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Abstract 

To combine information from heterogeneous sources, 
equivalent data in the multiple sources must be identi- 
fied. This task is the field matching problem. Specifi- 
cally, the task is to determine whether or not two syn- 
tactic values are alternative designations of the same 
semantic entity. For example the addresses Dept. of 
Conaput. Sci. and Eng., University of California, San 
T&m. 91;oo G’ilmnn Dr. Dent. Olld; La Jolla; CA ---.7-r - __.._ -._ _ _. - -r.. 
92093 and UCSD, Computer Science and Engineering 
Department, CA 92093-0114 do designate the same 
department. This paper describes three field match- 
ing algorithms, and evaluates their performance on 
real-world datasets. One proposed method is the 
well-known Smith-Waterman algorithm for comparing 
DNA and protein sequences. Several applications of 
field matching in knowledge discovery are described 
briefly, including WEBFIND, which is a new software 
tool that discovers scientific papers published on the 
worldwide web. WEBFJND uses external information 
sources to guide its search for authors and papers. 

. J - --.-L r--t- x..--...7. iille many other worldwiue weu ~UU~S, vvbnrum needs 
to solve the field matching problem in order to navi- 
gate between information sources. 

Introduction 
In many knowledge discovery and database mining ap- 
plications there is a need to combine information from 
heterogeneous sources. The core issue is to identify 
equivalent data in the multiple sources. Through this 
operation, one can navigate from one source to an- 
other. This is what is commonly known as a “join” 
between two tables in relational databases. 

In order to perform a join between two relations, 
one must first determine which columns refer to the 
same category of entities. This is known as the schema 
matching problem (Batini et al. 1986; Kim et al. 
1993). Given a solution to the schema matching prob- 
lem, one still needs to determine whether two specific 
tuples, i.e. field values, are equivalent. This is the prob- 
lem studied in this paper. In general the field matching 
problem is to determine whether or not two field val- 
ues are syntactic alternatives that designate the same 
-zplmcxmti~ r?nt;tv UUlllUY”I” “LLU’YJ. 

A solution to the field matching problem can be 
applied to solve the schema matching problem. The 
“information learning agent” (ILA) of Etzioni and 
Perkowitz (1995) learns the schema of other infor- 
mation sources based on the known schema of one 
source. To learn a new schema, equivalent pieces 
of information must be detected. The ILA can match 
(206) 616-1845 and 616.1845 for example, but details 
of the matching method are not given by Etzioni and 
Perkowitz (1995). G eneral matching methods are the 
topic of this paper. 

The field matching problem 
Many information sources, e.g. relational databases or 
worldwide web pages, provide information about the 
same real-world entities, but designate these entities 
differently. We refer to a designator of an entity as a 
field. Table 1 contains examples of fields designat- 
ing academic institutions. These examples show that 
fie!ds can be made un of subfields delimited by separa- -r ------ 
tors such as newlines, commas, or spaces. A subfield 
is itself a field and may be made up of subsubfields, 
and so on. Two fields are equivalent if they are equal 
semantically, that is if they both designate the same 
semantic entity. Equivalence may sometimes be a 
question of degree, so we allow a function solving the 
field matching problem to return a value between 0.0 
and 1.0, where 1.0 means certain equivalence and 0.0 
means certain non-equivalence. 

There has been little previous research on the field 
matching problem, although it has been recognized 
as important in industry for decades. For exampie 
tax agencies must do field matching to correlate dif- 
ferent pieces of information about the same taxpayer 
when social security numbers are missing or incorrect. 
In general, field matching is the central issue in the 
so-called “merge/purge” task (Hernandez and Stolfo 
1995): identifying and combining multiple records, 
from one database or many, that concern the same 
entity but are distinct because of data entry errors. 

Published previous work deals with special cases of 
the field matching problem, involving customer ad- 
dresses (Ace et al. 1992); census records (Slaven 1992)! 
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or variant entries in a lexicon (Jacquemin and Royaute 
1994). The most similar work to ours is due to Her- 
nandez and Stolfo (1995), for the “merge/purge” task. 
After clustering tuples using indices, Hernandez and 
Stolfo (1995) use domain-specific equational axioms to 
identify semantically equivalent tuples inside each clus- 
ter. This approach depends on knowledge supplied by 
a human. We consider domain-independent methods 
here. 

Field matching algorithms 
The input to a field matching algorithm is the two 
fields being tested for semantic equivalence. In the 
work described here, stop words in the set {and in for 
the of on & - /) are removed before matching, but this 
is not critical. 

A basic field matching algorithm 

An atomic string is a sequence of alphanumeric char- 
acters delimited by punctuation characters. A simple 
definition of the degree to which two fields match is the 
n.rmhm. ,f thn:r ,,+,h:,m nt,..m;n n+n;mmo rl:~,:A,rl L-7 ~IU1I‘“czL “I “‘LS.1 II‘OA~IIIII~ cblJ”IIIIL ublln&Y UIVIU~U uy 

their average number of atomic strings. Two atomic 
strings match if they are the same string or if one 
is a prefix of the other. For example, consider the 
fields A = Tomput. Sci. & Eng. Dept., University of 
California, San Diego” and B = “Department of Com- 
puter Science, Univ. Calif., San Diego”. After re- 
moving stop words, k = 6 strings in the first field 
match some string in the second field, namely Com- 
put., Sci., San, Diego, Univ. and Calzf. No matches 
exist for Eng. and Dept. The overall matching score is 
k/(IAI + IBl)/2) = 0.8. 

The algorithm to compute the basic matching score 
is straightforward. First, the atomic strings of each 
field are extracted and sorted. Second, each atomic 
string of one field is searched for in the other field’s 
list of strings. The number of matched atomic strings 
is recorded. The complexity of the algorithm is domi- 
nated by the sort of the atomic strings, which uses time 
O(n log n) where n is the maximum number of atomic 
strings in either field. 

The basic field matching algorithm does not take 
into account abbreviations which are not prefixes. It 
,.l”,. ,l,.,.” m,.+ ..-* :..f,.,-..+:,.. . . ..“...A.,, +L,. ,,.,J,..:.., a13u U”GD ‘I”lJ UDG IIII”ll‘labl”II Ir;g;alulllg IJllC “lUC:l111& 

of the subfields. The algorithms described in the next 
two subsections attempt to overcome these limitations. 

A recursive field matching algorithm 
The algorithm here uses the recursive structure of typi- 
cal textual fields. The base case is that A and B match 
with degree 1.0 if they are the same atomic string or 
one abbreviates the other; otherwise their degree of 
match is 0.0. Each subfield of A is assumed to corre- 
spond to the subfield of B with which it has highest 
score. The score of matching rZ and a” then equals the 

mean of these maximum scores: 

I*’ IBI 
match(A, B) = h g ye match(Ai 3 B& 

Matching of abbreviations uses four patterns: 
(i) the abbreviation is a prefix of its expansion, 

e.g. “Univ.” abbreviates “University”, or 
(ii) the abbreviation combines a prefix and a suffix of its 

expansion, e.g. “Dept.” matches “Department”, or 
(iii) the abbreviation is an acronym for its expansion: 

e.g. “UCSD” abbreviates ‘University of California, 
San Diego”, or 

(iv) the abbreviation is a concatenation of prefixes from 
its expansion, e.g. “Caltech” matches “California In- 
stitute of Technology”. 

Note that case (iii) is a special case of case (iv). 
The recursive field matching algorithm has quadratic 

time complexity. Given A and B, every subfield in A 
must be compared with every subfield in B. At the 
lowest level, each atomic string of A is compared with 
each atop.ic st;rinw nf R 0 -A -a -A-p- imnnrtant. nntimivatinn ..A’yY’ “UILY vy “IIII~UUU~“II 
is to apply memoization to remember the results of 
recursive calls which have already been made. 

The Smith-Waterman algorithm 
This method (Smith and Waterman 1981) is a dynamic 
programming algorithm. It was first developed to find 
optimal alignments between related DNA or protein 
sequences. 

The Smith-Waterman algorithm has three main ad- 
justable parameters. Given the alphabet C, the first 
parameter is a ICI x ICI matrix of match scores for each 
pair of symbols in the alphabet. The other parameters 
are penalties for starting a gap in an alignment, and 
for continuing a gap. 

For matching textual fields we define C to be just 
the lower case and upper case alphabetic characters, 
the ten digits, and three punctuation symbols space, 
comma, and period. Our experiments use Smith- 
Waterman algorithm parameter values chosen in pre- 
liminary experiments as being intuitively reasonable 
and providing good results. The match score matrix 
is symmetric with all entries -5 except that an exact 
match scores 5. and anoroximate matchef, wore 2. An I -.--.. - .,.= ---------.Jd T-F-.d2F.._1L LA--- -. _^__ 
approximate match occurs between two characters if 
they are both in one of the following subsets: {d t} {g 
8 W-1 {m 4 UJ P 4 { a e a o u} {, .}. The gap start 
and continue penalties are 5.0 and 1.0 respectively. 

Since the Smith-Waterman algorithm allows for gaps 
of unmatched characters, it should perform well for 
many abbreviations, and when fields have missing in- 
formation or minor syntactical differences. On the 
other hand, subfields out of order will certainly cause 
problems. 

It is important to note that the Smith-Waterman 
1. -:I,-~ algoritnm and the basic algorithm are symmetric, but 
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internet host I institution 
cs.ucsd.edu computer science department, 

university of California, san diego 

cs.stanford.edu computer science department, 
Stanford university, palo alto, 
California 

(INSPEG) Dept. of Comput. Sci., 
California Univ., San Diego, 
La Jolla, CA, USA. 

(INSPEC) Dept. of Comput. Sci. 
Stanford Univ., CA, USA. 

Table 1: Example of NETFIND and INSPEC fields. 

group size 1 UCSD I Stanford 1 mzxed 
1 I 31 I 44 I 81 

Table 2: Equivalent groups in the three datasets 

the recursive algorithm is asymmetric when two fields 
have different numbers of subfields. 

An experimental comparison 
n- -1. -I---JLL-- _____ J.-A.-J ..2--CL..-- .-l-L--^&.. Tkle Ixtc11 algorlrnrrl was besibeu USlIlt; bI,r~t: UalJaS~CD. 

first dataset contains 65 fields describing various aca- 
demic departments at UCSD, and the second dataset 
contains 87 fields from Stanford, all taken from the 
INSPEC bibliographic database. The third dataset is 
the union of the UCSD and Stanford datasets and an 
additional 29 UCSD and Stanford fields from NETFIND, 
a service that gives internet host addresses and email 
addresses (Schwartz and Pu 1994). 

For each dataset we identified groups of equivalent 
fields. For example, the two Stanford fields in Table 1 
form a group. Table 2 shows the number of equivalent 
groups of each size in each dataset. A group of size 1 is 
a single field for which there was no match in a dataset. 

The performance of a field matching algorithm can 
be evaluated by viewing the problem in information 
retrieval terms (Salton and McGill 1983). Given a set 
of possibly equivalent fields, consider each field in turn 
to be a query, and rank all other fields according to 
their degree of match as computed by the field match- 
ing algorithm. The accuracy of the algorithm then 
corresponds to retrieval effectiveness as measured by 
precision and recall. Recall is the proportion of rele- 
vsnt ;nfr\rmnt;nn c.r+,,r.llrr ~,d,.;,x,,wl u,hilp nnvi.inn ia "c*IIV llll"llllUYl"ll U""UU"J IVUIL" .-.A, I. A.11" y-w".-'-.. -- 

the proportion of retrieved information that is relevant. 
The amount of retrieved information varies based on 
what threshold is chosen for match scores. Typically, 
as recall is increased from 0% to lOO%, precision de- 

creases from 100% to 0%. 

Figure 1: Basic algorithm: recall v. precision. 

Figures 1 to 3 show recall versus precision for each al- 
gorithm. All algorithms perform worst on the mixed 
dataset, which is the most diverse. Both the Smith- 
Waterman algorithm and the recursive algorithm can 
achieve 100% recall, while the basic algorithm can only 
achieve 90% recall. The expected tradeoff between re- 
call and precision is visible. 

For all levels of recall, the Smith-Waterman algo- 
rithm has lower precision than the other two algo- 
rithms. The recursive and basic algorithms have sim- 
ilar performance. It appears that these datasets do 
not require the complexity of the recursive algorithm. 

The WEBFIND application 
WEBFIND is an application that discovers scientific pa- 
pers made available by their authors on the worldwide 
web. The external information sources integrated by 
WEBFIND are MELVYL and NETFIND. MELVYL is a Uni- 
versity of California library service that includes com- 
prehensive databases of bibliographic records, includ- 
ing INSPEC (University of California 1996). 

A WEBFIND search starts with the user providing 
keywords to identify the paper, exactiy as he or she 
would in searching INSPEC directly. A paper can be 
identified using any combination of the names of its 
authors, words from its title or abstract, or other bib- 
liographic information. After the user confirms that 
the right paper has been identified, WEBFIND queries 
INSPEC to find the institutional affiliation of the princi- 
pal author of the paper. Then, WEBFIND uses NETFIND 
to provide the internet address of a host computer with 
the same institutional affiliation. WEBFIND then uses 
a search algorithm to discover a worldwide web server 
on this host. then an author’s home page, and finally 7 ------ ~-~ 
the location of the wanted paper. 

Since institutions are designated very differently in 
INSPEC and NETFIND, it is non-trivial to decide when 
an INSPEC institution corresponds to a NETFIND in- 
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0 UCSDdstaW 

Recall 

Figure 2: Recursive algorithm: recall v. precision. 

* mlxcd data sot 

Figure 3: Smith-Waterman algorithm: recall v. preci- 
sion. 

stitution. WEBFIND uses the recursive field matching 

Monge and Elkan (1996) provide a more lengthy 
algorithm to do this. 

description of WEBFIND, including experiments which 
show that WEBFIND is successful at finding worldwide 
web servers and finding web pages designated for au- 
thors. WEBFIND is less successful at finding actual pa- 
pers, most of all because many authors have not yet 
published their papers on the worldwide web. 

Conclusion 
This study addresses the problem of reconciling infor- 
mation from heterogeneous sources. Such sources may 
represent entities differently, so identifying equivalent 
information is difficult. Future work will use an algo- 
rithm that is a hybrid of the Smith-Waterman method 
and the recursive method described above. This al- 
gorithm will take into account field order while allow- 
ing for missing fields. Parameter values for the Smith- 
Waterman component will be learned automatically by 
tuning on sets of representative data. 
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