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Abstract

How have connectionist models informed the study of development? This paper considers three contributions from specific models.
First, connectionist models have proven useful for exploring nonlinear dynamics and emergent properties, and their role in non-
linear developmental trajectories, critical periods and developmental disorders. Second, connectionist models have informed the
study of the representations that lead to behavioral dissociations. Third, connectionist models have provided insight into neural
mechanisms, and why different brain regions are specialized for different functions. Connectionist and dynamic systems
approaches to development have differed, with connectionist approaches focused on learning processes and representations in
cognitive tasks, and dynamic systems approaches focused on mathematical characterizations of physical elements of the system
and their interactions with the environment. The two approaches also share much in common, such as their emphasis on con-
tinuous, nonlinear processes and their broad application to a range of behaviors.

Introduction

The study of development raises fundamental questions
about how learning and change occur. For example, why
are there sometimes stage-like transitions in develop-
ment? Why are there critical periods for some types of
learning? Why do children sometimes show U-shaped
performance curves as they learn, initially getting worse
at a skill before ultimately succeeding? What factors lead
to developmental differences between individuals, and
specifically to developmental disorders? Why do infants
and children so frequently show apparent dissociations
in their knowledge, seeming to know things when tested in
one way but seeming completely unaware when tested in
a different way? What neural developments contribute to
each of these behaviors?

Connectionist models have been used to explore these
and other puzzles of development. Such models support
complex, nonlinear, emergent processes (as discussed by
Thelen & Bates, this issue), of the sort that likely con-
tribute to the developmental phenomena described
above. Models allow exquisite control over and observa-
tion of these complex processes, to explore how they
contribute to behavior. In this paper, we first provide a
brief overview of the connectionist framework. We then
discuss three types of contributions from specific con-
nectionist models for informing our understanding of
development:

1. In exploring the role of nonlinear dynamics and
emergent properties, and their relevance for under-
standing nonlinear developmental trajectories, critical
periods in development and developmental disorders.

2. In exploring the nature of the representations that
lead to behavioral dissociations — simultaneous success
and failure on different tasks meant to measure the
same knowledge — particularly during development.

3. In providing insights into neural mechanisms, particu-
larly why different brain regions become specialized
for specific functions, in terms of computational trade-
offs that require the specialization of multiple brain
regions for optimal performance.

We draw comparisons and contrasts with the dyna-
mic systems framework at several points in our presen-
tation, and we close with an overall discussion of the
relation between the connectionist and dynamic systems
frameworks.

Overview of connectionist framework

As elaborated below, processing in connectionist models
occurs through the propagation of activation through
networks of simple processing units (Figure 1). Know-
ledge that underlies processing is stored in connection
weights between these processing units. Changes in
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Figure 1 A feed-forward network of the kind often used

in many connectionist simulations. Note that the network
can become a recurrent network by adding connections in
the opposite direction, and/or by adding connections among
the units within the same layer. From Rumelhart, Hinton

& Williams (1986), Learning internal representations by
error propagation. In D.E. Rumelhart, J.L. McClelland &
PDP Research Group (Eds.), Parallel distributed processing,
Volume 1, Figure 1, p. 320. Copyright 1986, MIT Press.
Reprinted with permission.

connections, driven by experience, provide a mechanism
both for learning and for development. Connectionist
models can be informed by neuroscience in a variety of
ways, for example, in the activation functions governing
the updating of processing units, the learning algorithms
governing changes to connections, the structured organ-
ization of networks and the incorporation of neuro-
modulation. As we shall see, connectionist models can
also inform neuroscience, for example, by providing
computational insights into why different brain regions
are specialized for different functions.

Activation dynamics

In the connectionist framework, the propagation of ac-
tivation is a dynamic process operating in a continu-
ous state space and evolving continuously over time,
although this is not always stressed by all connectionists
or in all models. In models that simulate this gradual
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activation process, it is typically formalized as a differ-
ential equation relating the rate of change of some vari-
able (such as the activation of some unit) to the inputs
it is currently receiving from other units via weighted
connections. One simple such equation is found in the
cascade model (McClelland, 1979):

da;
o = k(z]: awy; — aij (1)

where ¢, represents the activation of receiving unit i, g;
represents the activation of sending unit j, w; represents
the connection weight from unit j to unit 7, and k is a
time constant that determines the rate of change of ac-
tivation. This equation gives rise to a simple exponential
approach to asymptote in a one-layer network or a more
complex sigmoid-like approach to asymptote in a multi-
layer net.

In most contemporary models, the activation process
is assumed to be nonlinear. A common implementation
of a nonlinear activation function replaces Equation 1
with:

dnet; = k(z awy — net,-) 2)
dt >

a; = f(net,) (3)

where net; refers to the net input to unit i, and fis a
simple nonlinear function like that illustrated in Figure 2.

In models that learn, the learning process often
requires many presentations of an ensemble of training
patterns. In this case, modelers often simplify the activa-
tion dynamics down to a single step computation, in
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Figure 2 Nonlinear activation function often used in neural
network simulations. The actual function shown, called the
logistic function, a, = ( , is the function most frequently
used.
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which the value of k in Equation 2 is effectively set to 1.
This can result in the loss of some interesting structure
in the settling process, but has made it practical to study
the dynamics of learning.

Learning dynamics

As with activation processes, learning rules are generally
given in the form of differential equations, indicating the
dynamic nature of the learning process. Changes to con-
nection weights can arise due to self-organizing processes
(e.g. based on a Hebbian type of mechanism whereby
‘units that fire together wire together’), or due to error-
driven learning, whereby feedback signals lead to weight
adjustments that minimize the system’s error. These
ideas are formalized in differential equations such as:

dw;
0 a,a 4)
dw;
—4L = ¢gb.a; 5
0 i (5

where € represents the ‘learning rate’ and &, represents
unit s contribution to the overall error, specifically, the
degree to which a change in the input to unit 7 will pro-
duce a change in the overall error. The computation of
the value of the § variables is accomplished using a pro-
cess much like the forward propagation of activation
(Rumelhart, Hinton & Williams, 1986a). Equation 4 rep-
resents a self-organizing algorithm, whereby connection
weights change according to the activations of sending
and receiving units. Equation 5 represents an error-
driven algorithm, whereby weights change to minimize
the system’s error.

General principles: representations, gradual learning
and interactivity

The work reviewed here exemplifies several principles of
connectionist models. First, there is an emphasis on the
nature of the representations governing behavior. This is
a crucial issue in the creation of models and in the
understanding of how such systems work and develop.
In the connectionist framework, representations can
take the form of patterns of activity distributed across
processing units. These patterns are graded in nature,
with representations varying in strength in terms of the
number of units contributing to them, the activation
levels of those units, the amount of noise in the activa-
tion patterns, and so on. Exploring the nature of these
underlying representations is critical for understand-
ing how these systems behave in their ‘mature’ form —
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for example, to see the kinds of representations that
can begin to solve the difficult computational problem
of object recognition (Mozer, 1987), subserve reading
(Plaut, McClelland, Seidenberg & Patterson, 1996) and
support higher level cognition (O’Reilly & Munakata,
2000). Exploring underlying representations is perhaps
even more important for understanding the develop-
ment of these systems — for example, why behavioral dis-
sociations are particularly salient during development
(Munakata, 2001), and how systems can progress from
knowing little about the category structure of the world
to making fine-grained distinctions between categories
and recognizing that different kinds of features are cent-
ral to different categories (Rogers & McClelland, in press;
McClelland & Rogers, 2003).

Second, in connectionist models, learning typically
occurs gradually, as small changes are made to con-
nection weights. Understanding how change occurs is a
central goal of studying development, so connectionist
models provide an important tool in allowing specific
learning mechanisms to be implemented and their effects
to be observed. Resulting models have demonstrated, for
example, how self-organizing processes can lead systems
to perseverate, repeating previous behaviors when they
no longer make sense, in the same way that infants and
children do (Munakata, Morton & Stedron, in press).
Further, models using error-driven learning processes
have helped to flesh out the Piagetian notions of assim-
ilation, accommodation and equilibration, and their role
in a variety of learning situations (McClelland, 1995).

Third, processing in connectionist models is typically
highly interactive. That is, there is bi-directional com-
munication between units within and between layers.
Bi-directional connectivity makes networks much more
complex dynamic systems, but does have advantages that
are exploited in many models. Bi-directional connectiv-
ity allows activation signals to carry information that
can be used to estimate the § variables above (thereby
providing a biologically plausible method of computing
0 values (O’Reilly, 1996)). Also, as Hopfield (1982) first
established, under many conditions networks with bi-
directional connections will tend to settle to fixed-points
or attractor states. The particular attractors in the net-
work, the size of their basins of attraction and the result-
ing tendencies networks exhibit to settle into them,
depend on the values of the connection weights, which
in turn depend on the learning rule. Finally, interactivity
has important consequences for how systems develop.
For example, one part of a network may develop in a
particular way in part because of how another part of
the network is developing, due to the communication
between these parts of the network. This point will be
elaborated in the discussion of developmental disorders.
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Variants and additional mechanisms

It should be noted that the connectionist framework is
by no means monolithic; many variants on the activa-
tion and learning mechanisms mentioned above have
been proposed, and many additional mechanisms can be
investigated within it. For example, ‘generative’ connec-
tionist architectures have been investigated (Mareschal
& Shultz, 1996), in which new units (along with connec-
tions to other units) are recruited into a network as a
function of experience (see also Quartz & Sejnowski, 1997).
Furthermore, it is possible to incorporate assumptions
about changes that occur as a function of age that might
interact with experience-dependent learning processes.
All such approaches fall under the broad umbrella of
connectionist models and should be considered in a
larger review. In this brief review, we focus on work
exploring the developmental implications of the simple
formulation of connectionist mechanisms given above,
seeking to explain developmental change as reflecting
the operation of the learning process rather than age-
dependent changes. Some specific points of contrast
with other work in which age-dependent changes are
invoked are considered at relevant points in our analysis.

Next, we explore how connectionist models have con-
tributed to the study of nonlinear dynamics and emer-
gent properties in development, the role of graded
representations in behavioral dissociations and the spe-
cialization of different brain regions.

Nonlinear dynamics and emergent properties

In any complex system (human cognition, the weather, etc.),
the whole is more than the sum of its parts. Complex
processes like cognition cannot be reduced simply to
the operation of individual neurons, the effects of neuro-
transmitters, etc. Instead, complex processes require an
understanding of nonlinear interactions among a large
number of components, and properties that emerge in sys-
tems as a result of such interactions. Models are essential
for exploring this kind of complexity. The connectionist
and dynamic systems frameworks have both emphasized
the importance of this kind of complexity in human
cognition (as discussed by Thelen & Bates, this issue). In
what follows, we focus on simulations that explore the
role of nonlinear dynamics and emergent properties as
relevant for understanding nonlinear developmental
trajectories, critical periods and developmental disorders.

Nonlinear developmental trajectories

Connectionist models have been used to explore a
number of aspects of nonlinear dynamics and emer-
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gent properties that might subserve behaviors observed
during development. For example, small, incremental
changes in strengths of connections can lead to stage-
like changes in the behavior of connectionist models
(McClelland, 1995). Training in such networks is meas-
ured in epochs, which may consist of one presentation of
each of the examples defining a training environment, or
of a randomly chosen set of examples. Children often
appear to show stage-like developmental changes, for
example, in their understanding of balance scale prob-
lems (Inhelder & Piaget, 1958; Siegler, 1976). Figure 3
shows a network used to explore these changes, and a
graph of the strengths of the connections in the network
(McClelland, 1989). The graph illustrates that gradual
incremental learning according to a simple (error-driven)
connection-adjustment rule can explain why children’s
progress can appear highly stage-like in character. Spe-
cifically, the connection strengths (and as a result the
overt responses that the network makes to inputs)
exhibit periods of stability, followed by periods of rapid
change, followed by further periods of stability once
mastery up to a certain level has been achieved. This
process is seen for both the weight dimension and the
distance dimension, although it occurs more quickly
for the weight dimension, because information about
variation in weight is available more frequently than
information about variation in distance (this accords
with aspects of children’s performance indicating that
mastery of the distance dimension may in fact be very
gradual in this task, Wilkening & Anderson, 1982). Con-
centrating on the fairly abrupt transition seen on the
weight dimension, we can ask, what produces this stage-
like progression in learning? In the network, the ability
to represent a certain kind of information (say, the mag-
nitude of weight on each side of the balance scale) is
captured in the input-to-hidden connections, and the
ability to use the representation is captured in the hidden-
to-output connections. Both sets of connections initially
have small random values (indicative of an initial state
of ignorance of the relation between weight and the
behavior of the balance scale). Each set of connections
must become organized before changes in the other can
be effective in allowing the network to produce cor-
rect outputs. This means that the § terms introduced
earlier are very small at first, so learning correspondingly
progresses slowly. As the connections begin to become
organized, the 6 terms gradually become much larger;
effectively the network becomes more sensitive to input
about weight than it had been previously. The result
is an acceleration of learning about the weight dimen-
sion, which only levels off again when the network
has extracted all of the benefit available from it (in
terms of eliminating the error in determining which
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Figure 3 (a) The simple three-layer network model of the balance scale problem of Inhelder and Piaget (1958) as later studied
by Siegler (1976). (b) The state of the network’s connection-based knowledge of the impact of weight and distance on the balance
scale, as encoded in the connections from the input to the hidden layer and from the hidden to output layer as a function of
ongoing learning through exposure to training examples. Connection range variable shown reflects the degree to which the
connection strengths in the layer in question differentiate the different values of the weight and distance inputs. The x-axis represents
amount of training in ‘Epochs’, each containing 100 randomly sampled training examples. From McClelland (1989), in R.G.M.
Morris (Ed.), Parallel distributed processing: Implications, Figures 2.7, p. 25 and 2.12, p. 32. Copyright 1989, Oxford University

Press. Reprinted by permission of Oxford University Press.

side of the scale will go down with a given balance scale
problem).

The McClelland (1989) model may not have captured
all aspects of the transition from stage to stage that are
seen in developmental data (Raijmakers, van Koten &
Molenaar, 1996). This is an important issue that must be
addressed in further research. One possible explanation
for the shortcomings of the McClelland (1989) model is
that it was completely deterministic. In subsequent work
we have come to the view that this is an oversimplifica-
tion; it appears to be a basic principle of human cog-
nitive processes that they are intrinsically variable
(McClelland, 1993; Siegler & Munakata, 1993). Intrinsic
variability can be incorporated by assuming that noise is
present in the net input to each unit. This tends to lead
to variability in overt behavior, which will be greater
around transitions than either before or after them.
During transitions, the behavior of the network is fairly
close to the margin between one or another mode of
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responding, so that random variability in processing
would be more likely to lead to inconsistency and lability
in the network’s outputs. These are characteristics
often exhibited at or near stage transitions (Siegler &
Munakata, 1993). Other factors, such as attention, might
be especially important during transitions, so that natural
fluctuations in attention would make more difference
and thereby contribute to increased variability in the
transitions.

Further, connectionist models can show U-shaped
performance curves as they learn, sometimes getting
much worse on at least some items or subtasks in a
domain as they progress from a very early stage where
performance is uniformly poor toward overall mastery
(e.g. Rumelhart & McClelland, 1986; Plunkett & March-
man, 1993; O’Reilly & Hoeffner, submitted). Sometimes
(e.g. Rumelhart & McClelland, 1986), such U-shaped per-
formance curves are produced in simulations in which
the training corpus presented to the network shifts
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Figure 4 Inverted U-shaped trajectory of the property ‘has
leaves” when given ‘pine’ as input, from a network learning
various properties of a large number of different concepts. After
an early period of low activation, the network transitions to a
stage in which the activation of the ‘has leaves’ property first
reflects the proportion of objects that have leaves (about .45),
then moves in the direction of the proportion of plants that
have leaves (much higher), before finally dropping downward
to reflect the actual probability that a pine tree has leaves
(which is 0 in the network’s training environment). The figure
is based on results of a simulation described in Rogers and
McClelland (in press).

over the course of development. Since some researchers
have criticized the idea that the training environment
might shift in this way (e.g. Pinker & Prince, 1988), it
is important to note that U-shaped development can
occur even in situations where the environment stays quite
stable over time.

One case in point arises for a network’s knowledge of
the properties of atypical objects in a simulation model
of conceptual development. Following the work of
Rumelhart and Todd (1993), Rogers and McClelland (in
press; McClelland & Rogers, 2003) considered a network
learning about the properties of various specific objects
chosen from the categories of birds, fish, trees and flow-
ers. Among the attributes the network had to learn was
whether or not a pine tree has leaves. The activation of
the attribute ‘has leaves’ for the pine tree is shown in
Figure 4. After an initial period of low activation of all
properties, the network’s activation of the ‘has leaves’
property comes to reflect the overall proportion of
objects in the network’s training environment that have
leaves; this is about 0.45. At this point in training
(covering about epochs 600-1300), the network has not
differentiated the different kinds of objects, so the activa-
tion of ‘has leaves’ just reflects the probability of leaves
given that the item is any object. However, because the
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plants the network is learning about all share many
properties, and because the animals all share a different
set of properties, the network gradually differentiates
the plants from the animals. At this point, it still treats
the pine like all other plants, most of which have leaves,
and so it shows a sharp increase in the tendency to
attribute leaves to the pine tree (up to a maximum ac-
tivation of about .65). Thus, performance on whether
the pine has leaves, previously indecisive, now becomes
more clearly incorrect. With further exposure to the
domain, the network learns to differentiate the pine from
the other plants, thereby gradually overcoming this
error, and producing an (inverted) U-shaped curve. The
U-shaped trend over development reflects the interplay
of progressive differentiation of concepts with differences
in the probability of the property for concepts that
are lumped together at different levels of granularity. As
the representations of the various concepts differentiate
progressively, its property attributions come to reflect the
level of differentiation it has achieved, and therefore the
probability of attributing leaves to pine trees undergoes
a U-shaped progression. In this way, U-shaped learning
can occur even in situations where the ensemble of experi-
ences on which the network is trained remain stable over
time.

It may be noted that U-shaped learning can also occur
on a fine grain time scale, with many reversals in accur-
acy of performance with particular items (Plunkett &
Marchman, 1993). Many times these micro-U-shaped
trends can occur as a consequence of the effects of
intrinsic variability in processing, coupled with effects of
the random sequence of training examples; connection
changes favoring a particular training example (e.g. live-
lived) can lead to interference with performance on
another (e.g. give-gave).

Critical periods

The analysis of critical periods in development has
become an important area of application of connection-
ist approaches. The topic is fascinating to connectionists
in part because of the general paradox of critical periods
and in part because the dynamic properties of connec-
tionist models suggest that they may offer some explana-
tions of critical period effects.

Starting small

One widely discussed issue within the connectionist frame-
work is the benefits of training networks on a simplified
set of training examples before exposing them to the full
complexity of a complex domain, such as sentential syn-
tax (Elman, 1993). Similar ideas have been proposed
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Figure 5 (a) The fixed set of training sequences generated
from a Reber Grammar (Reber, 1976) that were used to train
the simple recurrent network shown in (b). Note that in the
network there is an input and an output unit for each character
appearing in the training sequences, as well as a set of hidden
units. The task of the network is to predict the next element
it is about to see, starting with B at the beginning of each
sequence and ending with E at the end. Training sequences are
chosen at random, and a large number of sequences are shown
in each epoch of training. Input units are fully connected to
hidden units, which are fully connected to output units. In
addition, the network contains a set of context units, which
serve to hold a copy of the activations of the hidden units from
the previous time step; these units too are fully connected to
the hidden units. All forward-going weights are subject to
modification via back-propagation. From Servan-Schreiber,
Cleeremans & McClelland (1991), Graded state machines: the
representation of temporal contingencies in simple recurrent
networks, Machine Learning, 7, Figure 3, p. 164, Figure 12,
p. 173, and Figure 4, p. 165. Copyright 1991, Kluwer
Academic Publishers. Reprinted with permission.

based on behavioral investigations of critical periods in
language learning (Newport, 1988, 1990). Essentially the
notion is that a system that is only capable of processing
a small amount of information at one time cannot be dis-
tracted by complex relationships, and will benefit from
its simplicity by focusing on the simpler, lower-order regu-
larities first. This idea has a great deal of appeal, and
is likely to be highly relevant to our understanding of the
ease with which young children acquire their first, native
language. However, there are other perspectives on this
issue that are worth serious consideration.

One observation is that connectionist networks tend
to start small on their own accord, and no special inter-
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Figure 6 The degree to which the predicted outputs of

the network shown in Figure 5b correspond with the actual
conditional probabilities (ACP) of occurrence of successive
elements, conditional on taking different numbers of prior
elements into account. The predictions based on taking no
prior elements (ACP-0) into account are equivalent to the relative
frequencies of occurrence of the elements without regard to
preceding elements. From Servan-Schreiber, Cleeremans &
McClelland (1991), Graded state machines: the representation
of temporal contingencies in simple recurrent networks,
Machine Learning, 7, Figure 3, p. 164. Copyright 1991,
Kluwer Academic Publishers. Reprinted with permission.

ventions are necessary to force them to pay attention
first to low-order statistical properties of inputs. An
illustration of this property of simple recurrent networks
(the type of network used by Elman) is presented in a
simulation performed by Servan-Schreiber, Cleeremans
and McClelland (1991). In this simulation, a simple
recurrent network was trained with a specific set of
examples generated from a stochastic finite-state transi-
tion network (‘Reber Grammar’, Reber, 1976, Figure 5).
The task was simply to predict the next element in a
stream of inputs representing the successive letters in the
grammar. As Figure 6 illustrates, the network quickly
picked up at the very beginning of training the 0-order
structure of the sequence, that is, the base rate of occur-
rence of particular elements of the sequences (curve
labeled ACP-0). Over the first 100 epochs or so, it came
to exhibit sensitivity to first-order sequential structure;
this is the conditional probability of an element, given
only the immediately preceding element. This is illus-
trated by the first rising curve, ACP-1. Successively ris-
ing curves thereafter reflect increasing sensitivity to
successively more and more preceding elements. When
the simulation was terminated, the network was still
progressing in its mastery of sensitivity to sixth-order
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structure, illustrated by the gradually rising ACP-6
curve. In this way, the network progressively came to
take higher and higher order structure into account,
based solely on the statistics in its training (many specific
examples of U-shaped learning of the predictions of var-
ious elements in various contexts occur throughout this
process). Thus, the network inherently tends to start
small, exhibiting sensitivity first to low-order structure
before picking up on more complex, higher-order
sequential dependencies. A further relevant point of note
is that work following up on Elman’s (1993) study has
not successfully replicated the finding that curtailing the
complexity of the early training environment actually
facilitated learning (Rohde & Plaut, 1999). Rohde and
Plaut considered a wide range of variations of parame-
ters of the network and the training regime, and found
that the network typically performed best if trained on
the full corpus from the beginning of training. One pos-
sible reason for this is consistent with an alternative
account of the basis of critical period effects, which we
now proceed to consider.

Entrenchment

A fairly straightforward way of accounting for reduction
of plasticity as a function of prior learning is to assume
that as a network learns, the knowledge that it has
becomes somehow entrenched, so that it is more difficult
to alter with subsequent learning. There are in fact sev-
eral ways that entrenchment can occur in connectionist
networks.

Commitment of units and connections. As units and
connections become strengthened through training on a
set of examples, it can become more difficult to get the
network to learn additional examples added to the train-
ing set. This can occur for the following reason. As a
network is trained, the connection weights become fairly
large, as do the bias terms that determine the default
activation states of units. Early in learning, the presenta-
tion of a new input tends to produce weak, intermediate
levels of activation; but later, all inputs, whether old or
new, tend to produce relatively extreme activations.
Under these conditions, a fixed change to the strengths
of the connections tends to produce rather little change
in the output of the network. Because the changes made
to connection weights in error correcting networks are
determined by how strongly the change will reduce the
error, the actual change that is made is a very small one.
The result is a kind of double whammy, where the
change is small and ineffectual, resulting in very little
progress in a fully committed net. The effect becomes
more and more pronounced as learning proceeds, result-
ing in stronger and stronger resistance to new learning.
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This form of entrenchment appears to underlie simula-
tions of the ‘age of acquisition’ effect, in which words
that are first presented early in the overall training of a
network are more robustly learned than words that
are first presented at a later point in training (Ellis &
Lambon-Ralph, 2000; Zevin & Seidenberg, 2002).

Pruning of unused connections. A somewhat different
although related effect is the fact that in trained net-
works, many connections that are not needed become
very small. These small connections do not propagate
activation; also, they prevent changes to connections
below or above them in a multi-layer network from
having any substantial effect. In general, the effect of
pruning is to restrict the possibilities of reorganization in
the network. This factor may also be at work in the
simulation models of Ellis and Lambon-Ralph (2000)
and Zevin and Seidenberg (2002).

Counter-productive Hebbian learning. A different kind
of entrenchment effect arises in networks that have been
trained with Hebbian, rather than error-correcting learn-
ing algorithms. Hebbian learning essentially amounts to
a policy of strengthening whatever response the system
makes to the inputs that it receives. Hebbian learn-
ing can be beneficial if the system is initially set up to
make appropriate responses, since these will easily be
strengthened. For example, suppose an infant comes
with an auditory perceptual system capable of strength-
ening differential responses to clusters of speech sounds.
Differential responses to sounds experienced in the envir-
onment will be strengthened, and a simple local interac-
tion process among the units involved in representing
different sounds can result in the gradual recruitment of
all of the available representational units to represent
one of the clusters of experienced sounds or another
(see McClelland, Thomas, McCandliss & Fiez, 1999, for
a model showing how this process can occur). Once this
occurs, it becomes difficult to reorganize the system to
respond to the set of clusters represented by a different
language environment. For example, it may be difficult
for a Japanese subject who has a single representation
spanning the English /r/ and /I/. The presentation of
either an /r/ or an /lI/ will result in the activation of the
existing, single representation. Hebbian learning at this
point can actually be counter-productive, since it will
tend to strengthen the now-established tendency of the
given input to activate the established representation,
thereby paradoxically strengthening the entrenched
tendency to hear both the English /r/ and /1/ sounds as
the same (again, see McClelland et al., 1999, for further
discussion of simulations and preliminary data testing
this idea).

Overall, connectionist models provide a highly fer-
tile environment for the consideration of alternative



accounts of critical and sensitive period effects. The
models can also be used to explore how the relative tim-
ing of biological events can interact with the learning
process (Shrager & Johnson, 1996). In any such effort it
should be borne in mind, however, that apparently bio-
logical events can be triggered by learning mechanisms.
For example, a certain type of post-synaptic receptor
molecule (the so-called NMDA receptor), which is cru-
cial for triggering the biochemical processes that result
in changes in synaptic efficacy, changes over the course
of development in a way that may explain why changes
in neuronal response properties are harder to induce
in older than younger animals (Carmignoto & Vicini,
1992). Interestingly, it has recently been found that the
change in the NMDA receptor is itself experience
dependent, and indeed can be reversed if experience is
withheld (Quinlan, Olstein & Bear, 1999). Overall it is
apparent that degree of plasticity can change as a result
of experience, not simply as a bi-product of some auto-
nomous process driven simply by the passage of time.

Developmental disorders

Recently, connectionist models have proven useful for
exploring developmental disorders in terms of nonlinear
dynamics and emergent properties (Harm & Seidenberg,
1999; Hoeffner & McClelland, 1993; Karmiloff-Smith,
Scerif & Thomas, 2002; Oliver, Johnson, Karmiloff-
Smith & Pennington, 2000; Thomas & Karmiloff-Smith,
in press). As elaborated below, these simulations have
demonstrated the importance of considering processes
of development in understanding developmental disor-
ders (Karmiloff-Smith, 1998). This approach contrasts
with one motivated by a static view of brain function, in
which neural systems or modules are innately specified
for particular functions; in this view, developmental dis-
orders arise due to genetic alterations that target par-
ticular associated cognitive functions. This view has led
some researchers to argue that impairments in adult
(acquired) and developmental disorders have a similar
underlying cause. That is, if a neural system is innately
specified for a particular function, damage to that sys-
tem late in life should lead to similar effects as a devel-
opmental disorder that affects the genes coding for that
particular function (see discussion in Karmiloff-Smith
et al., 2002). However, this approach ignores the role that
processes of development can play in developmental dis-
orders. In contrast, within the connectionist framework,
it is more natural to consider particular functions emer-
ging in particular brain areas through a highly interactive
process of development, with different regions develop-
ing as they do in part because of how other regions are
developing (rather than simply having their functions
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prespecified). Connectionist models have highlighted
how: (1) small, quantitative differences in the starting
state of systems can lead through a process of develop-
ment to qualitative differences in outcome, and (2) dam-
age to a system early in development can lead to very
different behaviors than damage to the same system late
in development.

First, disorders can emerge through small changes in
low-level properties of a system’s start state, which inter-
act with processes of development (Oliver et al., 2000).
For example, with small changes to the firing thresholds
of units, networks showed large changes in the topo-
graphy of their representations. When units fired too
readily, or when firing was too difficult, networks failed
to develop typical topographic representations of neigh-
boring units that responded to similar stimuli. The
nature of these representations was not prespecified in
the networks, but emerged as the networks learned based
on the activations of their units, which were affected by
their firing thresholds. Such deviations in a system’s
ability to develop representations, emerging through a
low-level change interacting with the developmental
process could yield further emergent disordered pro-
cesses (e.g. in the ability to learn language using atypical
representations), though the exact computational con-
sequences of non-topographic representations are uncer-
tain. Similar ideas regarding the large effects of small
differences in start state have been explored in the typ-
ical development of specialized systems. For example,
small differences between units in their rate of activation
updating can lead one set of units to become specialized
in tracking the location of objects, while another other-
wise identical set of units comes to specialize in the
identity of objects (O’Reilly & Johnson, 1994; O’Reilly &
McClelland, 1992).

Second, damage to a developing system can lead to
quite different patterns of impairment than the same
damage to a mature system, such that behaviors in cases
of developmental disorders are likely to differ from cases
of adult brain damage (Karmiloff-Smith, 1998). Dam-
age to the mature system affects the specializations that
have already emerged, whereas damage to the younger
system more strongly affects ow specializations in the
damaged region and in other regions subsequently
develop. Models from adult brain damage may thus not
be extendable to developmental disorders. Patterns of
impairment in models of word reading and past tense
formation differed dramatically depending on whether
they were damaged prior to or following training,
despite identical levels, locations and types of damage
(e.g. removal of connections, addition of noise to activa-
tion processing) (Thomas & Karmiloff-Smith, in press).
In some cases, the developing networks required much
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more damage than the mature networks to show the
same levels of impairment. In other cases, following
the same damage, the developing and mature networks
differed in their patterns of performance (e.g. with a
developing network showing better performance on
novel words than on familiar exception words, whereas
mature networks showed the opposite pattern). In this
way, in interactive systems where functions emerge with
experience, the process of development can play a key
role in shaping the effects of an atypical start state. Con-
nectionist simulations hold the promise of illuminating
how specific alterations identified at the neural level may
develop in an interactive, emergent manner into the par-
ticular behavioral outcomes observed in developmental
disorders.

We believe this work on developmental disorders in
the neural network framework is quite consistent with
the core principles of the dynamic systems approach, but
we do not know of any dynamic systems simulations
exploring this domain.

Graded representations in behavioral
dissociations

People often show dissociations in their behavior, seem-
ing to know things when they are tested in one way,
while seeming unaware of this information when they
are tested in another way. Such dissociations occur
across perception, attention, memory, executive func-
tioning and language, and are particularly salient during
development and following brain damage. Connectionist
models have demonstrated how graded representations
can lead to such dissociations across domains and popu-
lations (reviewed in Munakata, 2001).

Here, we focus on models of dissociations observed
in infants’ and children’s perseveration (Morton &
Munakata, 2002a; Munakata, 1998; Stedron, Munakata
& Sahni, 2002). Across the first several years of life,
children show dramatic repetitions of prior behavior
when those behaviors are no longer appropriate. For
example, after infants search for a toy repeatedly in one
hiding location, they perseverate in searching in that
location even after watching the toy being hidden in a
different location — a behavior known as the A-not-B
error (Diamond, 1985; Piaget, 1954). Infants will even
perseverate when they do not need to remember any-
thing to succeed at a task. For example, when faced with
two towels to pull — one with a distant toy on it and one
with a toy behind it — infants will choose the towel with
the toy on it. However, if the towels are switched so that
the towel that was to the infants’ left (e.g. with the toy
on it) is now to the infants’ right, infants perseverate,
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continuing to pull the towel on the same side as before
though it does not yield the toy (Aguiar & Baillargeon,
2000)." Similarly, after 3-year-olds sort cards by one
dimension (e.g. according to color), they perseverate in
sorting according to that dimension even after repeated
instruction to switch to sorting by a new dimension (e.g.
according to shape) (Zelazo, Frye & Rapus, 1996). Six-
year-olds show the same pattern when asked to judge the
emotion of a speaker; they can succeed at an initial task
of judging emotion based on the content of the speaker’s
utterances, but they perseverate with content when asked
to switch to judging emotion based on tone of voice
(Morton, Trehub & Zelazo, in preparation).
Connectionist models have been used to explore
dissociations in two aspects of perseveration. First,
although infants and children seem to know things (e.g.
what information is relevant for retrieving distant or hid-
den objects, or what information to use for sorting cards
by color) when they are tested on these tasks at the out-
set, they seem unaware of this information when they are
tested on these tasks after engaging in conflicting beha-
viors (e.g. retrieving objects from a different location, or
sorting cards by shape). Connectionist models have
accounted for these dissociations in terms of a competi-
tion between two distinct types of representations —
latent and active (Munakata, 1998) — each of which is
graded in nature. Latent representations take the form of
changes in connection weights that build from prior
experience based on self-organizing learning (e.g. reach-
ing to the left, or sorting cards by color). These latent
representations are thought to rely on posterior cortical
areas. Active representations take the form of main-
tained activations of processing units, and can represent
currently relevant information (e.g. that the toy has been
moved to the right, or that the new sorting rule is shape).
These active representations are thought to rely on pre-
frontal systems. In tasks where children perseverate,
these two types of representations compete; the currently
relevant information must override what was relevant
based on prior experience. Connectionist models have
demonstrated that when the ability to maintain active
traces is relatively weak, systems fall back on their latent
representations and perseverate — in reaching for hidden
objects (Munakata, 1998), in reaching even when all of
the relevant task information is visible (Stedron et al.,
2002) and in sorting cards and judging emotion (Morton

! Infants will also perseverate in ‘no-toy’ versions of the A-not-B task,
in which an experimenter waves one of two identical visible lids and
infants are allowed to reach (Smith, Thelen, Titzer & McLin, 1999;
Munakata, 1997). Although this task variant might appear to require
no memory because nothing is ever hidden, infants must remember
which of the two lids was waved to succeed in this task.



& Munakata, 2002a). Thus, children may show dissoci-
ations in their performance based on how strong the
latent representations are that need to be overcome. At
the outset (e.g. before any reaching for toys or sorting of
cards), there may be minimal latent representations (e.g.
for where to reach or how to sort), such that children’s
active representations of the relevant task information
are sufficiently strong to govern correct performance. In
contrast, after repeatedly engaging in a behavior, latent
representations are strengthened such that active rep-
resentations of new information (e.g. a new location, a
new sorting rule) cannot overcome the latent representa-
tions, resulting in perseveration.

Second, children can show remarkable dissociations
between their perseverative behaviors and their apparent
awareness of what they should be doing. For example,
even as infants reach perseveratively for a hidden toy,
they occasionally gaze at the correct hiding location
(Piaget, 1954; Diamond, 1985; Hofstadter & Reznick,
1996). Perhaps even more compelling, even as children
sort cards or judge emotions perseveratively (according
to a previous rule), they can correctly answer questions
about the new rule they should be using, such as where
trucks should go in the shape game (Zelazo et al., 1996),
or what aspect of a speaker’s voice they should be listen-
ing to (Morton & Munakata, 2002b; Morton et al., in
preparation). Connectionist models have demonstrated
how such apparent knowledge—action dissociations
could arise due to graded representations, with networks
using weak representations for success at certain tasks
but not others. For example, a network with only weak
representations of a hidden toy was able to gaze cor-
rectly to the toy’s location while reaching perseveratively
(Munakata, 1998). The network’s gaze system updated
more frequently than the reaching system. This mani-
pulation captured the fact that in the A-not-B task, infants’
reaching is much more restricted than their gazing. This
difference between reaching and gazing allowed the net-
work to use weak representations to counter persever-
ative tendencies in its gazing in a way that the reaching
system could not. Similarly, networks can use a weak
representation of a new card sorting rule to answer ques-
tions about the rule (‘Where do trucks go in the shape
game?’), because there is no competition from latent rep-
resentations (e.g. to sort by color) in this task (Morton
& Munakata, 2002a). In contrast, the inherent conflict
in the sorting task (e.g. a card is both red and a truck)
requires the active representation of the new rule to be
strong enough to overcome the latent bias toward the
old rule.

Again, we believe that these connectionist simulations
of perseveration and associated dissociations share much
with the dynamic systems approach. One difference is
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that the connectionist models may better capture cer-
tain distinctions at the neural level, which may be lost in
the abstractions of dynamic fields. For example, in the
model of perseveration in the dynamic systems frame-
work (Thelen, Schoner, Scheier & Smith, 2001), an
infant’s memory and stimuli that are presented to the
infant are treated as qualitatively similar, as numerical
abstractions that are summed as inputs to a dynamic
field. However, environmental inputs and memory may
be instantiated in qualitatively different ways in the neu-
ral system: certain forms of memory may be embodied
in synaptic changes, whereas responses to particular
environmental stimuli may be embodied in the firing of
populations of neurons. As a result, memory and envir-
onmental inputs can have different consequences for
behavior, and they can interact in nonlinear ways with
other factors. This distinction between synaptic changes
and neuronal firing is naturally captured in neural net-
work models, in terms of the distinction between weights
and activations.

Specialization of brain regions

The final contribution we discuss from the connectionist
framework speaks to the relation between connectionist
models and neuroscience. As discussed in the introduc-
tion, connectionist models can be informed by neuro-
science in a variety of ways. But this relation is not a
one-way street; models can inform neuroscience as well,
rather than simply incorporating discoveries from neuro-
science. In particular, models can help to illuminate why
particular brain regions might become specialized for
different functions (as discussed in the Developmental
Disorders section), and why different regions might be
required to subserve those specializations (rather than
all of cortex, for example, subserving episodic and
semantic and working memory). Here, we focus on how
connectionist models have helped to explain aspects of
the large-scale organization of the brain, in terms of
computational tradeoffs. In a tradeoff, two objectives
cannot be achieved simultaneously; a system must relin-
quish its ability to achieve one objective as it specializes
on its ability to achieve the other objective. This ap-
proach to neural specialization provides an important
complement to work demonstrating what brain areas
contribute to different behaviors, by illuminating how
and why those brain regions subserve their associated
functions.

Connectionist simulations have demonstrated how
computational tradeoffs may play a role in the special-
izations of the hippocampus and cortex in memory
(McClelland, McNaughton & O’Reilly, 1995; O’Reilly
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& Rudy, 2001). These simulations have shown how a
system that learns rapidly with non-overlapping rep-
resentations is crucial for the recollection of particular
episodes (such as meeting a particular person — e.g.
remembering where you met her, what her name is, who
you were with, and so on). The rapid learning with non-
overlapping representations allows the system to quickly
encode the memory and keep it distinct from memories
for similar episodes (e.g. the meeting of other people). In
contrast, simulations that learn slowly using overlapping
representations tend to collapse across the differences of
individual episodes; as a result, these systems instead
specialize on representing the underlying structure of the
environment (e.g. a schema for what typically happens in
meeting people). Both types of representations and
learning are useful, but there is a computational tradeoff
between them; a single system cannot simultaneously
specialize in both non-overlapping representations with
fast learning and overlapping representations with slow
learning. As a result, one neural system (the hippocam-
pus) may specialize in the fast and non-overlapping
functions, while another neural system (posterior cortex)
may specialize in the slow and overlapping functions.
This computational approach is consistent with (and
may help to make sense of) findings from neuroscience
regarding the anatomy and physiology of the hippocam-
pus (Squire, Shimamura & Amaral, 1989). For example,
areas of the hippocampus show very sparse levels of
activity, which could contribute to relatively non-over-
lapping representations. Thus, a fundamental computa-
tional tradeoff in memory suggests the need for two
specialized systems that the hippocampus and cortex
appear to satisfy.

Connectionist simulations have also demonstrated
how a computational tradeoff between interactive versus
isolated representations may help to illuminate the spe-
cializations of posterior cortex versus prefrontal cortex,
respectively (O’Reilly, Mozer, Munakata & Miyake,
1999; O’Reilly & Munakata, 2000). These simulations
have shown how highly interactive representations, with
numerous strong connections among units, activate re-
lated constructs from partial inputs to support schemas,
inferences and semantic knowledge more generally (as
emphasized in the original PDP volumes — McClelland,
Rumelhart & PDP Research Group, 1986; Rumelhart,
McClelland & PDP Research Group, 1986). In contrast,
more isolated representations are required for systems to
maintain representations over delays, in the absence of
input, and in the face of noise (e.g. for working memory).
Again, both types of representations are useful, but
there is a computational tradeoff between them; a single
system cannot simultaneously specialize on interconnected
and isolated representations. As a result, one neural sys-
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tem (posterior cortex) may specialize on interconnected
representations, while another system (prefrontal cor-
tex) may specialize on isolated representations. This
computational approach may help to make sense of find-
ings from neuroscience regarding the anatomy (Levitt,
Lewis, Yoshioka & Lund, 1993) and physiology (Rao,
Williams & Goldman-Rakic, 1999) of prefrontal cortex,
which may suggest more isolated representations in this
region.

Although the work to date in this area has not been
developmentally focused, it is developmentally relevant.
Knowledge of the computational tradeoffs inherent in
neural specializations, together with the time course of
these specializations, could aid in understanding both
typical and atypical development. For example, the com-
putational account of hippocampal and cortical special-
izations may provide an explanation of infantile amnesia
(McClelland et al., 1995). In this account for the mature
system, the hippocampus quickly encodes individual
episodes based on cortical representations; episodic
memories can later be retrieved when these distinct hip-
pocampal representations activate relevant cortical rep-
resentations. In the developing system, the hippocampus
would quickly encode individual episodes based on early
cortical representations, but retrieval of these memories
would be hindered by dramatic changes to the cortical
representations over the first years of life. That is, as the
cortical representations reorganized, they would no
longer serve to activate hippocampal representations,
and hippocampal representations for particular episodes
might activate cortical neurons that no longer repres-
ented those episodes. The result would be infantile
amnesia. Note that many theories attribute infantile
amnesia to representations changing, and becoming
incompatible, so that prior experiences can no longer be
accessed. However, these theories face a difficulty: if the
representations change so dramatically that prior experi-
ences are effectively no longer represented, one would
expect dramatic general deficits to be observed as rep-
resentations change. All previous knowledge would
effectively be overwritten, so that children would not be
able to recognize familiar objects, music, words, etc. But
such dramatic general deficits are not observed. The
computational tradeoff story can make sense of this.
Cortical changes are slow, and possibly even slight, such
that general deficits are not observed. But these slow and
possibly slight cortical changes can lead to large changes
in the hippocampal representations, leading to dramatic
deficits, but only in episodic memory — hence infantile
amnesia.

Further, understanding neural specializations in terms
of computational tradeoffs could help to make sense of
developmental changes in patterns of brain activity and



effects of brain damage. For example, an area might sub-
serve a computational function crucial for learning a
skill, but unimportant for executing the skill once it is
learned. An understanding of this kind of dependency at
the computational level could help to explain why cer-
tain kinds of brain damage (or activity) are linked to the
learning of skills such as reading but not to the expert
execution of those skills (Stiles, Bates, Thal, Trauner &
Reilly, 2002).

We believe that this type of connectionist work, on the
specialization of brain regions, does not directly contra-
dict the tenets of the dynamic systems framework.
Nonetheless, currently such explorations may be more
readily conducted within the connectionist framework,
because aspects of these models may be more transpar-
ently mapped onto corresponding neural components.

Relation between connectionism and
dynamic systems

Here we offer our thoughts about the similarities and
differences between dynamic systems and connectionist
models. In our view, connectionist models and dynamic
systems are closely related theoretical perspectives. Both
approaches place a strong emphasis on continuous,
nonlinear processes. One could view dynamic systems
theory in general as an overall mathematical theory that
includes dynamic models of all kinds of things, includ-
ing connectionist models, as special cases. However,
in practice, the connectionist approach to modeling
development is not a special case of the dynamic
systems approach to modeling development. This latter
approach, at least as practised by the dynamic systems
researchers participating in the present special issue
(Smith & Thelen, 1993; Spencer & Schéner, this issue)
comes with some commitments that make it more spe-
cific than the whole class of possible dynamic systems
models and that serve to differentiate the approach in
some ways from connectionist approaches. It should be
noted that there is a research tradition among a group
of European developmentalists (including Moser, Raij-
makers and others) that also identifies itself with a
dynamic systems approach. For present purposes we
confine ourselves to a comparison of connectionist mod-
els with the dynamic systems approach as characterized
by Spencer and Schoner (this issue) and Smith and
Thelen (1993). Comparison of connectionist models
with the other work would be worthwhile, but space pre-
vents such a consideration here.

While the connectionist work has tended to focus on
topics in cognitive and linguistic development, most of
the dynamic systems work has tended to focus on senso-
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rimotor phenomena and real-time behavior in time and
space. Relatedly, we think the dynamic systems work has
tended to focus on direct mathematical characterization
of the physical elements of the behaving system and on
relationships among these elements and between them
and the environment, while connectionist models have
tended to focus on the representations that may underlie
performance in cognitive and linguistic tasks. For ex-
ample, Thelen’s work on why babies will step right after
birth and then cease to do so for some months makes
reference to the dynamic properties of the legs as real
physical objects, while McClelland’s work on Siegler’s
balance scale addresses the child’s developing repres-
entation of the weight and distance information required
to predict how a balance scale would behave. In an area
where the approaches have been applied to the same
behavioral phenomena (the A-not-B error; Munakata,
1998; Thelen et al, 2001) this difference between the
approaches is apparent; Thelen et al (2001) (see also
Smith et al, 1999; Thelen & Smith, 1994) use the
dynamic systems framework to formulate theoretical
proposals about the effect of performing an action on
the creation of an attractor for that action, whereas
Munakata (1998) is specifically concerned with the
possible differences between two different kinds of rep-
resentations of response tendencies, one short-lived
representation in the activations of units and one longer-
lived representation in the strengths of connections.

An important difference between many dynamical
systems models and our own efforts is that we have
stressed the role of learning as the engine of change in
development, and we rely on such learning to account
for developmental differences in performance. In con-
trast, in much of the dynamical systems work, develop-
mental differences are attributed to differences in a
control variable whose change as a function of age is
assumed but not explained. For example, in neural net-
work models of the development of object knowledge in
infants (Mareschal, Plunkett & Harris, 1999; Munakata,
McClelland, Johnson & Siegler, 1997), learning over the
course of experience leads to the strengthening of con-
nection weights, allowing networks to develop the ability
to maintain representations of previously visible objects
after they are hidden. This same kind of learning process
is thought to lead to the ability of older children to
maintain active representations of hidden objects for
longer periods of time in the A-not-B task (Munakata,
1998). For comparison, in the model of Thelen et al
(2001), there is an external control variable that changes
as a function of development, thereby changing the tend-
ency of traces of immediately preceding activations to
persist. We do not mean to suggest that dynamical sys-
tems researchers disagree with the idea that learning
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underlies these developmental changes; instead we sug-
gest that such issues have often been outside of their
focus. Learning could be incorporated into dynamical
systems models, and we would view this as a desirable
step for the future development of the framework.

Another difference between connectionist models and
dynamic systems approaches is that dynamic systems
models often tend to be formulated in low-dimensional
systems with fairly simple dynamics, while connectionist
models have tended to make use of systems that have a
large number of dynamic variables — each of the units
and connections in the network. Further complexity is
added to the connectionist models since changes in the
connection weights produce changes in the activation
dynamics, and these in turn produce changes in the
dynamics of learning (some of the specific ways in which
this can happen have been discussed in qualitative terms
above). The greater simplicity of the dynamic systems
models affords an enviable mathematical tractability
that is lacking in the connectionist models. This is
not to say that there has not been formal mathematical
work attempting to analyse connectionist networks;
on the contrary, there is a vast literature of this type
(e.g. White, 1989; Saad, 1998). However, while such
analyses have shed some light on such things as the
likelihood of convergence of neural networks and their
tendency to generalize appropriately, they have not thus
far succeeded in further elucidating their developmental
dynamics beyond the kinds of qualitative statements
about these issues that have been made earlier in this
article.

It should be noted, however, that one difference
between the dynamic systems approach and the connec-
tionist approach to development is that to this point
there have been no mathematicians with sufficient expert-
ise in the analysis of dynamic systems who have tuned
their particular mathematical tools for use in analyzing
the properties of connectionist networks. While these
networks may be more complex, an insightful math-
ematical analysis of the dynamics of development as it
unfolds in such networks may be possible. We invite
those mathematicians working in the dynamic systems
framework to see just how far their tools might take us
in understanding the dynamic properties of connection-
ist systems.

Conclusions
In closing we wish to emphasize the common ground
that is shared between connectionist and dynamic sys-

tems approaches. Both approaches represent modern
alternatives to frameworks that rely on discrete symbol-

© Blackwell Publishing Ltd. 2003

like constructs as the objects that are manipulated in
real-time behavior and constructed to provide the basis
for development. In this respect the models also share
some commonalities with developments over the last 20
years or so in production system models (which now rely
heavily on continuous and/or noisy activation values,
e.g. Just & Carpenter, 1992; Anderson & Lebiere, 1998).
There is also common ground in this respect with the
growing use of Bayesian approaches to capture know-
ledge and inference (Anderson, 1990; Oaksford & Chater,
1994). A second commonality is that both approaches
can be broadly applied to a wide range of different phe-
nomena, and both allow detailed contact between the-
ory and experiment. While there are differences between
the details of the approaches and the distribution of phe-
nomena addressed, we believe that useful insights have
come from both and that further cross-communication
between the protagonists of the two approaches is likely
to contribute to the emergence of further insights into
the dynamics of human development.
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