univ-mlv.fr/~lecroq/string/
index.htmll

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms, Third edition. The MIT Press, 2009.

Robert Sedgewick and Kevin Wayne. Algorithms, Fourth edition. Addison-Wesley, 2011.

http://www-igm.univ-mlv.fr/~lecroq/string/index.html
http://www-igm.univ-mlv.fr/~lecroq/string/index.html

	Introduction
	Background
	Algorithms
	Naive Algorithm
	Knuth-Morris-Pratt Algorithm (KMP)
	Boyer-Moore Algorithm (BM)
	Rabin-Karp Algorithm (RK)

	Comparisons and analysis of the effectiveness
	Working environment
	Time measurements
	Analysis

	Conclusion

